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Dispersive optical model (DOM)
• Some reminders about Green’s functions 
• Second order and physical interpretation of (e,e’p) data 
• Relevant physics considerations 
• Dyson equation —> Schrödinger-like equation 

• Use Green’s function framework combined with data to extract 
the nucleon self-energy in finite nuclei  
– idea launched by Claude Mahaux end of 1980s 

– recent developments and motivation 

– later most recent work



Link of G with two-particle propagator
Equation of motion for G

Diagrammatic analysis of GII yields

Γ is the effective interaction (vertex function)  
between correlated particles in the medium.
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Rework
• Rearrange and do some relabeling: inverse FT  
• Magic: again DE!! 

• with 

• Diagrammatically
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Beyond the mean-field approximation
• Consider again 

• self-energy                                from 

• When the two-body interaction is weak but not negligible, one 
can make the “Born” approximation for the two-body propagator 

• The self-energy term then contains a dynamic second-order term 
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Beyond the mean-field approximation
• Consider again 

• self-energy                                from 

• When the two-body interaction is weak but not negligible, one 
can make the “Born” approximation for the two-body propagator 

• The self-energy term then contains a dynamic second-order term 
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Second-order self-energy
• Expression with noninteracting propagators in Ch.9 
• With self-consistent sp propagators 

• Propagator therefore solves 

• Diagrammatically 
• Obtained from
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Procedure
• Note first-order not equal HF! 
• U term cancels as always 
• Similar procedure as in HF 
• Assume 

• Second-order self-energy by appropriate contour integration 
• Integrals are of the form 

• Close contour in upper or lower half 
• Four terms: two vanish with both poles on the same side 
• Residue theorem:
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Self-energy
• Apply to second-order self-energy 

• Remember: poles of propagator 
• with 
• Therefore poles in self-energy obey 

• and have cuts when the spectra of N±1 have continuous parts
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Solution of Dyson equation
• Fully self-consistent solution is possible (see later) 
• First study how the presence of the energy dependence in the 

self-energy modifies the Dyson equation 
• Start by solving HF first 
• Then choose auxiliary potential to be HF potential so 
• Choose HF sp basis so 
• is diagonal and to obtain 2nd order self-energy replace 

• as a first iteration step in full solution 
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Solution strategy
• Compact notation 

• identifies particles and holes 
• Next solve 

• In principle, the solutions will contain nondiagonal contributions 
• Sometimes (closed-shell atoms or nuclei) these can be neglected 
• Corresponding self-energy
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Diagonal Dyson equation
• Corresponding DE 

• Solution (like in the infinite HF case) algebraic 

• noting that 

• Physical information related to poles and residues 

• Assume (for the sake of pedagogy) that the self-energy has 
poles at a set of discrete energies (isolated simple poles) 

• Poles of propagator solutions of
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More
• Solutions 
• Residues from 

• noting that 

• Infinitesimal imaginary parts are irrelevant when dealing with 
discrete poles (not with continuum), since poles of self-energy 
are different from those of propagator 

• Solution: plot 
• Find intersections!
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Graphical 
solution

Explains all qualitative features of sp strength distribution in nuclei!

“hole”

“particle”

particle-hole gap ⇒ Δ 

Plot: 
self-energy 
ph gap 

centered on 

gap 3Δ for 
self-energy 
Solutions: 
intersect  
with           so D poles in self-energy yields D+1 solutionsE � ��
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Interpretation
• Poles in the removal domain: approximate energies of N-1 

eigenstates 
• Corresponding residue: squared removal amplitude 

• Similarly in the addition domain: approximate energies of N+1 
eigenstates 

• Addition probability: 

• Derivative of self-energy always negative so 
• Plot illustrates various possibilities and the relation with time-

ordered diagrams further explored next... 
• Note: no longer purely particle or hole interpretation possible
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Nucleon correlations

Mixing in nuclear physics I
Example: p and 2p1h

Assume little effect from ⇒ 0

Equivalent to

In the continuum ⇒ complex “optical” potential 
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Nucleon correlations

Mixing in nuclear physics II
Yet another example: h and 1p2h

Assume little effect from ⇒ 0
Equivalent to

Explains fragmentation of single-particle strength ⇒ (e,e’p)
Energy-dependent self-energy below εF (and poles)

Note: so far only mixing on one side of εF
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Nucleon correlations

Mougey et al., Nucl. Phys. A335, 35 (1980) 16O(e,e’p)

Energy

Mom
ent

um

∝ Cross section



Nucleon correlations

Mixing across the Fermi energy 
⇒ inclusion of ground-state correlations
Example: α=p/h and 1p2h and 2p1h

Assume little effect from
⇒ 0, etc.

