Dispersive optical model (DOM)

- Some reminders about Green's functions
- Second order and physical interpretation of (e,e'p) data
- Relevant physics considerations
- Dyson equation —> Schrödinger-like equation
- Use Green's function framework combined with data to extract the nucleon self-energy in finite nuclei
 - idea launched by Claude Mahaux end of 1980s
 - recent developments and motivation
 - later most recent work

Link of G with two-particle propagator Equation of motion for G $i\hbar\frac{\partial}{\partial t}G(\alpha,\beta;t-t') = \delta(t-t')\delta_{\alpha,\beta} + \langle \Psi_0^N | \mathcal{T}[\frac{\partial a_{\alpha_H}(t)}{\partial t}a_{\beta_H}^{\dagger}(t')] | \Psi_0^N \rangle$ $= \delta(t - t')\delta_{\alpha,\beta} + \varepsilon_{\alpha}G(\alpha,\beta;t - t') - \sum_{s} \langle \alpha | U | \delta \rangle G(\delta,\beta;t - t')$ $+\frac{-\imath}{2\hbar}\sum_{\delta\zeta\theta}\left\langle\alpha\delta\right|V\left|\theta\zeta\right\rangle\left\langle\Psi_{0}^{N}\right|\mathcal{T}[a_{\delta_{H}}^{\dagger}(t)a_{\zeta_{H}}(t)a_{\theta_{H}}(t)a_{\beta_{H}}^{\dagger}(t')]\left|\Psi_{0}^{N}\right\rangle$ Diagrammatic analysis of G^{II} yields α Γ n δ

 Γ is the effective interaction (vertex function) between correlated particles in the medium.

Rework

- Rearrange and do some relabeling: inverse FT
- Magic: again DE!!

 $G(\alpha, \beta; E) = G^{(0)}(\alpha, \beta; E) + \sum_{\gamma, \delta} G^{(0)}(\alpha, \gamma; E) \Sigma^{*}(\gamma, \delta; E) G(\delta, \beta; E)$ • with $\Sigma^{*}(\gamma, \delta; E) = -\langle \gamma | U | \delta \rangle - i \int_{C\uparrow} \frac{dE'}{2\pi} \sum_{\mu, \nu} \langle \gamma \mu | V | \delta \nu \rangle G(\nu, \mu; E')$ $\frac{1}{2\pi} \int_{C\uparrow} \frac{dE_{1}}{2\pi} \int_{C\uparrow} \frac{dE_{2}}{2\pi} \sum_{\mu, \nu} \langle \gamma \mu | V | \delta \nu \rangle G(\nu, \mu; E')$

 $+\frac{1}{2}\int \frac{dE_1}{2\pi} \int \frac{dE_2}{2\pi} \sum_{\epsilon,\mu,\nu,\zeta,\rho,\sigma} \langle \gamma\mu | V | \epsilon\nu \rangle G(\epsilon,\zeta;E_1)G(\nu,\rho;E_2)$

 $\times G(\sigma,\mu;E_1+E_2-E)\left\langle \zeta\rho\right|\Gamma(E_1,E_2;E,E_1+E_2-E)\left|\delta\sigma\right\rangle$

Diagrammatically

Beyond the mean-field approximation

• Consider again

- When the two-body interaction is weak but not negligible, one can make the "Born" approximation for the two-body propagator
- The self-energy term then contains a dynamic second-order term

Beyond the mean-field approximation

• Consider again

- When the two-body interaction is weak but not negligible, one can make the "Born" approximation for the two-body propagator
- The self-energy term then contains a dynamic second-order term

Second-order self-energy

- Expression with noninteracting propagators in Ch.9
- With self-consistent sp propagators

$$\Sigma^{(2)}(\gamma,\delta;E) = -\frac{1}{2} \int \frac{dE_1}{2\pi i} \int \frac{dE_2}{2\pi i} \sum_{\lambda,\epsilon,\nu} \sum_{\zeta,\xi,\mu} \langle \gamma\lambda | V | \epsilon\nu \rangle \langle \zeta\xi | V | \delta\mu \rangle$$

 $\times G(\epsilon,\zeta;E_1)G(\nu,\xi;E_2)G(\mu,\lambda;E_1+E_2-E)$

- Propagator therefore solves
 - $G(\alpha,\beta;E) = G^{(0)}(\alpha,\beta;E) + \sum G(\alpha,\gamma;E)\Sigma(\gamma,\delta;E)G^{(0)}(\delta,\beta;E)$ $\Sigma(\gamma, \delta; E) = -\langle \gamma | U | \delta \rangle + \Sigma^{(1)}(\gamma, \delta) + \Sigma^{(2)}(\gamma, \delta; E)$ $\Sigma^{(1)}(\gamma,\delta) = -i \int_{C^{\uparrow}} \frac{dE'}{2\pi} \sum \langle \gamma \mu | V | \delta \nu \rangle G(\nu,\mu;E')$
- Diagrammatically
- Obtained from $\langle \zeta \rho | \Gamma(E_1, E_2; E_3, E_4) | \delta \sigma \rangle \equiv \langle \zeta \rho | V | \delta \sigma \rangle$

Procedure

- Note first-order not equal HF!
- U term cancels as always
- Similar procedure as in HF

Assume

$$G(\alpha,\beta;E) = \sum_{m} \frac{z_{\alpha}^{m+} z_{\beta}^{m+*}}{E - \varepsilon_{m}^{+} + i\eta} + \sum_{n} \frac{z_{\alpha}^{n-} z_{\beta}^{n-*}}{E - \varepsilon_{n}^{-} - i\eta}$$

