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Correlations and experiment

• Summary of some Green’s function results 

• Survey of perturbation expansion (very sketchy) 

• Discussion of different experimental data
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Sp propagator in many-body system
• Similar definition as in sp problem (see preliminary notes) 
• Also very useful both for discrete and continuum problems 
• Fermion definition 

• with normalized Heisenberg ground state 

• Heisenberg picture operators 

• and time-ordering operation is defined according to (fermions)
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Use definitions
• Write in detail 

• introducing appropriate completeness relations with exact 
eigenstates
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Lehmann representation
• Introduce FT for practical applications 

• Use integral representation of step function 

• Any single-particle basis can be used 
• Still “wave functions” and eigenvalues as in sp problem!!
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Spectral functions
• Physics of knock-out experiments to be discussed shortly can be 

interpreted nicely using spectral functions 
• For the removal of particles, we have the hole spectral function 

• with 
• A similar addition probability density is available for adding 

particles (particle spectral function)

Sh(�;E) =
1
⇤

Im G(�,�;E) E ⇥ ⌅�F

=
⇥

n

���⇤�N�1
n | a� |�N

0 ⌅
���
2
⇥(E � (EN

0 � EN�1
n ))

Sp(�;E) = � 1
⇤

Im G(�,�;E) E ⇥ ⌅+
F

=
⇥

m

���⇤�N+1
m | a†� |�N

0 ⌅
���
2
⇥(E � (EN+1

m � EN
0 ))

��F = EN
0 � EN�1

0

1
E ± i⇥

= P 1
E
⇥ i⇤�(E)



QMPT 540

Occupation and depletion
• Occupation number 

• Depletion 

• Obvious sum rule
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Expectation values of operators in ground state
• Consider one-body operator 

• One-body density matrix element 
• can be obtained from sp propagator 

• or
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Magic?!: energy sum rule
• Consider 

• Earlier results yield 

• Insert 

• Sum over
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Galitski-Migdal energy sum rule (Koltun)
• Combine with half the expectation value of the kinetic energy 

• complete result only when there are no three- or higher-body 
interactions 

• sp propagator (hole part) yields energy of the ground state 
• later: particle part yields elastic scattering cross section
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Noninteracting propagator
• Propagator for        involves interaction picture 

• with corresponding ground state 

• as for IPM so closed-shell atom or nucleus for example 
• Operators 

• assuming       is diagonal in this basis
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Evaluate noninteracting sp propagator
• Insert 

• propagation of a particle or a hole on top of noninteracting 
ground state  

• directly: 

• FT
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Noninteracting spectral functions
• Imaginary parts yield all the strength at one location 

• in this basis: either completely full or empty 

• other basis
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Link between interacting and noninteracting propagator
• Define                                         to obtain 

• with                           and 

• Define                                          time evolution in the interaction picture 

• It follows that 

• Iterate and analyze: 

• Explicit construction 

• Insert in propagator and include cancellation of terms —> diagrams with Wick’s 
theorem (see DVN Ch.8) 

• Each term in the expansion can be uniquely identified with a Feynman diagram 

• Small set of rules allow for complete graphical depiction that helps in visualizing 
the expansion
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Strategy
• Go from      to 
• Theorem 

• only fully contracted contributions survive when expectation 
value with respect to         is taken! 

• Use fermion sign convention also for normal ordering 
• Each contraction                                                          for all 

quantum numbers and time orderings —> Feynman diagrams
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âb̂•ĉ•...x̂ŷẑ
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Diagram rules (time-dependent version)
• Assume auxiliary potential absent; then for  
• Rules Rule 1 Draw all topologically distinct and connected diagrams

with m horizontal interaction lines for V (dashed) and 2m + 1
directed (using arrows) Green’s functions G(0)

Rule 2 Label external points appropriately. For example, the labels
�, t and ⇥, t� apply for Eq. (8.55)
Label each interaction with a time and sp quantum numbers

For each full line one writes

Rule 3 Sum (integrate) over all internal sp quantum numbers and
integrate over all m internal times

Rule 4 Include a factor (i�)m and (�1)F where F
is the number of closed fermion loops

Rule 5 Interpret equal times in a propagator as G(0)(µ, ⌅; t� t+)

V̂ m
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Interpretation
• Unclear about topological equivalence: resort to Wick’s theorem 
• Fermion lines run continuously from the external label     to     or 

form closed loops 
• A closed loop yields a minus sign 
• Contractions for a loop will look like 

