Correlations and experiment

+ Summary of some Green's function results
» Survey of perturbation expansion (very sketchy)

» Discussion of different experimental data



Sp propagator in many-body system
- Similar definition as in sp problem (see preliminary notes)
- Also very useful both for discrete and continuum problems
* Fermion definition |
Gla Bst = t') = = (| Tlaa, (t)al, (¢)] [95)
- with normalized Heisenberg ground state
) = EY [w))
- Heisenberg picture operators a,, (t) = erHig o mH

al, (t) = e%ﬁtale_%ﬁt

» and time-ordering operation is defined according to (fermions)

T(aay ()al, ()] = 0(t — )aa, (t)ah, (') = 00 = taj, (1')aa, (t)



Use definitions
- Write in detail

G(O{,ﬂ,tt/)%{e(tt/) 1EN(t t)<\IjN‘CL e hH(t t)a/2‘\1]N>

—H(t/ o t)e%EéV(t/_t) <\IJN| CL 6——H(t _t>CLa \IJN>}

e %{H(t 4 Ze%(EéV—Eﬁﬂ)(t_t/) (TN | qq |ONHLY (PN H a}} o)

m

= O 1) Y eF B0 B0 () o u Ny (g g, \Iféﬂ}

n

» introducing appropriate completeness relations with exact

eigenstates
[:] \IJN+1> _ EN—|—1 ‘\IJN+1>

H WY1 = pN-1 gV -1




Lehmann representation
* Introduce FT for practical applications

oo

Gla, B ) = / At —t') eRF01) Gla, it — 1)

— 0

- Use integral representation of step function
UV | g [ONHY (@ N+ T g
Clof: B) — Z<o\ | N1>< ‘g.’0>
— E— (Em™ — EY) +in

N Z <‘1’6V\GJE U (O a [P0
- E— (BY —EY ™ —in

1
= <\Ij(I)Vlaa ~ .CLT ‘\IJ(Z)V>
E— (H — EY) +1n Y

1
+ (U |a} ——aa |Tg )

- Any single-particle basis can be used

- Still "wave functions” and eigenvalues as in sp problem!!



Spectral functions

* Physics of knock-out experiments to be discussed shortly can be
interpreted nicely using spectral functions

* For the removal of particles, we have the hole spectral function

1
Sp(a; B) = - Im G(a, a; F) E<en
2

= DN aa 9| 8B — (Y ~ BY )

- with 5F—EN EN 1

* A similar addition probability density is available for adding
particles (particle spectral function)
Sp(a; B) = —— Im G(a,; F) E >}

T l

2
Z\@%% wi[ 6(E — (BN - EY))

N1 N L 51
eF_E — Ej Exir P— F ind(E)



Occupation and depletion

» Occupation humber

2
n(e) = (WY[afan |95) = (@N " an (WD)

_ /EFdE Z‘@y—l\aa\\p%féw— (Ey — B 1)

— 00 n

— / FdE Sh(()é;E)

— 00

- Depletion

d(a) ‘2

([ aqal, [95) = | (W af, [wd)
0 2

= [ B Y| ol 1w S(E - (BX - E)
€F m

= /+dE Sp(a; F)

5o

- Obvious sum rule
n(a) + d(a) = (¥y' |alaa [U) + (U | agal, |9) = (@ 0) =1



Expectation values of operators in ground state
- Consider one-body operator

(TF1O1¥g) =) (ol 018) (¥ [alas [¥E) = D (o] O[8) nag
o, o,

+ One-body density matrix element  n.5 = (V| alag |[9{)

» can be obtained from sp propagator

dE |
Nga = Y e’ G(a, 35 E)

dE gy 5 (g aq Ui th) (Ui aly |08
27 —  E—(EpT - Eg) +in

('] aE WY (U ag |05
E— (EY —EN ™Y —in
= Z (0| a} U () an [P = (9] agaa o)

n

1 [°F
cor nga = [ 4B m Gla. 5 B) = (8 alaa | UF)

— OO

+ d—E et Z

271



Magic?!: energy sum rule

- Consider 1, = l/ dE E Im G(a,o; E) = /FdEESh(a;E)
T J _oo —00

= D (B = BT (W el [T (W ag [9)

m

A

= (Ug |afaoH 19g") = ) (g [al B~ R (U aa |25

m

AN

= (U |abaa H[95) — (¥ |al, Hao [9) = (U | al [aq, H] V)

- Earlier results yield lan, H Z (a| T'|B) ag + Z(am‘/hé)agaa%
B B

- Insert lo =) (a|T|8) (¥ alas|¥q) + ) (aBlVIy) (U |alabasar [Ug)
&) B

« Sum over « ZI \PN’T‘\IJN>—|—2<\IJN’V’\IJN>



Eqy'

Galitski-Migdal energy sum rule (Koltun)

»+ Combine with half the expectation value of the kinetic energy

(5" H ¥

L (4B S (| T18) + E bap} Im G(B,0; E)

2T ) _ o

- complete result only when there are no three- or higher-body
interactions

» sp propagator (hole part) yields energy of the ground state

- later: particle part yields elastic scattering cross section



Noninteracting propagator
+ Propagator for H, involves interaction picture
1
GO, Bt —t') = —7 ()| T laa, (t)al, ()] 12
- with corresponding ground state
Ho |2)) = Eyy [))
a< F