- Second-order self-energy by appropriate contour integration
- Integrals are of the form

$$I(E) = \int_{-\infty}^{+\infty} \frac{dE'}{2\pi i} \left(\frac{F_1}{E' - f_1 + i\eta} + \frac{B_1}{E' - b_1 - i\eta} \right) \times \left(\frac{F_2}{E' - E - f_2 + i\eta} + \frac{B_2}{E' - E - b_2 - i\eta} \right)$$

- Close contour in upper or lower half
- Four terms: two vanish with both poles on the same side
- Residue theorem: $I(E) = \frac{F_1B_2}{E (f_1 b_2) + i\eta} \frac{B_1F_2}{E + (f_2 b_1) i\eta}$

Self-energy

Apply to second-order self-energy

$$\Sigma^{(2)}(\gamma,\delta;E) = \frac{1}{2} \sum_{\lambda,\epsilon,\nu} \sum_{\zeta,\xi,\mu} \langle \gamma\lambda | V | \epsilon\nu \rangle \langle \zeta\xi | V | \delta\mu \rangle$$

$$\times \left(\sum_{m_1m_2n_3} \frac{z_{\epsilon}^{m_1+} z_{\zeta}^{m_1+*} z_{\nu}^{m_2+} z_{\xi}^{m_2+*} z_{\mu}^{n_3-} z_{\lambda}^{n_3}}{E - (\varepsilon_{m_1}^+ + \varepsilon_{m_2}^+ - \varepsilon_{n_3}^-) + i\eta} + \sum_{n_1n_2m_3} \frac{z_{\epsilon}^{n_1-} z_{\zeta}^{n_1-*} z_{\nu}^{n_2-} z_{\xi}^{n_2-*} z_{\mu}^{n_3+} z_{\lambda}^{m_3+*}}{E + (\varepsilon_{m_3}^+ - \varepsilon_{n_1}^- - \varepsilon_{n_2}^-) - i\eta}\right)$$

- Remember: poles of propagator $\forall m, n : \varepsilon_n^- \leq \varepsilon_F^- < \varepsilon_F < \varepsilon_F^+ \leq \varepsilon_m^+$ • with $\varepsilon_F = \frac{1}{2} [\varepsilon_F^- + \varepsilon_F^+]$
- Therefore poles in self-energy obey $\forall m_i, n_i : \varepsilon_{n_1}^- + \varepsilon_{n_2}^- - \varepsilon_{m_3}^+ < \varepsilon_F < \varepsilon_{m_1}^+ + \varepsilon_{m_2}^+ - \varepsilon_{n_3}^-$
- and have cuts when the spectra of N±1 have continuous parts

Solution of Dyson equation

- Fully self-consistent solution is possible (see later)
- First study how the presence of the energy dependence in the self-energy modifies the Dyson equation
- Start by solving HF first
- Then choose auxiliary potential to be HF potential so $G^{(0)} \equiv G^{HF}$
- Choose HF sp basis so $G^{HF}(\alpha,\beta;E) = \delta_{\alpha,\beta} \left[\frac{\theta(\alpha-F)}{E-\varepsilon_{\alpha}+in} + \frac{\theta(F-\alpha)}{E-\varepsilon_{\alpha}-in} \right]$
- is diagonal and to obtain 2nd order self-energy replace

$$z_{\alpha}^{m+} = \delta_{m,\alpha}\theta(\alpha - F); \ z_{\alpha}^{n-} = \delta_{n,\alpha}\theta(F - \alpha)$$

as a first iteration step in full solution

$$\Sigma^{(2)}(\gamma, \delta; E) = \frac{1}{2} \sum_{\lambda, \epsilon, \nu} \langle \gamma \lambda | V | \epsilon \nu \rangle \langle \epsilon \nu | V | \delta \lambda \rangle$$

$$\times \left(\frac{\theta(\epsilon - F)\theta(\nu - F)\theta(F - \lambda)}{E - (\varepsilon_{\epsilon} + \varepsilon_{\nu} - \varepsilon_{\lambda}) + i\eta} + \frac{\theta(F - \epsilon)\theta(F - \nu)\theta(\lambda - F)}{E + (\varepsilon_{\lambda} - \varepsilon_{\epsilon} - \varepsilon_{\nu}) - i\eta} \right)_{\text{QMPT 540}}$$

Solution strategy

• Compact notation $\Sigma^{(2)}(\gamma,\delta;E) = \frac{1}{2} \left(\sum_{p_1p_2h_3} \frac{\langle \gamma h_3 | V | p_1p_2 \rangle \langle p_1p_2 | V | \delta h_3 \rangle}{E - (\varepsilon_{p_1} + \varepsilon_{p_2} - \varepsilon_{h_3}) + i\eta} + \sum_{h_1h_2p_3} \frac{\langle \gamma p_3 | V | h_1h_2 \rangle \langle h_1h_2 | V | \delta p_3 \rangle}{E + (\varepsilon_{p_3} - \varepsilon_{h_1} - \varepsilon_{h_2}) - i\eta} \right)$

- identifies particles and holes
- Next solve

 $G(\alpha,\beta;E) = G^{HF}(\alpha,\beta;E) + \sum_{\gamma\delta} G(\alpha,\gamma;E) \Sigma^{(2)}(\gamma,\delta;E) G^{HF}(\delta,\beta;E)$

- In principle, the solutions will contain nondiagonal contributions
- Sometimes (closed-shell atoms or nuclei) these can be neglected
- Corresponding self-energy

$$\Sigma^{(2)}(\alpha; E) = \frac{1}{2} \left(\sum_{p_1 p_2 h_3} \frac{|\langle \alpha h_3 | V | p_1 p_2 \rangle|^2}{E - (\varepsilon_{p_1} + \varepsilon_{p_2} - \varepsilon_{h_3}) + i\eta} + \sum_{h_1 h_2 p_3} \frac{|\langle \alpha p_3 | V | h_1 h_2 \rangle|^2}{E + (\varepsilon_{p_3} - \varepsilon_{h_1} - \varepsilon_{h_2}) - i\eta} \right)$$