• requires one additional sign to contract first and last operator  

•  = prefactor X factor under sum X # of contractions in mth order 

• Drawing of diagrams emphasizes static nature of interaction

� �
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First-order terms
• Use rules 

• Diagram V1D 

• Diagram V1E
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Second-order terms
• V2a 

• V2b
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more
• V2c 

• V2d
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and more
• V2e 

• V2f
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and more ...
• V2g 

• V2h
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and finally
• V2i 

• V2j
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Other way of drawing diagrams
• Compare with field-theoretical diagrams (Fetter & Walecka) 

• Topologically the same (use strings or elastics)

=V2a =V2d =V2c =V2b =V2f

=V2e

=V2e

=V2g =V2h =V2i =V2j
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Comments
• V2a-V2d iterations of 1st order 
• V2e-V2h replace internal propagator by 1st-order one 
• V2i-V2j “real” second-order terms (see later applications) 
• V2a-V2h summed in mean-field / Hartree-Fock approximation 
• Third of higher-order diagrams not often explicitly needed 
• Infinite-order summations important but can be generated by 

manipulating lower-order terms
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Include diagrams with auxiliary potential

Include direct and exchange terms together 
• V2a-V2d only represented by V2a using antisymmetrized matrix elements 

• V2e-V2g similarly only by V2e 

• V2i-V2j by V2i but requires factor ½ for “equivalent” lines 

• For symmetrized diagrams rule change

Rule 6 Label each U according to

Rule 7 Include a factor (�1)k and k additional propagators G(0)

Rule 1� Draw only all topologically distinct and connected, direct
diagrams with m horizontal interaction lines for V (dashed)
and 2m + 1 directed (using arrows) Green’s functions G(0)

Rule 8 Include a factor 1
2 for each pair of equivalent lines, which

both start at the same interaction and end at another
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Energy formulation
• Remember 

• Goals: 
– Find eigenvalues 

– and corresponding “wave functions”
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Noninteracting propagator
• Already done 

• Results for expansion of propagator in time formulation employed 
integration limits 

• Employing                                             in noninteracting 
propagators already eliminates all unwanted contributions (see 
Mattuck p.40) when the difference between time limits 
approaches infinity ⇒ use integration limits as above
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Inverse FT
• Consider 
• Check (do contours) 
• Special case of equal-time argument: interpret 

•       contour enclosing the upper half of the complex energy plane 
• All diagrams can now be Fourier transformed 
• Strategy:  

– for any diagram in time formulation replace noninteracting propagators 
by above expressions 

– perform time integrations (lots of delta functions)
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Changes in energy formulation
• Diagram structure the same topology 
• Labels different: unperturbed propagators labeled by energy 
• Example clarifies that interaction conserves energy: sum of two 

incoming energies must combine to sum of two outgoing ones 
• Example: V1DE 

• Arrows represent flow of energy 
• Only V terms in mth order: m time integrations plus external one, 

each leading to energy-conserving delta-function (use m+1 
factors of         from original 2m+1 from inverse FT of       ) 

• With auxiliary potential no factors

(2��)�1 G(0)
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Diagram rules in energy formulation (symmetrized)
Rule 1 Draw all topologically distinct (direct) and connected

diagrams with m horizontal interaction lines for V (dashed)
and 2m + 1 directed (using arrows) Green’s functions G(0)

Rule 2 Label external points only with sp quantum numbers,
e.g. � and ⇥
Label each interaction with sp quantum numbers

For each arrow line one writes

but in such a way that energy is conserved for each V
Rule 3 Sum (integrate) over all internal sp quantum numbers and

integrate over all m internal energies
For each closed loop an independent energy integration
occurs over the contour C ⇥

Rule 4 Include a factor (i/2⇤)m and (�1)F where F
is the number of closed fermion loops

Rule 5 Include a factor of 1
2 for each equivalent pair of lines
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Examples in second order
• V2a 

• V2e 
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Last term
• V2i 

• Note structure of diagrams 
• Noninteracting propagators at top and bottom (always) 
• Include auxiliary potential

Rule 6 Label each U according to

Rule 7 Include a factor (�1)k and k additional propagators G(0)
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Organize diagrams
• Knowing how to calculate each term in the perturbation expansion 

of sp propagator is important but not sufficient 
• Still requires to decide on appropriate approximations  
• Approximations are always necessary 
• Even if V “weak”, not useful to do traditional perturbation theory 
• Example: first-order term has double pole and does not 

correspond to Lehmann representation 
• Reorganize expansion such that solutions (even if approximate) 

do! 
• Requires infinite summations 

• Dyson equation ≈ Schrödinger-like equation for particles in the medium



QMPT 540

Diagrams so far (symmetrized)
• First-order 

• Second order 

• Including U
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Summarize all orders
• Write sum of all diagrams 