» as for IPM so closed-shell atom or nucleus for example
—ieqt/h

I:I()t i'I:I()t —

- Operators  a,,(t) = enolq e n e Aq

t _ _iHot t _—LiHot _ _ieqt/h 1
al, (t) =ern%qle” n70" =¢ at/hgl

- assuming H, is diagonal in this basis



Evaluate noninteracting sp propagator

« Insert

GO (a, Bt —t') = GV (a, Bst — ') + GV (a, Bt — t')
= —%5a5{0(t —1)0(e — F)e 7%= _ gt — 1)§(F — a)ens=t'=}

- propagation of a particle or a hole on top of noninteracting
ground state

Pdirectlys 1y af, |0) = (Egy +2a) af, |20) a>F
Hy aq |0 ) = (Egy — £a) aa |®]) a<F

© FT

E—e,+1np E—c,—1m

G(O>(a,ﬁ;E)5a,5{ hla—F)  O(F —a) }



Noninteracting spectral functions

» Imaginary parts yield all the strength at one location
1

Séo)(a; E) = “Im G9(a,a;E) FE < 5%0)_
T
= J(E —¢e,) O0(F — )
(0) (.. ! ) (1 (0)*+
Sy (a; B) = ——=Im G"(a,o; E) E > ey

s

= J(F —¢e4) 0(a—F)
- in this basis: either completely full or empty

(0)™
n9 (o) = / dE 6(FE —¢e4) 0(F —a) = 0(F — «)

- 1

E_(ﬁo—Ecpév)ﬂLi??

1
+ <(I)(J)V| al’m’s > .
E— (Egy — Ho) —in

B (rms|a)(a|r'mi)0(a — F) = (rmg|a)(a|r'm)0(F — o)
Z{ E — e, +in i E —¢e,—1in }

- other basis ¢© (rm,,r'm’; E) = (@Y apm. al . 120

Arm, |(I)év>

o



Link between interacting and noninteracting propagator

- Define [¥;(¢)) :exp{%flgt} Ts(t)) to obtain m% U, (1)) = Hi(t) |01 (2))

- with H=H,+H, and O](t):exp{%ﬁot}ésexp{%ﬁot}

- Define | (1)) = U(t,to) |¥;(to)) Time evolution in the interaction picture
* It follows that zh% U (t)) = Hy(t) | U;(¢))

- Tterate and analyze:

o0 . n

U(t, to) = 7;) (%)

1 t t t R . ~
—'/dt1/dt2.../dtn T [Hl(tl)Hl(t2)-"Hl(tn)]
n: to to to

- Explicit construction

Z](t, tg) = exp {%ﬁot} exp {—%ﬁ(t — to)} exp {—%ﬁoto}
» Insert in propagator and include cancellation of terms —> diagrams with Wick's
theorem (see DVN Ch.8)

/ 00 ™ 1 A A /
Glagit =)=~ 3 (F) oy [ dtne [t @1 [Fa(t0)- B (aa Dl ()] 198 e

» Each term in the expansion can be uniquely identified with a Feynman diagram

- Small set of rules allow for complete graphical depiction that helps in visualizing
the expansion



Go from 7 to N

Theorem 7 {abcxyz} N [abc a;yz} +N [a boc.. xyz} +N{ *hee

+...+ N
*

+...+ N

Strategy

A A AN

LLYZ

|+ v (abtergz| 4+ N [athe

=N [abc 92';&2} + N [sum over all possible pairs of contractions]

only fully contracted contributions survive when expectation

value with respect to |®]') is taken!

Each contraction

Use fermion sign convention also for normal ordering

o i

ag(t Ve =ih GY(a,B;t—t') forall

aq(t)%a

quantum numbers and time orderings —> Feynman diagrams



Diagram rules (time-dependent version)
- Assume auxiliary potential absent; then for V™

° RLI'ZS Rule 1 Draw all topologically distinct and connected diagrams
with m horizontal interaction lines for V' (dashed) and 2m + 1
directed (using arrows) Green’s functions G(©)
Rule 2 Label external points appropriately. For example, the labels
a,t and 3,t" apply for Eq. (8.55)
Label each interaction with a time and sp quantum numbers

AN .Zg. — (16]V]ed)
For each full line one writes
t;i = o
4 = GO (u,vit; —t;)
tj = eov

Rule 3 Sum (integrate) over all internal sp quantum numbers and
integrate over all m internal times

Rule 4 Include a factor (i)™ and (—1)¥ where F
is the number of closed fermion loops

Rule 5 Interpret equal times in a propagator as G(O)(,u, vit —tT)



Interpretation

» Unclear about topological equivalence: resort to Wick's theorem

* Fermion lines run continuously from the external label o to 5 or
form closed loops

» A closed loop yields a minus sign
- Contractions for a loop will look like
al (t1)%a(t1)®®a’ (t2)**a(t2)...al (tm)a(tm)®

* requires one additional sign to contract first and last operator
0 i\

\m oY v an2m+1
(th)™ = > X ( h) X (ih)
= prefactor X factor under sum X # of contractions in m™ order