Diagonal Dyson equation

Corresponding DE

 $G(\alpha; E) = G^{HF}(\alpha; E) + G(\alpha; E)\Sigma^{(2)}(\alpha; E)G^{HF}(\alpha; E)$

• Solution (like in the infinite HF case) algebraic

$$G(\alpha; E) = \frac{1}{\frac{1}{G^{HF}(\alpha; E)} - \Sigma^{(2)}(\alpha; E)} = \frac{1}{E - \varepsilon_{\alpha} - \Sigma^{(2)}(\alpha; E)}$$
 that

noting that

$$\frac{1}{G^{HF}(\alpha; E)} = E - \varepsilon_{\alpha}$$

- Physical information related to poles and residues
- Assume (for the sake of pedagogy) that the self-energy has poles at a set of discrete energies (isolated simple poles)
- Poles of propagator solutions of $E_{n\alpha} = \varepsilon_{\alpha} + \Sigma^{(2)}(\alpha; E_{n\alpha})$

More

- Solutions $E_{n\alpha} = \varepsilon_{\alpha} + \Sigma^{(2)}(\alpha; E_{n\alpha})$
- Residues from

$$R_{n\alpha} = \lim_{E \to E_{n\alpha}} (E - E_{n\alpha}) G(\alpha; E) = \lim_{E \to E_{n\alpha}} \frac{E - E_{n\alpha}}{E - \varepsilon_{\alpha} - \Sigma^{(2)}(\alpha; E)}$$
$$= \left(1 - \frac{d\Sigma^{(2)}(\alpha; E)}{dE} \Big|_{E=E_{n\alpha}} \right)^{-1}$$

- noting that $\Sigma^{(2)}(\alpha; E) = \Sigma^{(2)}(\alpha; E_{n\alpha}) + (E - E_{n\alpha}) \left. \frac{d\Sigma^{(2)}(\alpha; E)}{dE} \right|_{E=E_{n\alpha}}$ • Infinitesimal imaginary parts are irrelevant when dealing with
- discrete poles (not with continuum), since poles of self-energy are different from those of propagator
- Solution: plot $E \varepsilon_{\alpha}$ and $\Sigma^{(2)}(\alpha; E)$
- Find intersections!

with $E - \varepsilon_{\alpha}$ so D poles in self-energy yields D+1 solutions Explains all qualitative features of sp strength distribution in nuclei! QMPT 540

Interpretation

- Poles in the removal domain: approximate energies of N-1 eigenstates $E_{n\alpha} \approx E_0^N E_n^{N-1}$
- Corresponding residue: squared removal amplitude $R_{n\alpha} \approx |\langle \Psi_n^{N-1} | a_{\alpha} | \Psi_0^N \rangle |^2$
- Similarly in the addition domain: approximate energies of N+1 eigenstates $E_{n\alpha} \approx E_n^{N+1} E_0^N$
- Addition probability:

 $R_{n\alpha} \approx |\langle \Psi_n^{N+1} | a_{\alpha}^{\dagger} | \Psi_0^N \rangle|^2$

- Derivative of self-energy always negative so $0 \le R_{n\alpha} \le 1$
- Plot illustrates various possibilities and the relation with timeordered diagrams further explored next...
- Note: no longer purely particle or hole interpretation possible

Mixing in nuclear physics I

Example: p and 2p1h

 $\begin{pmatrix} \varepsilon_p + \langle p | V | p \rangle & \langle p | V | 2p1h \rangle \\ \langle 2p1h | V | p \rangle & \varepsilon_{2p1h} + \langle 2p1h | V | 2p1h \rangle \end{pmatrix} \begin{pmatrix} \psi_p \\ \psi_{2p1h} \end{pmatrix} = E \begin{pmatrix} \psi_p \\ \psi_{2p1h} \end{pmatrix}$ Assume little effect from $\langle 2p1h | V | 2p1h \rangle \Rightarrow 0$ $\begin{array}{c} \mbox{Equivalent to} \\ \left(\varepsilon_p + \langle p | V | p \rangle + \langle p | V | 2p1h \rangle \\ \hline E - \varepsilon_{2p1h} \\ \end{array} \right) (\psi_p) = E (\psi_p) \\ \end{array}$

In the continuum \Rightarrow complex "optical" potential

Nucleon correlations

Mixing in nuclear physics II

Yet another example: h and 1p2h

 $\begin{pmatrix} \varepsilon_h + \langle h | V | h \rangle & \langle h | V | 1p2h \rangle \\ \langle 1p2h | V | h \rangle & \varepsilon_{1p2h} + \langle 1p2h | V | 1p2h \rangle \end{pmatrix} \begin{pmatrix} \psi_h \\ \psi_{1p2h} \end{pmatrix} = E \begin{pmatrix} \psi_h \\ \psi_{1p2h} \end{pmatrix}$

Assume little effect from $\langle 1p2h|V|1p2h\rangle \Rightarrow 0$ Equivalent to \checkmark $\left(\varepsilon_{h} + \langle h|V|h\rangle + \langle h|V|1p2h\rangle \frac{1}{E - \varepsilon_{1p2h}} \langle 1p2h|V|h\rangle\right)(\psi_{h}) = E(\psi_{h})$

Energy-dependent self-energy below ϵ_F (and poles) Explains fragmentation of single-particle strength \Rightarrow (e,e'p) Note: so far only mixing on one side of ϵ_F

20 40 60 80 E (MeV) Energy

0

Nucleon correlations

Mixing across the Fermi energy \Rightarrow inclusion of ground-state correlations Example: α =p/h and 1p2h and 2p1h