• Introducing the reducible self-energy --> sum all terms without 
top and bottom noninteracting propagators 

• Remember 

• Lowest-order self-energy expression with V
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Second-order self-energy terms
• V only 

• additional terms
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Irreducible self-energy
• Consider only self-energy terms that cannot be separated into 

two pieces by cutting only one noninteracting sp propagator 
• Irreducible self-energy 
• vs reducible self-energy 

• Expansion organized as

��

�

G(�,⇥;E) = G(0)(�,⇥;E)

+
�

�,⇥

G(0)(�, ⇤;E) ��(⇤, ⌅;E) G(0)(⌅, ⇥;E)

+
�

�,⇥,⇤,⌅

G(0)(�, ⇤;E)��(⇤, ⇧;E) G(0)(⇧, ⌃;E) ��(⌃, ⌅;E)G(0)(⌅, ⇥;E)

+ .....
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Dyson equation
• Remember sp problem summations 
• Same here: sum below short-dashed line (positive slope) 

• Sum above short-dashed line (negative slope) 

• As in sp problem yields eigenvalue problem or scattering equation 

• Diagrammatically

G(�,⇥;E) = G(0)(�,⇥;E) +
�

�,⇥

G(0)(�, ⇤;E)��(⇤, ⌅;E)G(⌅, ⇥;E)

G(�,⇥;E) = G(0)(�,⇥;E) +
�

�,⇥

G(�, ⇤;E)��(⇤, ⌅;E)G(0)(⌅, ⇥;E)
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Reducible self-energy
• Similar organization defines scattering matrix for elastic 

scattering of projectile from target with identical particles! 
• Sum terms between dashed lines 

• Sum to all orders 

• or

�(�, ⇥;E) = ��(�, ⇥;E)

+
�

�,⇤

��(�, ⇤;E) G(0)(⇤, ⇧;E) ��(⇧, ⇥;E)

+
�

�,⇤,⇥,⌅

��(�, ⇤;E)G(0)(⇤, ⇧;E) ��(⇧, ⌅;E) G(0)(⌅, ⌃;E)��(⌃, ⇥;E)

+ .....

�(�, ⇥;E) = ��(�, ⇥;E) +
�

�,⇥

��(�, ⇤;E)G(0)(⇤, ⌅;E)�(⌅, ⇥;E)

�(�, ⇥;E) = ��(�, ⇥;E) +
�

�,⇥

�(�, ⇤;E)G(0)(⇤, ⌅;E)��(⌅, ⇥;E)
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Direct knockout reactions
• Atoms: (e,2e) reaction 
• Nuclei: (e,e’p) reaction [and others like (p,2p), (d,3He), (p,d), etc.] 
• Physics: transfer large amount of momentum and energy to a 

bound particle; detect ejected particle together with scattered 
projectile → construct spectral function 

• Simple analysis 
• Initial state: ground state 
• Final state: 
• Probe: acts as one-body excitation operator transferring 

momentum      to a particle 

• 2nd quantization (no spin)

|�i� = |�N
0 �

|�f � = a†p |�N�1
n �

�(q) =
N�

j=1

exp (iq · rj)
�q

�̂(q) =
�

p,p�

⇥p| exp (iq · r) |p⇥⇤ a†pap� =
�

p

a†pap��q
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Transition matrix  element
• Impulse approximation: struck particle is ejected 

• Other assumption: final state ~ plane wave on top of N-1 particle 
eigenstate (more serious in practical experiments) but good 
approximation if ejectile momentum large enough 

• Write 

• last term FSI: interaction between ejected particle and others 
• If relative momentum large enough, interaction can be neglected: 
• PWIA = plane wave impulse approximation

⇥�f | ⇥̂(q) |�i⇤ =
�

p�

⇥�N�1
n | apa†p�ap���q |�N

0 ⇤

=
�

p�

⇥�N�1
n | �p�,pap���q + a†p�ap���qap |�N

0 ⇤

� ⇥�N�1
n | ap��q |�N

0 ⇤

HN =
N�

i=1

p2
i

2m
+

N�

i<j=1

V (i, j) = HN�1 +
p2

N

2m
+

N�1�

i=1

V (i, N)
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Cross section
• Fermi’s Golden Rule 