* Drawing of diagrams emphasizes static nature of interaction



- Use rules

t

t,

=

=

® v

)
® 3

- Diagram V1D

t

—

® v

» Diagram V1E

First-order terms

= (—1) ih [ dt, D sep (70[V]€6) GO (a,~;t —t1)

x GO0,6;t) —t]7)GO (e, Bt — t')

= il [dt1 3 5.0 (70|V|0€) GO (a, 75t — t1)
x GO(0,0:t; —t7)GO (e, Bt — 1)



Second-order terms
- V2a t 79

A

x (70|V]e0) GO (e, (it — )G (0,6t —t7)
x GO (p, &ty —tF) (CEIV M) GO\, Bty — 1)

- V2b

= (_1)(Zh)2 f dtl f dt? 27,5,6,0 ZC,{,)\,N G(O)(aa Vit — tl)
x (70|V]ed) GO (e, ¢ty — t2)GON(B, 8,1, —t])
X GOty — 1) (CE[VIuA) GO Bita — 1)




more

- V2c =
PN = (lh)2 f dtl f dtQ 27,5,6,9 ZC,{,)\,N G(O)(a*ﬁlﬂt - tl)
= &--
0 x (70|V]0e) GO (e, ity — t2) GO (0,5t —tT)
¢ X GO(u, &ty —tF) (CEIV ) GO, Bty — 1)
to =
A
t = 3

= (=1)(ih)* [dty [ dta 32, 5005 ¢ ¢ 00 GO (vt — 1)
C S x (v5|V|0e) GO (e, (it — t2)GO (0,5t —t])
x GO, &to —t3) (CEIV M) GO (N, Bty — )

3



- V2e ¢

Zh fdtl fdt? ’}'569 EC&)\ C(O)(

and more

vit—tq)

X (76]V]e0) GO (N, 05t — t1)

x GOV, (1 — ta) (CEIV M)

x GO (pu, &ty —t3)G O (e, Bty — 1)

)(Zh fdtl fdtg

’75(—:9 ZCﬁ)\p G(O) (C.Y, Vit — tl)

x (v0|V]e8) GO(N,5;ta —t1)
x GO(8, ¢ty — ta) (ECIV M)

x GO (pu, &ty —t5)GO (e, B3ty — 1)



- V2g

- V2h

and more ...

(ih)? [dty [dt2 ,y S ZC,S,EJ‘) GO (a,v;t —t1)
X (YO VIuA) GO (u, G5ty — ta)
x GOV B, 6;ty —t1)GO) (e, &ty — 1)
x (CEIVed) GO, Bty — 1)

)(ih)? [dty [dta 7 S 24’5’639 GO (a,v;t —t)
X (VX)) GO, Gt — ta)
x GO (e,0;ty —t1)GO(0, &ty — 1)
x (CEVed) GO, B3t — 1)



and finally

= (=1)(h)? [dty [dta Y, 5002 ¢, GO, vt —t1)
x (v8[V]ed) GO (e, ¢ty — 1)

X GO (p, 63ty — t1)GO(6, &5ty — 1)

% (CEIV M) GO(N, Bsty — ')

= (ih)? [dty [dta 3 5005 cenn GOl yit —t1)
x (10|V1]ed) GO (e, ¢ t1 — to)
x GO (,0;tg —t1)GON (B, &t — to)
X (CEIVIpA) GO(N, Bty —t')




Other way of drawing diagrams
* Compare with field-theoretical diagrams (Fetter & Walecka)

K A
A
8
| RS
Y ) , A
A A
(@) =V2a () =Vad () =V2c (d) =V2b (e) =V2f

(f) =V2e (&) =V2g (h) =V2h (H=Va2i (j)=V2j

- Topologically the same (use strings or elastics)



Comments

+ V2a-V2d iterations of 1st order

» V2e-V2h replace internal propagator by 1st-order one

*+ V2i-V2j "real” second-order terms (see later applications)

* V2a-V2h summed in mean-field / Hartree-Fock approximation
* Third of higher-order diagrams not often explicitly needed

* Infinite-order summations important but can be generated by
manipulating lower-order terms



Include diagrams with auxiliary potential

Rule 6 Label each U according to

- c;\/v\p = (a|U|B)

Rule 7 Include a factor (—1)’1C and k additional propagators G(0)

14 =% Y (aplVyd)alalasa, also V = i > (aB|V |y) alalasa, with
f0 P10 (B|V |78) = (aB|V]v8) — (aB|V]67) = (af| V |1d)

Include direct and exchange terms together

* V2a-V2d only represented by V2a using antisymmetrized matrix elements
+ V2e-V2g similarly only by VZ2e

+ V2i-V2j by V2i but requires factor 3 for “equivalent” lines

* For symmetrized diagrams rule change

Rule 1’ Draw only all topologically distinct and connected, direct
diagrams with m horizontal interaction lines for V' (dashed)
and 2m + 1 directed (using arrows) Green’s functions G(%)

Rule 8 Include a factor % for each pair of equivalent lines, which
both start at the same interaction and end at another



Energy formulation
+ Remember (| an [UNF) (UNFL ol [T))

G(a, 8 E) = Z E—(EWJX_H—E(])V)—I-Z'??