 $\begin{pmatrix} \varepsilon_{\alpha} + \langle \alpha | V | \alpha \rangle & \langle \alpha | V | 1p2h \rangle & \langle \alpha | V | 2p1h \rangle \\ \langle 1p2h | V | \alpha \rangle & \varepsilon_{1p2h} + \langle 1p2h | V | 1p2h \rangle & 0 \\ \langle 2p1h | V | \alpha \rangle & 0 & \varepsilon_{2p1h} + \langle 2p1h | V | 2p1h \rangle \end{pmatrix} \begin{pmatrix} \psi_{\alpha} \\ \psi_{1p2h} \\ \psi_{2p1h} \end{pmatrix} = E \begin{pmatrix} \psi_{\alpha} \\ \psi_{1p2h} \\ \psi_{2p1h} \end{pmatrix}$

Assume little effect from $\langle 1p2h | V | 1p2h \rangle$ \Rightarrow 0, etc.

Equivalent to $\begin{pmatrix}
\varepsilon_{\alpha} + \langle \alpha | V | \alpha \rangle + \langle \alpha | \Sigma^{(2)}(E) | \alpha \rangle \end{pmatrix}(\psi_{\alpha}) = E(\psi_{\alpha})$ Explains also depletion of single-particle strength! Nucleon correlations

Self-consistent treatment of $\boldsymbol{\Sigma}^{(2)}$

- Self-consistent treatment for a finite system
- Keep approximation of discrete poles and diagonal self-energy

$$G(\alpha; E) = \sum_{m} \frac{|z_{\alpha}^{m+}|^2}{E - \varepsilon_{m\alpha}^+ + i\eta} + \sum_{n} \frac{|z_{\alpha}^{n-}|^2}{E - \varepsilon_{n\alpha}^- - i\eta}$$

- appropriate for closed-shell nuclei and atoms
- Second-order self-energy

$$\Sigma^{(2)}(\alpha; E) = \frac{1}{2} \sum_{\lambda, \epsilon, \nu} |\langle \alpha \lambda | V | \epsilon \nu \rangle|^{2}$$

$$\times \left(\sum_{m_{1}m_{2}n_{3}} \frac{|z_{\epsilon}^{m_{1}+}|^{2} |z_{\nu}^{m_{2}+}|^{2} |z_{\lambda}^{n_{3}-}|^{2}}{E - (\varepsilon_{m_{1}\epsilon}^{+} + \varepsilon_{m_{2}\nu}^{+} - \varepsilon_{n_{3}\lambda}^{-}) + i\eta} + \sum_{n_{1}n_{2}m_{3}} \frac{|z_{\epsilon}^{n_{1}-}|^{2} |z_{\nu}^{n_{2}-}|^{2} |z_{\lambda}^{m_{3}+}|^{2}}{E + (\varepsilon_{m_{3}\lambda}^{+} - \varepsilon_{n_{1}\epsilon}^{-} - \varepsilon_{n_{2}\nu}^{-}) - i\eta} \right)$$

$$First-order$$

$$\Sigma^{(1)}(\alpha) = \sum_{\beta} \langle \alpha \beta | V | \alpha \beta \rangle \left(\sum_{n} |z_{\beta}^{n-}|^{2} \right)$$

can be absorbed into new sp energies by rewriting DE

SCGF

- Treatment is like HF: determines self-consistent Green's functions (SCGF)
- Both first- and second-order self-energy depend on these solutions and must be updated
- Solve DE again etc. so iterative procedure
- Strictly speaking: cannot use only discrete poles (dimensionality)
- Two practical approaches
- Bin energy axis and sum strength in each bin; then update propagator by taking center and summed strength in each bin
- or Replace spectral distribution by a small number of poles chosen to reproduce lowest-order energy-weighted moments of spectral function
- or treat continuum properly!

Schematic model

- Take M particle and M hole states with sp energies $\varepsilon_{h_i} = -\varepsilon_{p_i}$
- Keep sp energy fixed (neglect first-order self-energy)
- Assume constant interaction strength $|\left<\alpha\beta\right|V\left|\gamma\delta\right>|^2=|v|^2$
- With these assumptions $\ \Sigma(-E) = -\Sigma(E)$ is state-independent
- and there is exact ph symmetry $G(p_i; E) = -G(h_i; -E)$
- Example: M=6 |v| = 0.75 MeV and $\varepsilon_{p_i} = 2, 3, 4, 8, 9, 10$ MeV, for $i = 1, \dots, 6$
- mimicking two nuclear major shell above & below the Fermi level
- Solved iteratively with 0.1 MeV wide bins
- Illustrated for particle states 1 and 6 (collected in 1 MeV bins)

Plot: self-energy $\frac{1}{\pi} |\text{Im } \Sigma(E)|$ and spectral functions

- Left: first iteration
- Right: SCGF
- First iteration:
 - p1 QP peak 64%
 - p6 fragmented
- SCGF
 - self-energy spread
 to larger energies
 - vanishing shell
 structure except near
 the Fermi energy
 - spectral functions
 have similar features

QMPT 540

Nuclei

- Cannot use realistic NN interaction in second order
- Can be done in higher order (see later)
- Use approximate effective interactions in a limited model space
- ⁴⁸Ca protons "occupy" $0s_{\frac{1}{2}}, 0p_{\frac{3}{2}}, 0p_{\frac{1}{2}}, 0d_{\frac{5}{2}}, 0d_{\frac{3}{2}} \text{ and } 1s_{\frac{1}{2}}$
- Qualitative success but improvement necessary including better L&SRC

Van Neck, D., Waroquier, M. and Ryckebusch, J. (1991) Nucl. Phys. A530, 347.