• with energy transfer        linking initial  
and final state energy 

• Define  

• Rewrite knockout cross section 

• More comprehensive treatment requires inclusion of FSI

d⇤ ⇥
�

n

�(�⌅ + Ei � Ef )| ⇤�f | ⇥̂(q) |�i⌅ |2

�� Ei = EN
0

Ef = EN�1
n + p2/2m

pmiss = p� �q

Emiss = p2/2m� �� = EN
0 � EN�1

n

d⇥ ⇥
�

n

�(Emiss � EN
0 + EN�1

n )| ⇤�N�1
n | apmiss |�N

0 ⌅ |2

= Sh(pmiss;Emiss)
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(e,2e) data for atoms
• Start with Hydrogen 
• Ground state wave function 
• (e,2e) removal amplitude

⇥1s(p) =
23/2

�

1
(1 + p2)2

�0| ap |n = 1, ⇤ = 0⇥ = �p |n = 1, ⇤ = 0⇥ = �1s(p)

Hydrogen 1s wave function 
“seen” experimentally 
Phys. Lett. 86A, 139 (1981)
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(e,e’p) data for nuclei
• Requires DWIA 
• Distorted waves required to describe elastic proton scattering at 

the energy of the ejected proton 
• Consistent description requires that cross section at different 

energy for the outgoing proton is changed accordingly 
• Requires substantial beam energy and momentum transfer 
• Initiated at Saclay and perfected at NIKHEF, Amsterdam 
• Also done at Mainz and currently at Jefferson Lab 
• Momentum dependence of cross section dominated by the 

corresponding sp wave function of the nucleon before it is 
removed
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Momentum profiles for nucleon removal 
• Closed-shell nuclei 
• NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)



QMPT 540

But...
• Spectroscopic factors substantially smaller than simple IPM
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Remember
• 208Pb sp levels

0f
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Fragmentation patterns
• 208Pb(e,e’p) NIKHEF data: Quint thesis 

• S(2s1/2)=0.65 

• other data: 
• n(2s1/2)=0.75 

• very different from atoms
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Fragmentation patterns
• 208Pb(e,e’p) NIKHEF data: Quint NIKHEF thesis (1988) 

• start of strong fragmentation 
• also very different from atoms
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Fragmentation patterns
• 208Pb(e,e’p) NIKHEF data: Quint thesis 

• deeply bound states: strong fragmentation 
• again different from atoms
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16O data from Saclay
• Simple interpretation! 
• Mougey et al., Nucl. Phys. A335, 35 (1980)

Mom
ent

um

Energy
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Pb experiment at NIKHEF (as yet unpublished)
• 100 MeV missing energy 
• 270 MeV/c missing momentum 
• complete IPM domain

SRC
also LRC
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Interpretation of (e,e’p)
• Can spectroscopic factors be measured? 

– Short answer: yes, at low temperature in quantum fluids —> specific heat 

– Short answer: no, but…there are a lot consistency checks with other data 

– Note difference between spectroscopic factor and occupation 

• Reaction model tested 

– Different proton energies —> same reduction factor 

– Coupled-channel calculation —> cross section identical for sp-like transitions 

– Meson-exchange currents —> no influence in parallel kinematics 

– Relativistic analysis —> same momentum profile! 
• But different spectroscopic factors! 
• Why? 

– Optical potential? 
• Local 
• Nondispersive
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Deep-inelastic neutron scattering off quantum liquids

Liquid 3He Response at 19.4 Å-1 

Probe: neutrons  
R.T. Azuah et al., J. Low Temp. Phys. 101, 951 (1995) 

Theory: Monte Carlo n(k) & FSE (ρ2) beyond IA 
F. Mazzanti et al., Phys. Rev. Lett. 92, 085301 (2004)

€ 

J(Y ) =
1

2π 2ρ
dk k n

Y

∞

∫ (k) IA result

Momentum distribution liquid 3He 

S. Moroni et al., Phys. Rev. B55, 1040 (1997) 
Comparison of DMC, GFMC, and VMC & HNC

€ 

Y =
mω
q

−
q
2 scaling variable
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Other experiments

• Difficulty of describing single-particle level structure 
• Elastic electron scattering 

– Charge density 

• Parity violating electron scattering 
– Weak charge density 

• Elastic nucleon scattering 
– Usually done with fits using local “optical potentials” —> distorted waves 

– Link with single-particle propagator! 