(Y af (1) (O aq [W]))

+
2 E—(EY —EY Y —in

- Goals:

 Find i + _ pN+1 N
Find eigenvalues ¢’ =F — Ej

- and corresponding "wave functions”
Xg = (Ut el |0g)
Vo = (T, " aa [T



Noninteracting propagator
» Already done

GO(a, 3 F) — / At — ') RGO (o, Bt — 1)

— OO

5%6{ bla—F)  O(F —a) }

E—eo+1np E—c4—1m

* Results for expansion of propagator in time formulation employed
integration limits  oo(1 —in)
—oo(1 —in)

. dE' eiE (t=to)/h : :
- Employing 9(t—to)=—/2m. T In noninteracting

propagators already eliminates all unwanted contributions (see
Mattuck p.40) when the difference between time limits
approaches infinity = use integration limits as above




Inverse FT

- Consider G (a.ir) = [0 e N GO a5 )
oo 2T

 Check (do contours)

+ Special case of equal-time argument: interpret

< dE R
G(O) (&7 67 t— t+) — / ﬁ e_ZEO /h G<O) (Cl{, 67 E)
oo 4T

dE
— — ¢ B

» C T contour enclosing the upper half of the complex energy plane
» All diagrams can now be Fourier transformed

- Strategy:

- for any diagram in time formulation replace noninteracting propagators
by above expressions

- perform time integrations (lots of delta functions)



Changes in energy formulation
- Diagram structure the same topology
* Labels different: unperturbed propagators labeled by energy

+ Example clarifies that interaction conserves energy: sum of two
incoming energies must combine to sum of two outgoing ones

- Example: VIDE

s}
Q

E 4 = 3.5 GV, E)
~ e ] ,
.OIQOE' X =iy .9 (Ve[ V[00) ch %G(O)(Q,E;E/)
E A x G5, 3, F)
[ ] 13

- Arrows represent flow of energy

» Only V terms in m™ order: m time integrations plus external one,
each leading to energy-conserving delta-function (use m+1
factors of (2=r)~'from original 2m+1 from inverse FT of G(*))

» With auxiliary potential no factors



Diagram rules in energy formulation (symmetrized)

Rule 1 Draw all topologically distinct (direct) and connected
diagrams with m horizontal interaction lines for V' (dashed)
and 2m + 1 directed (using arrows) Green’s functions G(%)

Rule 2 Label external points only with sp quantum numbers,

e.g. « and (3

Label each interaction with sp quantum numbers
a , , - , -
0’);————50 = (af|V |vd) = (afB|V|vd) — (aB|V|d7)

For each arrow line one writes
I

E = GO(u,v; F)

1%

but in such a way that energy is conserved for each V
Rule 3 Sum (integrate) over all internal sp quantum numbers and
integrate over all m internal energies
For each closed loop an independent energy integration
occurs over the contour C'
Rule 4 Include a factor (i/27)™ and (—1)¥ where F
is the number of closed fermion loops
Rule 5 Include a factor of % for each equivalent pair of lines



- V2a

- V2e

Examples in second order

= 2750(0)(a>7§ E)
/

8 (_1)2i22642/\9fm d—E, (YA 'V |€8) G(O)(Q’)\; E')
§ 1 8 G(O)( CE ZEMICT 27 C£| |O;L> (O)(,U £ E”)

1 x G5, 3; F)

=3 ;G Va, v E)x 23, > oxe Je e
x (ve| V [08) GO\, e, NGO (0, B

27

€N M
S G S E" ,
0 HQC fo X e Jor S (CELV [ M) GO (p, & E)

x G5, 3, E)



Last term

vai 1o
E = 3G a1 E)
29 A x (1)i%5 [ G2 [ 4= 2one0 2o¢,e (ALY [€6)
Ey E2©E1 +Ey — FE
SV X GO GENGO (1 By + By — )
E x GO)(0,& Ey) (CE| V |op)
3 x G5, 3; F)

Note structure of diagrams
Noninteracting propagators at top and bottom (always)

Include auxiliary potential
Rule 6 Label each U according to

% = (a|U|B)

Rule 7 Include a factor (—1)’“ and k additional propagators G(0)



Organize diagrams

» Knowing how to calculate each term in the perturbation expansion
of sp propagator is important but not sufficient

- Still requires to decide on appropriate approximations
- Approximations are always necessary
+ Even if V "weak", not useful to do traditional perturbation theory

 Example: first-order term has double pole and does not
correspond to Lehmann representation

* Reorganize expansion such that solutions (even if approximate)
do!