QMPT 540

FSI and (e,e'p) \Leftrightarrow analysis

 $\hat{O} = \sum_{\alpha\beta} \langle \alpha | O | \overline{\beta} \rangle \, a^{\dagger}_{\alpha} a_{\overline{\beta}}$ Electron Scattering \Rightarrow one-body operator

 $\left| \left\langle \Psi_{n}^{N} \right| \hat{O} \left| \Psi_{0}^{N} \right\rangle \right|^{2} = \sum_{\alpha \beta} \sum_{\gamma \delta} \left\langle \gamma \right| O \left| \overline{\delta} \right\rangle \left\langle \alpha \right| O \left| \overline{\beta} \right\rangle^{*} \left\langle \Psi_{n}^{N} \right| a_{\gamma}^{\dagger} a_{\overline{\delta}} \left| \Psi_{0}^{N} \right\rangle \left\langle \Psi_{n}^{N} \right| a_{\alpha}^{\dagger} a_{\overline{\beta}} \left| \Psi_{0}^{N} \right\rangle^{*}$

Requires (imaginary part of) exact polarization propagator

"Absolute" spectroscopic factors <?

 \Rightarrow Quasihole wave function

(e,e´p) cross sections for closed-shell nuclei NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

and ...

E. Quint, Ph.D. thesis NIKHEF, 1988

Removal probability for valence protons from NIKHEF data Lapikás, NPA553,297c(1993)

M. van Batenburg & L. Lapikás from ²⁰⁸Pb (e,e´p) ²⁰⁷Tl NIKHEF group & W.D. to be published

Occupation of deeply-bound proton levels from EXPERIMENT

Two effects associated with short-range correlations

- Depletion of the Fermi sea
- Admixture of high-momentum components

Recent data confirm both aspects (predicted by nuclear matter results)

Reviewed in Prog. Part. Nucl. Phys. 52 (2004) 377-496

Location of single-particle strength in closed-shell (stable) nuclei

For example: protons in ²⁰⁸Pb

SRC

JLab E97-006

Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

High-momenta near ϵ_F ?

I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994)

NO!

Location of high-momentum components

high momenta

 $require\ specific\ intermediate\ states$

External line k (large).

Intermediate holes $\langle k_F, say total momentum \sim 0$.

Momentum conservation: intermediate particle -k

 \Rightarrow Energy intermediate state ~ ϵ_{2h} - $\epsilon(k)$

 \Rightarrow the higher k, the more negative the location of its strength

 \Rightarrow no high-momentum components near ε_F

High-momentum protons have been seen in nuclei!

Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

- Location of high-momentum components
- Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994)

$$\Rightarrow$$
 ~0.6 protons for ¹²C \Rightarrow ~10%

reactions and structure

We now essentially "know" what all the protons are doing in the ground state of a "closed-shell" nucleus !!!

- Unique for a correlated many-body system
- Information available for electrons in atoms (Hartree-Fock)
- Not for electrons in solids
- Not for atoms in quantum liquids
- Not for quarks in nucleons
- Demonstrates the value of the study of the nucleus for its intrinsic interest as a quantum many-body problem!

Schrödinger-like equation from DE

- Do for finite system with discrete bound states
- Appropriate Lehmann representation

$$\begin{split} G(\alpha,\beta;E) &= \sum_{m} \frac{\langle \Psi_{0}^{N} | \, a_{\alpha} \, | \Psi_{m}^{N+1} \rangle \, \langle \Psi_{m}^{N+1} | \, a_{\beta}^{\dagger} \, | \Psi_{0}^{N} \rangle}{E - (E_{m}^{N+1} - E_{0}^{N}) + i\eta} \\ &+ \int_{\varepsilon_{T}^{+}}^{\infty} d\tilde{E}_{\mu}^{N+1} \frac{\langle \Psi_{0}^{N} | \, a_{\alpha} \, | \Psi_{\mu}^{N+1} \rangle \, \langle \Psi_{\mu}^{N+1} | \, a_{\beta}^{\dagger} \, | \Psi_{0}^{N} \rangle}{E - \tilde{E}_{\mu}^{N+1} + i\eta} \\ &+ \sum_{n} \frac{\langle \Psi_{0}^{N} | \, a_{\beta}^{\dagger} \, | \Psi_{n}^{N-1} \rangle \, \langle \Psi_{n}^{N-1} | \, a_{\alpha} \, | \Psi_{0}^{N} \rangle}{E - (E_{0}^{N} - E_{n}^{N-1}) - i\eta} \\ &+ \int_{-\infty}^{\varepsilon_{T}^{-}} d\tilde{E}_{\nu}^{N-1} \frac{\langle \Psi_{0}^{N} | \, a_{\beta}^{\dagger} \, | \Psi_{\nu}^{N-1} \rangle \, \langle \Psi_{\nu}^{N-1} | \, a_{\alpha} \, | \Psi_{0}^{n} \rangle}{E - \tilde{E}_{\nu}^{N-1} - i\eta} \end{split}$$

- using continuum thresholds ε_T^{\pm}
- and notation

 $\tilde{E}_{\mu}^{N+1} = E_{\mu}^{N+1} - E_{0}^{N}$ $\tilde{E}_{\nu}^{N-1} = E_{0}^{N} - E_{\nu}^{N-1}$