• Inelastic electron scattering to high-spin states
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Phenomenological potential and experiment
• Now how to explain this potential …
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Typical mean-field calculation
• ph-gap too large 

• Mahaux: 
– potential depends on energy 

– use dispersion relation 

– mean field is not sufficient
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Nuclear charge density
• Mean field insufficient
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Parity violating electron scattering
• 3 Slides from Chuck Horowitz
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Result and plans
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208Pb results

Where neutrons go for N>Z is very hot topic in nuclear physics
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Elastic nucleon scattering
• Scattering from potential 
• Potential real —> phase shift real 
• Scattering amplitude 

• Elastic nucleon scattering  
– Involves reducible self-energy (see also later) 

– Scattering amplitude 

– Phase shift now includes imaginary part when potential is absorptive

hk0| S`j(E) |k0i ⌘ e2i�`j = 1� 2⇡i

✓
mk0
~2

◆
hk0|⌃`j(E) |k0i

⇧k0|S⇥(E)|k0⌃ =
⇤
1� 2�i

�
mk0

�2

⇥
⇧k0|T ⇥(E)|k0⌃

⌅
⇥ e2i��

fm0
s,ms(✓,�) = �4m⇡2

~2 hk0m0
s|⌃(E)|kmsi

f(⇥,⌅) =
⇤

l

2l + 1
k0

�
�mk0⇤

�2

⇥
⇤k0|T ⇥(E)|k0⌅P⇥(cos ⇥)

=
⇤

⇥

2� + 1
k0

ei�� sin �⇥P⇥(cos ⇥)
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Spin-orbit physics included
• Scattering amplitude 
• Rewrite 

– with 

– then 

– Unpolarized differential cross section

fm0
s,ms(✓,�) = �4m⇡2

~2 hk0m0
s|⌃(E)|kmsi

[f(✓,�)] = F(✓)I + � · n̂G(✓)

F(✓) =
1

2ik

1X

`=0

⇥
(`+ 1)

�
e2i�`+ � 1

 
+ `

�
e2i�`� � 1

 ⇤
P`(cos ✓)

G(✓) = sin ✓

2k

1X

`=1

⇥
e2i�`+ � e2i�`�

⇤
P 0
`(cos ✓)

✓
d�

d⌦

◆

unpol

= |F|2 + |G|2

n̂ =
k ⇥ k0

|k ⇥ k0| =
k̂ ⇥ k̂0

sin ✓
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Cross sections
• Total elastic cross section 

• Reaction cross section (only when there is absorption) 

• Total cross section 
• Polarization and spin rotation

�el

tot

=
⇡

k2

1X

`=0

��(`+ 1)
�
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+ `

�
e2i�`� � 1

 ��2
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+

⇡
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1X

`=0

`(`+ 1)
��e2i�`+ � e2i�`�

��2
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�r
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=
1X

`=0

⇡

k2

h
(2`+ 1)� (`+ 1)

��e2i�`+
��2 � `

��e2i�`�
��2
i

�
T

= �el

tot
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P (✓) =
2Re{F(✓)G⇤(✓)}

|F|2 + |G|2
Q(✓) =

2Im{F(✓)G⇤(✓)}
|F|2 + |G|2



Nucleon correlations

Fit and predictions of n & p elastic scattering cross sections



Nucleon correlations

Present fit and predictions of polarization data



Nucleon correlations

Reaction cross section 40Ca and 48Ca

Loss of flux in the elastic channel 

More absorption of protons  
in 48Ca than 40Ca below 50 MeV
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Inelastic electron scattering
• Older but important data:
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High-spin states are simple ph configurations…
• But cross section reduced by a factor of about 2
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Analyzed in 1984
• Experimental quenching factors
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More recent results
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Conclusions
• Data with unambiguous interpretation point to correlations 

beyond a mean-field description 
– Elastic nucleon scattering 

• Reaction cross section requires energy dependent imaginary potentials 

– Knock-out cross sections suggest reduction of removal probabilities 
• including fragmentation of single-particle strength indicating imaginary potentials 

also at energies below the Fermi energy 

– Elastic electron cross section generates charge density that are not explained in 
detail by mean field approaches 

– Parity violating electron scattering sensitive to neutron skin for N ≠ Z 

– Inelastic electron cross section suggest factors of 2 reductions with respect to 
mean field results 

– Even level structure around the Fermi energy requires an energy-dependent (real) 
binding potential —> also requiring an imaginary potential through a dispersion 
relation (see later)