* Requires infinite summations

- Dyson equation = Schradinger-like equation for particles in the medium



Diagrams so far (symmetrized)
* First-order

- Second order

* Including U




Summarize all orders
* Write sum of all diagrams

* Introducing the reducible self-energy --> sum all ferms without
top and bottom noninteracting propagators

* Remember ¢
E 4 = 3,5 GO, E)
Oe@ B X —iY (el V156) [y GO0, ¢ E)
E A x G5, 3, E)
° 3

€ ) . ’
i_‘m_eOEl = —i Y (vel V [00) [y E-GO(0, 6 E)



Second-order self-energy terms

E
= (- )“ZGCZ,\(;ICT 4B (YN V |e8) GO (8, )\ E)

E
‘C"“EQE'/ x GO(e,GE) Y, Joy G (CEIV 10p) GO (.6 E)
5
= 1 Ze()z)\c fCT 27r
1/
i.’---fQ/_\___fC o X (el V|96) G 0)(/\ & ENGO(0,¢E)
o E ¢ ¢ X D fCT LB (e V M) GO (p, & E)
é“é_ ¢ deldez ZAGQZC€N</)\|V|€9>
E14 E Ey+E;,—F
g__g_ 1 x GO (e, ¢; E1)GO (u,\; Ey + Ey — F)

x GO)(8,& E») (CE| V |op)
- additional terms




Irreducible self-energy

Consider only self-energy terms that cannot be separated into
two pieces by cutting only one noninteracting sp propagator

Irreducible self-energy x*

vs reducible self-energy %

Expansion organized as H -

G(a, B; )= G(a, 3, E)
ZG<O> vE) Y(v,6E) G958 E)

+ > GanE)S (6 E) GO 6;E) ¥°(0,6 E)GY (5, 5; E)
v,0,€,0



Dyson equation
 Remember sp problem summations
- Same here: sum below short-dashed line (positive slope)

* G, 5 E) = GV, 8, E) + > G (a,v; B)T*(v,6; E)G(4, 3; E)
Y,0
» Sum above short-dashed line (negative slope)

G(a, 3; E) = GOa, B; ) + ) Gla,v; B)S* (v, 6; E)G)(6, 5; E)
~Y,0

- As in sp problem yields eigenvalue problem or scattering equation

- Diagrammatically ¥

G(0)

Q
|
Q
N
+




Reducible self-energy

- Similar organization defines scattering matrix for elastic
scattering of projectile from target with identical particles!

- Sum terms between dashed lines

5(7,0;E) = X*(v,6; E)
+ZE*(%6;E) GO(e,6;E) X*(6,6; E)

+ ) Y(,eE G<0><e 0;E) ¥(0,;;E)  GOCEE)S (6 E) H
€,0,(,&

- Sum to all orders

S(7,0;E) = S*(, 6, E) + Y 5" (7,6 E)G (¢,0; E)X(0, 5 E)

. or €,0

%(7,8;E) =X (7,6, E) + > _%(y, 6 E)G (¢,0; E)X*(0, 6; E)
€,0



Direct knockout reactions
« Atoms: (e,2e) reaction
- Nuclei: (e,e'p) reaction [and others like (p,2p), (d,*He), (p.d), etc.]

* Physics: transfer large amount of momentum and energy to a
bound particle; detect ejected particle together with scattered
projectile = construct spectral function

- Simple analysis
- Initial state: ground state |¥;) = |¥)
+ Final state: W) =al [W3 )

* Probe: acts as one-body excitation operator transferring
momentum fiq To a par"rlcle
Zexp iq-Tj)

» 2nd quantization (no spin) j(q) :Z( lexp (iq - ) [p)) a Za (Up—hq

p,p’



Transition matrix element
» Impulse approximation: struck particle is ejected

(sl pla) W) = D (V) apay ap—ng|TE)
p/
= Z <\I’7]:[_1‘ Op',plp'—hg T a;r)'ap’—hqap ’\I’év>
p/

~ (U Up—hiq Ty )

* Other assumption: final state ~ plane wave on top of N-1 particle
eigenstate (more serious in practical experiments) but good
approximation if eJec‘rlle momentum large enough

N
* Write Hy = HN1‘|‘ _|_ZV

1=1 1<j=1

* last term FSI: interaction between ejected par"ncle and others
» If relative momentum large enough, interaction can be neglected:

* PWIA = plane wave impulse approximation



Cross section
- Fermi's Golden Rule do ~ Z(S(hw + E; — EQ)| (Y| plq) |¥;) |?

- with energy transfer 7w linking initial E; = E’

and final state energy E;=E)"'+p*/2m
+ Define pmiss =P — hq

Epmiss =D /2m — hw = Ey' — EN !

- Rewrite knockout cross section

Ao~ > 6(Eumiss — B+ EN D (WY ap,,... [0))

— Sh (pmz'ss; Emz’ss)
* More comprehensive treatment requires inclusion of FST



(e,2e) data for atoms
- Start with Hydrogen
23/2 1

- Ground state wave function ¢15(p) = 1+

* (e,2e) removal amplitude

(Olap|n=1,£=0) = (pln=1,£=0) = ¢15(p)

Hydrogen

Ls Hydrogen 1s wave function

"seen” experimentally
Phys. Lett. 86A, 139 (1981)

Momentum profile
]
N

02 F

0 0.2 0.4 0.6 0.8 ] 1.2 1.4 _
p(au.)