QMPT 540

SE from DE

- Noninteracting propagator: poles different from interacting one
- Take limits as for sp problem to obtain eigenvalue problem $\lim_{E \to \varepsilon_n^-} (E - \varepsilon_n^-) \left\{ G(\alpha, \beta; E) = G^{(0)}(\alpha, \beta; E) + \sum_{\varepsilon} G^{(0)}(\alpha, \gamma; E) \ \Sigma^*(\gamma, \delta; E) \ G(\delta, \beta; E) \right\}$
- with $\varepsilon_n^- = E_0^N E_n^{N-1}$
- and $z_{\alpha}^{n-} = \langle \Psi_n^{N-1} | a_{\alpha} | \Psi_0^N \rangle$
- as before $z_{\alpha}^{n-} = \sum_{s} G^{(0)}(\alpha, \gamma; \varepsilon_{n}^{-}) \Sigma^{*}(\gamma, \delta; \varepsilon_{n}^{-}) z_{\delta}^{n-}$
- Rewrite in different sp basis (coordinate space)

$$z_{\boldsymbol{r}m}^{n-} = \sum_{m_1,m_2} \int d^3 r_1 \int d^3 r_2 \ G^{(0)}(\boldsymbol{r}m, \boldsymbol{r}_1 m_1; \varepsilon_n^-) \ \Sigma^*(\boldsymbol{r}_1 m_1, \boldsymbol{r}_2 m_2; \varepsilon_n^-) \ z_{\boldsymbol{r}_2 m_2}^{n-}$$

 employing basis transformation on self-energy and noninteracting propagator

- Invert and remember
- Rearrange by using

$$e^{(0)}(\boldsymbol{r}m_{s},\boldsymbol{r}'m_{s}';E) = \langle \Phi_{0}^{N} | a_{\boldsymbol{r}m_{s}} \frac{1}{E - (\hat{H}_{0} - E_{\Phi_{0}^{N}}) + i\eta} a_{\boldsymbol{r}'m_{s}'}^{\dagger} | \Phi_{0}^{N} \rangle$$

$$+ \langle \Phi_{0}^{N} | a_{\boldsymbol{r}'m_{s}'}^{\dagger} \frac{1}{E - (E_{\Phi_{0}^{N}} - \hat{H}_{0}) - i\eta} a_{\boldsymbol{r}m_{s}} | \Phi_{0}^{N} \rangle$$

$$= \sum_{\alpha} \left\{ \frac{\langle \boldsymbol{r}m_{s} | \alpha \rangle \langle \alpha | \boldsymbol{r}'m_{s}' \rangle \theta(\alpha - F)}{E - \varepsilon_{\alpha} + i\eta} + \frac{\langle \boldsymbol{r}m_{s} | \alpha \rangle \langle \alpha | \boldsymbol{r}'m_{s}' \rangle \theta(F - \alpha)}{E - \varepsilon_{\alpha} - i\eta} \right\}$$

 $\sum_{m} \int d^{3}r \langle \boldsymbol{r}'m' | \varepsilon_{n}^{-} - H_{0} | \boldsymbol{r}m \rangle G^{(0)}(\boldsymbol{r}m, \boldsymbol{r}_{1}m_{1}; \varepsilon_{n}^{-}) = \delta_{m', m_{1}} \delta(\boldsymbol{r}' - \boldsymbol{r}_{1})$

same operation yields (U local and spin-independent)

$$\sum_{m} \int d^{3}r \left\langle \boldsymbol{r}'m' \right| \varepsilon_{n}^{-} - H_{0} \left| \boldsymbol{r}m \right\rangle z_{\boldsymbol{r}m}^{n-} = \left\{ \varepsilon_{n}^{-} + \frac{\hbar^{2} \nabla'^{2}}{2m} - U(\boldsymbol{r}') \right\} z_{\boldsymbol{r}'m'}^{n-}$$

• Combine: cancellation of auxiliary potential (as it should)

$$-\frac{\hbar^2 \nabla^2}{2m} z_{rm}^{n-} + \sum_{m_1} \int d^3 r_1 \ \Sigma'^*(rm, r_1m_1; \varepsilon_n^-) z_{r_1m_1}^{n-} = \varepsilon_n^- z_{rm}^{n-}$$

- Σ'^* does not contain auxiliary potential
- Like SE but energy dependent potential (energy in = energy out)

Quasiholes

For quasihole solutions

$$S = |z_{\alpha_{qh}}^{n-}|^2 = \left(1 - \frac{\partial \Sigma'^*(\alpha_{qh}, \alpha_{qh}; E)}{\partial E}\Big|_{\varepsilon_n^{-}}\right)^{-1}$$

• Normalization of quasihole wave function is spectroscopic factor!

Dispersive Optical Model

- Claude Mahaux end of 1980s
 - connect traditional optical potential to bound-state potential
 - crucial idea: use the dispersion relation for the nucleon self-energy
 - smart implementation: use it in its subtracted form
 - applied successfully to ⁴⁰Ca and ²⁰⁸Pb in a limited energy window
 - employed traditional volume and surface absorption potentials and a local energydependent Hartree-Fock-like potential
 - Reviewed in Adv. Nucl. Phys. 20, 1 (1991)
- Radiochemistry group at Washington University in St. Louis: Charity and Sobotka propose to use it for a sequence of Ca isotopes —> data-driven extrapolations to the drip line
 - First results 2006 PRL
 - Subsequently —> attention to data below the Fermi energy related to ground-state properties —> Dispersive Self-energy Method (DSM)

"Mahaux" analysis

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)

Optical potential used to analyze elastic nucleon scattering data

Extend analysis employing the optical potential (A+1 \Rightarrow particle part of propagator) to include structure information related to the levels in A-1 (\Rightarrow hole part of propagator)

Employ exact relation between real and imaginary part of self-energy (dispersion relation) and take advantage of empirical information concerning the imaginary part of the optical potential

Use subtracted dispersion relation (at E_F) and assume standard surface and volume contributions

(e,e'p) and DOM

 Analysis of (e,e'p) involves Woods-Saxon bound states and distorted waves subject to standard local optical potential

• DOM fits can be extended to include all the "bare" (e,e'p) cross section data by incorporating the DOM bound wave function and the relevant optical potential (with $Z \Rightarrow Z-1$)

• Thus yielding "consistent" information only fitted to data without any other intermediate step!!!