(e,e’p) data for nuclei
* Requires DWIA

- Distorted waves required to describe elastic proton scattering at
the energy of the ejected proton

» Consistent description requires that cross section at different
energy for the outgoing proton is changed accordingly

* Requires substantial beam energy and momentum transfer
* Initiated at Saclay and perfected at NIKHEF, Amsterdam
» Also done at Mainz and currently at Jefferson Lab

* Momentum dependence of cross section dominated by the
corresponding sp wave function of the nucleon before it is
removed



Momentum profiles for nucleon removal
* Closed-shell nuclei
* NIKHEF data, L. Lapikds, Nucl. Phys. A553, 297¢ (1993)
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But...
- Spectroscopic factors substantially smaller than simple TPM
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- 298Ph sp levels
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Fragmentation patterns
+ 208Pb(e,e'p) NIKHEF data: Quint thesis

0.8 .
. - — [=0
5(2s1/2)=0.65 § ] 208Ph(e,e’p)2V 7Tl
E 0.6
§ 2511 :
» other data: 2 o4l |
S ' |
° p— 2 |
n(2s1/2)=0.75 2 sy,
02 r '
0 __ _ ='qr_‘f_D___L_,_.-l'l_._l_'--—---—--|_|
0 10 20

- very different from atoms

30



Fragmentation patterns
- 208Ph(e,e'p) NIKHEF data: Quint NIKHEF thesis (1988)
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+ start of strong fragmentation
+ also very different from atoms



Fragmentation patterns
+ 208Pb(e,e'p) NIKHEF data: Quint thesis
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+ deeply bound states: strong fragmentation
» again different from atoms



0 data from Saclay

- Simple interpretation!
* Mougey et al., Nucl. Phys. A335, 35 (1980)
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Pb experiment at NIKHEF (as yet unpublished)
- 100 MeV missing energy

»+ 270 MeV/c missing momentum

+ complete IPM domain
1

-
o0
——

S
o

Occupation numbers
)
=

-
b
|
-
o0
=
S

—60 =50 —40 -30 —20 -10 0
E,— E; ' (MeV)



Interpretation of (e,e'p)

- Can spectroscopic factors be measured?

- Short answer: yes, at low temperature in quantum fluids —> specific heat
- Short answer: no, but..there are a lot consistency checks with other data
- Note difference between spectroscopic factor and occupation

Reaction model tested

Different proton energies —> same reduction factor

Coupled-channel calculation —> cross section identical for sp-like fransitions

Meson-exchange currents —> no influence in parallel kinematics

Relativistic analysis —> same momentum profile!
» But different spectroscopic factors!
* Why?

Optical potential?

- Local

- Nondispersive



Deep-inelastic neutron scattering off quantum liquids

Liquid 3He
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Response at 19.4 A

Probe: neutrons
R.T. Azuah et al., J. Low Temp. Phys. 101, 951 (1995)

Theory: Monte Carlo n(k) & FSE (p,) beyond TA
F. Mazzanti et al., Phys. Rev. Lett. 92, 085301 (2004)

| =
2 fdkk”(k) TA result

Y|

JY)=

maw
Y = 7—% scaling variable

Momentum distribution liquid 3He

S. Moroni et al., Phys. Rev. B55, 1040 (1997)
Comparison of DMC, GFMC, and VMC & HNC



Other experiments

» Difficulty of describing single-particle level structure

» Elastic electron scattering

- Charge density

* Parity violating electron scattering

- Weak charge density

» Elastic nucleon scattering

- Usually done with fits using local "optical potentials” —> distorted waves
- Link with single-particle propagator!

- Inelastic electron scattering to high-spin states



Phenomenological potential and experiment
* Now how to explain this potential ...
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Typical mean-field calculation
* ph-gap too large
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Nuclear charge density
* Mean field insufficient
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Parity violating electron scattering
+ 3 Slides from Chuck Horowitz

Parity Violation Isolates Neutrons

e In Standard Model Z° boson * Apv from interference of photon

couples to the weak charge. and Z° exchange. In Born
approximation

_ GpQ? Fw(Q?)
P 9ra/2 Fan(Q?)

* Proton weak charge is small:
QY =1 — 4sin”Ow ~ 0.05

* Neutron weak charge is big:

Qp = -1 Fu(@) = [ =52 ()
« Weak interactions, at low Q?,
probe neutrons. . Modfel in.dependently map out
* Parity violating asymmetry Apy is g:fg{;zgt'on of weak charge in a /
cross section difference for ' _
Positive and negative he||c|ty e Electroweak reaction free
electrons from most strong
P do /A2, — do /dQ_ interaction uncertainties.
pv —

do [dSdy + do /dQ2— — Donnelly, Dubach, Sick first

suggested PV to measure neutrons.



Result and plans

* At Jefferson Laboratory, 1.05 GeV

electrons elastically scattered from
thick 208Pb foil. PRL 108, 112502, PRC 85, 032501

e Apv=0.66 +0.06(stat) £0.014(sym)
PPmM

e Neutron skin thickness:
Rn'Rp:O.33+O' | 6-0_ |8 fm

* Experiment achieved systematic
error goals.

e Future plans: PREX-II (approved
25 days) Run 298Pb again to

accumulate more statistics. Goal:
R, to £0.06 fm.

« CREX: Approved follow on for
48Ca with goal: R, to £0.02 fm.



208ph presults

PREX Results

° 1.05 GeV electrons elastically 0.08 B Helm
scattering at ~5 deg. from 2%8Pb . s

® Apv=0.657 £ 0.060(stat) * .

£ \
0.01 4(SYS) PPM :f 0.04~ Weak charge \ -
© | density (gray) '
° The stat. error was not Paul (he is | consistent with
002 PREX

not so good at counting). The very

small systematic error is Paul. He is ol ‘ 1
very good at not counting in an ¢ 3 ¢ im) 10
extremely unbiased way.