Employed equations for "local" implementation

 $\Sigma^*(\boldsymbol{r}m, \boldsymbol{r}'m'; E) \Rightarrow \mathcal{U}(r, E) = -\mathcal{V}(r, E) + V_{SO}(r) + V_C(r)$ $- iW_V(E)f(r, r_V, a_V) + 4ia_S W_S(E)f'(r, r_S, a_S)$

$$f(r, r_i, a_i) = \left[1 + \exp\left((r - r_i A^{1/3})/a_i\right)\right]^{-1}$$
 Woods-Saxon form factor

$$\begin{split} \mathcal{V}(r,E) &= V_{HF}(E)f(r,r_{HF},a_{HF}) + \Delta \mathcal{V}(r,E) & \text{``HF'' includes ``main''} \\ & \text{effect of nonlocality} \\ & \Rightarrow \text{k-mass} \end{split}$$

$$\begin{split} \Delta \mathcal{V}(r,E) &= \Delta V_V(E) f(r,r_V,a_V) - 4 a_s \Delta V_s(E) f'(r,r_S,a_S) & \text{``Time''} \\ & \text{nonlocality} \\ &\Rightarrow \text{E-mass} \end{split}$$

$$\Delta V_i(E) = \frac{\mathcal{P}}{\pi} \int_{-\infty}^{\infty} dE' \ W_i(E') \left(\frac{1}{E' - E} - \frac{1}{E' - \varepsilon_F} \right) \begin{array}{l} \text{Subtracted} \\ \text{dispersion relation} \\ \text{equivalent to} \\ \text{following page} \end{array}$$

Optical potential <--> nucleon self-energy

- e.g. Bell and Squires --> elastic T-matrix = reducible self-energy
- Mahaux and Sartor Adv. Nucl. Phys. 20, 1 (1991)
 - relate dynamic (energy-dependent) real part to imaginary part
 - employ subtracted dispersion relation
 - General dispersion relation for self-energy:

 $\operatorname{Re} \Sigma(E) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E_{T}^{+}}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{E - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E_{T}^{-}} dE' \frac{\operatorname{Im} \Sigma(E')}{E - E'}$ Calculated at the Fermi energy $\varepsilon_{F} = \frac{1}{2} \left\{ (E_{0}^{A+1} - E_{0}^{A}) + (E_{0}^{A} - E_{0}^{A-1}) \right\}$ $\operatorname{Re} \Sigma(\varepsilon_{F}) = \Sigma^{HF} - \frac{1}{\pi} \mathcal{P} \int_{E_{T}^{+}}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{\varepsilon_{F} - E'} + \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{E_{T}^{-}} dE' \frac{\operatorname{Im} \Sigma(E')}{\varepsilon_{F} - E'}$ Subtract

 $\operatorname{Re} \Sigma(E) = \operatorname{Re} \Sigma^{HF}(\varepsilon_F)$ $- \frac{1}{\pi} (\varepsilon_F - E) \mathcal{P} \int_{E_T^+}^{\infty} dE' \frac{\operatorname{Im} \Sigma(E')}{(E - E')(\varepsilon_F - E')} + \frac{1}{\pi} (\varepsilon_F - E) \mathcal{P} \int_{-\infty}^{E_T^-} dE' \frac{\operatorname{Im} \Sigma(E')}{(E - E')(\varepsilon_F - E')}$

reactions and structure

Locality and other approximations

Mahaux $V_{HF}(\mathbf{r}m, \mathbf{r}'m') = \operatorname{Re} \Sigma^*(\mathbf{r}m, \mathbf{r}'m'; \varepsilon_F) \Rightarrow V_{HF}(r; E) = U_{HF}(E)f(X_{HF})$

with
$$f(X_{HF}) = [1 + \exp(X_{HF})]^{-1}$$

 $X_{HF} = \frac{r - R_{HF}}{a_{HF}}$
 $R_{HF} = r_{HF}A^{1/3}$
 $U_{HF}(E) = U_{HF}(\varepsilon_F) + \left[1 - \frac{m_{HF}^*}{m}\right](E - \varepsilon_F)$

Dispersive part: - assumed large E contribution and m^{*}_{HF} correlated ⇒ can use nuclear matter model and introduces asymmetry in Im part - nonlocality of Im ∑ smooth ⇒ replace by local form identified with the imaginary part of the optical-model potential

with volume and surface contributions

Infinite matter self-energy

Real and imaginary part of the (retarded) self-energy • k_F = 1.35 fm⁻¹

Note differences due to NN interaction

Asymmetry w.r.t. the Fermi energy related to phase space for p and h

Approximations to solving Dyson equation

- No ℓj dependence of self-energy apart from standard spin-orbit
- Assumed form of "HF" potential fixed geometry
- Factorization of energy and radial dependence is assumption
- Imaginary part of self-energy at low-energy is spiky (poles)
 => extra fragmentation at low energy (open-shell nuclei!)
- Expressions for occupation numbers "heuristic" (\Rightarrow wrong for N or Z)
- Z-factors not useful except near ε_F (exact there)
- Division volume & surface "physical" but ...
- Volume terms from nuclear matter should also include asymmetry