° Compare to charge radius

° Paul has measured the weak form R=5.503 fm --> weak skin:
factor of 2°8Pb. This is Fourier Rw- Ry =0.32 + 0.18 + 0.03 fm
transform of weak charge density
(divided by the large coherent weak ° First observation that weak charge
charge) Fw(q) =0.204 + 0.028 at density more extended than (E+M)
q=.45 fm’! charge density --> weak skin.

° Radius of weak charge distr. ° Unfold nucleon ff--> neutron skin:
Rw = 5.83 + 0.18 + 0.03(model) fm Rn - Rp=0.33%016 5 15 fm

Where neutrons go for N>Z is very hot topic in nuclear physics



Elastic nucleon scattering

mk()
h2

- Scattering from potential (k|S‘(E)|k) = [1 —2m'( ) <k0\7€(E)|k0>] — 2i¢

* Potential real —> phase shift real

- Scattering amplitude f(0.9) = >

21 + 1 { —mkmr
l

ko 72 } (ko|T*(E)|ko) Py(cos 6)

20+ 1 .
— E k—+ez5ﬁ sin 0y Py (cos 0)
0
0

» Elastic nucleon scattering

- Involves reducible self-energy (see also later)

mko

(ol St () o) = %5 = 1= 2 ("5 ) ol S0 () ko
- Scattering amplitude
Admm

fm’s,ms (97¢) - = 72

- Phase shift now includes imaginary part when potential is absorptive

2

(K'mi|S(E)|kms)



Spin-orbit physics included
4m?

* Scattering amplitude  fin,m,(0.9) = ——;

+ Rewrite [f(0,9)] = F(0)I + 0o -nG(0)

- with A_k:xk’_fcxfc’
"Tlkx k| sind

(k'm|S(E)[kms)

- then

)= S S [(0+ 1) {5 — 1) + {7~ 1}] Pieos )
=0

G(0) = Sl;j 200 — 20t~ PJ(cos 0)
=1

. . . . d
- Unpolarized differential cross section (d—@ = |F|* +1G)?
unpol



Cross sections
- Total elastic cross section

(1) {20 — 1} 4 £{e¥

0(0+1) ‘62@5“ —e

216, |2

T > -
%t:k_; 2+ 1 k2z 20+ 1

* Reaction cross section (only when there is absorption)

Otot = Z 12 {(25 +1)— (£+1) ‘6%5“ |2 ny ‘6%5“ |2}
£=0

- Total cross section or = Ofét + 040

* Polarization and spin rotation

2Re{F(0)G*(0)} _ 2Im{F(0)G"(0)}
FI2+ 1G] “O=TTFE P

P(0) =




Fit and predictions of n & p elastic scattering cross sections
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Present fit and predictions of polarization data
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Reaction cross section 4°Ca and 48Ca

Loss of flux in the elastic channel

More absorption of protons
in *Ca than *°Ca below 50 MeV
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Inelastic electron scattering
- Older but important data:

PHYSICAL REVIEW C VOLUME 20, NUMBER 2 AUGUST 1979

High-spin states of J” = 12, 14~ in 2®Pb studied by (e,e’) |

J. Lichtenstadt, J. Heisenberg,* C. N. Papanicolas, and C. P. Sargent
Bates Linear Accelerator Center and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

A. N. Courtemanche and J. S. McCarthy
University of Virginia, Charlottesville, Virginia 22901
(Received 2 March 1979)

TABLE I. High-spin (J>9), single p-h transitions in 2®Pb, whose single p-h energies are

below 8 MeV.
Transition Eyy (MeV) Magnetic Electric
Neutron (p-h)
28370 U3/2 5.06 11* 9* 10*
Jisre 2fs5s0 5.42 9* 10*
Jissa 3P3/2 5.66 9*
/2 Y3/ 5.84 11* 9* 12* 10*
Jis/e B3/ 6.48 14~ 127 10- 13- 11- 9"
72 2f1/0 6.55 9-
3ds;9 14379 6.63 9*
28379 Mg/ 6.84 9-
Jisre 2 7.19 11°* 9* 10*
28779 Y3/2 7.55 9* 10"
i/2 hosa 7.62 10° 9-
Proton (p-h)
hyra  Mya 5.65 9* 10*
2f112 Myy2 6.54 9*
372 M2 7.26 12- 10- 11" 9"
1370 2d5/y 7.59 9*

—_— e e e ——————————————————————



High-spin states are simple ph configurations...
But cross section reduced by a factor of about 2

208 o
Pb ] 2085 E,-674 MeV
E,=7.06 MeV JT =14
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FIG. 4, Cross sections of the levels at 6,74 and
FIG. 3, Cross section of the level at 7,06 MeV with 6,43 MeV, with J"=147, 127, respectively. The dashed
J"=12", The dashed and solid lines are single p-h pre- and solid lines nre single p-h predictions of the
dictions of the xliy/afty s 3™')jp- transition, using Hartree- ¥(iss oty 1270, go- trAnSItions, using Hartree-Fock and
Fock and Woods-Saxon wave functions, respectively, Woods-Saxon wave functions, respectively. For cal-
The curves presented are the “reduced cross sections™ culational details see text,

calculated in DWBA at 160°, The calculation at 90° {s
almost identical to that at 160°, to the accuracy of the
graph, 7 \

The overall strength observed when fitted either
with HF wave functions or with the Woods-Saxon
wave functions comes out to be only (501 3.5)%
of the predicted single particle strength for the
V(s fissadsa=,12=y ASWellasforthe mliyy g, ftyyp™")g-
configuration. This quenching is about the same
as that observed in the M9 moment of the ground

state of *"*Bi, coming from the odd h,, proton, '
\




Analyzed in 1984

- Experimental quenching factors

VOLUME 53, NUMBER 12 PHYSICAL REVIEW LETTERS 17 SEPTEMBER 1984

Occupation Probabilities of Shell-Model Orbits in the Lead Region

V. R. Pandharipande, C. N. Papanicolas, and J. Wambach
Department of Physics, University of llinois ar Urbana-Champaign, Urbana, Illinois 61801
(Received 7 May 1984)

TABLE 1. The energy, £, and spin and parity, J", of the final state are given in the
first two columns. The next three columns give the shell-model description of the transi-
tion. The lust two columns give the experimental value of Q, the quenching factor, and
the reference.

E (MeV) Je h p t Q Ref.
Wph(ee')
4.04 7" 2/ s 292 N 0.51 £0.05 5
6.10 12* Liyie ling N 0.65 +0.04 6
6.43 127 Liyas 1142 N 0.71 £0.05 7
6.74 147 1y 11502 N 0.71 £0.05 7
06 12- Thos ity P 0.71 £0.05 7
Ph(ee’)
0.57 T 2 52 3pin N 0.65 £0.05 8
0.90 3 332 3pin N 0.65 0.05 8
1.63 2 Vi 31 N 0.47 £0.05 8
2.34 3 2f I N 0.55 +£0.05 8
2.73 37 3 2912 N 0.50 40,05 8
3.51 3+ 3P linp N 0.65 +0.05 8




More recent results

PHYSICAL REVIEW C VOLUME 45, NUMBER 6 JUNE 1992

High resolution electron scattering from high spin states in 2°*Pb

J. P. Connelly,* D. J. DeAngelis, J. H. Heisenberg, F. W. Hersman, W. Kim, M. Leuschner,
T. E. Milliman, and J. Wise'
Department of Physics, University of New Hampshire, Durham, New Hampshire 03824

C. N. Papanicolas
Department of Physics and Nuclear Physics Laboratory, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801
(Received 2 March 1992)

T Taae T T T
208pp 14
6.745 MeV
10
@ . TABLE I. High spin transitions seen in this experiment with the dominant 1p-1h configuration and
e the normalization factor (N, ) of the Woods-Saxon DWBA fits to the data. An asterisk indicates the as-
‘t..:q signment of J7 is from this experiment.

+ 407 Energy (MeV) J* Ip-1h configuration N,

o 208pb 12" q
- 1 5.010 9* W2gq,0, lis3hs) 0.54+0.01
bz ., 6.437 MeV 5.260 9** m(lhg 3, 1h1,) 0.53+0.04
= 10 5.291 1+ w289, 1i5k) 0.38+0.03
© 5.860 1nt* viliy o, linh,) 0.61+0.05
5.954 9t viliyy o, linhs) 0.50+0.05
109 m2f32,1h 1)) 0.19+0.03
6.110 12* viliyy i) 0.39+0.06
6.283 10°* Vi ys 0,13k ) 0.64+0.07
10 6.437 12- Vi 1jis 0, linhs) 0.46+0.07
6.745 14~ V15, linky) 0.53+0.04
6.833 (87)* w1y 1h ) 0.58+0.05
105 | TR T S W SN R T T T S A VO 41 6.859 9% 1T(li|]/2,lh |_||/2) 0.55+0.02
15 20 25 1.0 6.879 7°* m( iy, 1hnh) 0.39+0.01
Qo (M) 6.884 IO‘V‘ m( liy3 0,1k 1)) 0.32+0.09
eft 7.064 12 (i 0, 1h00) 0.32+0.05
7.086 12°* m(1iyy 0,10 11Y) 0.1840.02

FIG. 4. M14 (6.745 MeV) and M 12 (6.347 MeV) form factors

with DWBA Woods-Saxon fits. The 6.745 MeV form factor is
scaled by 1000. Forward angle data are represented by the open
data points; the 155° data are presented by the solid data points.



Conclusions

* Data with unambiguous interpretation point to correlations
beyond a mean-field description
- Elastic nucleon scattering
» Reaction cross section requires energy dependent imaginary potentials
- Knock-out cross sections suggest reduction of removal probabilities

- including fragmentation of single-particle strength indicating imaginary potentials
also at energies below the Fermi energy

- Elastic electron cross section generates charge density that are not explained in
detail by mean field approaches

- Parity violating electron scattering sensitive to neutron skin for N z Z

- Inelastic electron cross section suggest factors of 2 reductions with respect to
mean field results

- Even level structure around the Fermi energy requires an energy-dependent (real)
binding potential —> also requiring an imaginary potential through a dispersion
relation (see later)