Exact solution of Dyson equation

Coordinate space technique employed for atoms can be employed to solve Dyson equation including any true nonlocality (Van Neck)
Yields

$$S_h(\alpha,\beta;E) = \sum_n \langle \Psi_0^N | a_\beta^\dagger | \Psi_n^{N-1} \rangle \langle \Psi_n^{N-1} | a_\alpha | \Psi_0^N \rangle \delta \left(E - (E_0^N - E_n^{N-1}) \right)$$

spectral density (spectral function for $\alpha = \beta$) and therefore

$$n_{\beta\alpha} = \int_{-\infty}^{\varepsilon_F^-} dE \ S_h(\alpha,\beta;E) = \sum_n \left\langle \Psi_0^N \right| a_\beta^{\dagger} \left| \Psi_n^{N-1} \right\rangle \left\langle \Psi_n^{N-1} \right| a_\alpha \left| \Psi_0^N \right\rangle = \left\langle \Psi_0^N \right| a_\beta^{\dagger} a_\alpha \left| \Psi_0^N \right\rangle$$

the one-body density matrix including occupation numbers ($\alpha = \beta$) and last but not least

$$E_0^N = \frac{1}{2} \left(\sum_{\alpha,\beta} \langle \alpha | T | \beta \rangle n_{\alpha\beta} + \sum_{\alpha} \int_{-\infty}^{\varepsilon_F^-} dE \ E \ S_h(\alpha; E) \right)$$

the ground state energy \Rightarrow useful constraints (includes also Z & N)

Combined analysis of protons in ⁴⁰Ca and ⁴⁸Ca Charity, Sobotka, & WD nucl-ex/0605026 Phys. Rev. Lett. 97, 162503 (2006)

Goal: Extract asymmetry dependence $\delta = (N - Z)/A$

 \Rightarrow Predict large asymmetry properties ⁶⁰Ca

Features of simultaneous fit to ⁴⁰Ca and ⁴⁸Ca data

- Surface contribution assumed symmetric around ε_F Represents coupling to low-lying collective states (GR)
- Volume term asymmetric w.r.t. ε_F taken from nuclear matter
- Geometric parameters r_i and a_i fit but the same for both nuclei
- Decay (in energy) of surface term identical also
- Possible to keep volume term the same (consistent with exp) and independent of asymmetry
- "HF" and surface parameters different and can be extrapolated to larger asymmetry
- Surface potential stronger and narrower around ε_F for ^{48}Ca
- Both elastic scattering and (e,e'p) data included in fit

Fit and predictions of n & p elastic scattering cross sections

Present fit and predictions of polarization data

Spin rotation parameter (not fitted)

Fit and predictions Of reaction cross sections

Fit of reaction cross sections

Fit to (e,e'p) data

Potentials

Proton single-particle structure and asymmetry

Pairing of protons on account of pn correlations?!

> Increased correlations with increasing asymmetry!

Polarization effect on sp energies

Occupation numbers

Occupation numbers from

low-energy correlations from theoretical work

Shell	$n(\alpha)$	Including SRC o treating energy
0s _{1/2}	0.968	dependence of
0p _{3/2}	0.956	1
0p _{1/2}	0.951	SI GI
0d _{5/2}	0.925	-9 0.8 -
0d _{3/2}	0.885	ation -
1s _{1/2}	0.860	Rijsdijk et al., Nud ug 0.4
$0f_{7/2}$	0.063	Pro
0f _{5/2}	0.044	0.2
0p _{3/2}	0.031	0 60 50 40 20
0p _{1/2}	0.028	-60 -50 -40 -30

depletion effect by **G**-matrix

Spectroscopic factor

A. Gade et al. Phys. Rev. Lett. 93, 042501 (2004)

neutrons more correlated with increasing proton number and accompanying increasing separation energy.

Parameters

TABLE I: Values of the fitted parameters

$r_{HF} = 1.16 \text{ fm}$	$a_{HF} = .67 \; {\rm fm}$
$r_s = 1.19 \text{fm}$	$a_s = 0.61 \text{ fm}$
$r_v = 1.36 \text{fm}$	$a_v = a_{HF}$
$r_{so} = 0.97 \text{ fm}$	$a_{so} = 0.67$
$V_{so} = 6.57 \text{ MeV}$	
$C_s = 0.015 \text{ MeV}^{-1}$	$B_s^2 = 35.03 \text{ MeV}$
$\Delta B = 14.84 \text{ MeV}$	$r_C(\text{fixed}) = 1.31 \text{ fm}$
$A_v = 9.95 \text{ MeV}$	$B_v = 57.84 \text{ MeV}$
A_{HF} (40) = 61.55 MeV	A_{HF} (48) = 67.41 MeV
B_{HF} (40) =0.624	B_{HF} (48) = 0.574
$A_s^1(40) = 10.83 \text{ MeV}$	A_s^1 (48) = 14.94 MeV
B_s^1 (40) = 15.57 MeV	B_s^1 (48) = 12.25 MeV

Potentials

Effective mass

Occupation numbers

Phys. Rev. C76, 044314 (2007)

What's the physics? GT resonance?

PRC31,1161(1985)

NPA369,258(1981)

More on this next DOM lecture

Extrapolation for large N of sp levels

Old ⁴⁸Ca(p,pn) data J.W.Watson et al. Phys. Rev. C26,961 (1982) ~ consistent with DOM

Spectroscopic factors as a function of δ

Driplines

Ν

Proton dripline wrong by 1

Neutron dripline more complicated:

⁶⁰Ca and ⁷⁰Ca particle bound Intermediate isotopes unbound Reef?

Outlook

- Explore the underlying physics
- More experimental information from elastic nucleon scattering is important!
 - · lots of informative experiments to be done with radioactive beams
- Neutron experiments on ${}^{48}Ca$ and ${}^{48}Ca(p,d)$ in the ${}^{47}Ca$ continuum
- Data-driven extrapolations to the neutron dripline
- More DOM analysis requires nonlocal potentials —>
- Exact solution of the Dyson equation with nonlocal potentials (next time)