Equivalent to

Explains also depletion of single-particle strength! 
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Self-consistent treatment of
• Self-consistent treatment for a finite system 
• Keep approximation of discrete poles and diagonal self-energy 

• appropriate for closed-shell nuclei and atoms 

• Second-order self-energy 

• First-order 

• can be absorbed into new sp energies by rewriting DE
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SCGF
• Treatment is like HF: determines self-consistent Green’s 

functions (SCGF) 
• Both first- and second-order self-energy depend on these 

solutions and must be updated 
• Solve DE again etc. so iterative procedure 
• Strictly speaking: cannot use only discrete poles (dimensionality) 
• Two practical approaches 
• Bin energy axis and sum strength in each bin; then update 

propagator by taking center and summed strength in each bin 
• or Replace spectral distribution by a small number of poles 

chosen to reproduce lowest-order energy-weighted moments of 
spectral function 

• or treat continuum properly!
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Schematic model
• Take M particle and M hole states with sp energies 
• Keep sp energy fixed (neglect first-order self-energy) 
• Assume constant interaction strength 
• With these assumptions                             is state-independent 
• and there is exact ph symmetry 
• Example: M=6                            and 

• mimicking two nuclear major shell above & below the Fermi level 
• Solved iteratively with 0.1 MeV wide bins 
• Illustrated for particle states 1 and 6 (collected in 1 MeV bins)

�hi = ��pi

| ��⇥| V |⇤⌅⇥ |2 = |v|2

�(�E) = ��(E)

G(pi;E) = �G(hi;�E)

|v| = 0.75 MeV
�pi = 2, 3, 4, 8, 9, 10 MeV, for i = 1, . . . , 6
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Plot: self-energy                and spectral functions
• Left: first iteration 
• Right: SCGF 
• First iteration: 

– p1 QP peak 64% 

– p6 fragmented 

• SCGF 
– self-energy spread                                                                                   

to larger energies 

– vanishing shell                                                                               
structure except near 
the Fermi energy 

– spectral functions 
have similar features

1
�

|Im �(E)|
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Nuclei
• Cannot use realistic NN 

interaction in second 
order 

• Can be done in higher 
order (see later) 

• Use approximate 
effective interactions 
in a limited model space 

• 48Ca protons “occupy” 

• Qualitative success but 
improvement necessary 
including better L&SRC

0s 1
2 , 0p 3

2 , 0p 1
2 , 0d 5

2 , 0d 3
2 and 1s 1

2



FSI and (e,e´p) ⇔ analysis

Electron Scattering ⇒ one-body operator

Requires (imaginary part of) exact polarization propagator

Choose kinematics: 
⇒  only first term

⇒ Elastic scattering 
(phenomenology)

⇒ Quasihole wave function“Absolute” spectroscopic factors ✔?
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(e,e´p) cross sections for closed-shell nuclei 
NIKHEF data, L. Lapikás, Nucl. Phys. A553, 297c (1993)

Normalization < 1



and …

Strong fragmentation of 
deeply-bound states

E. Quint, Ph.D.thesis NIKHEF, 1988

 Quasihole strength or 
spectroscopic factor Z(2s1/2) =0.65 

n(2s 1/2) = 0.75 
from elastic electron scattering

Intermediate



Removal probability for 
valence protons 

from 
NIKHEF data 

Lapikás, 
NPA553,297c(1993)

Note:  
We have seen mostly  
data for removal of  

valence protons



M. van Batenburg & L. Lapikás from 208Pb (e,e´p) 207Tl   
NIKHEF group & W.D. to be published

Up to 100 MeV 
missing energy 
and 
270 MeV/c 
missing momentum

Covers the whole 
mean-field domain 
for the FIRST time!!

Occupation of deeply-bound proton levels from EXPERIMENT

Confirms predictions 
for depletion

SRC
LRC



Two effects associated with short-range correlations

• Depletion of the Fermi sea 

• Admixture of high-momentum components 

 Recent data confirm both aspects (predicted by nuclear matter results)



reactions and structure

Location of  
single-particle 
 strength in 
closed-shell  

(stable) nuclei

SRC

SRC theory

For example: 
protons in 208Pb

N
IKH

EF (e,e’p) data 
L. Lapikás 

N
ucl. Phys. A

553,297c (1993)

JLab E97-006  
Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

Elastic nucleon 
scattering

Reviewed in Prog. Part. Nucl. Phys. 52 (2004) 377-496



High-momenta near εF?

I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684 (1994) NO!



Location of high-momentum components

External line k (large).  
Intermediate holes < kF, say total momentum ~ 0. 
Momentum conservation: intermediate particle -k
⇒ Energy intermediate state ~ ‹ε2h›- ε(k)
⇒ the higher k, the more negative the location of its strength 
⇒ no high-momentum components near εF



reactions and structure

High-momentum protons have been seen in nuclei!
Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

12C

• Location of high-momentum components 
• Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994) 

 ⇒ ~0.6 protons for 12C ⇒ ~10%



We now essentially “know” what all the protons are  
doing in the ground state of a “closed-shell” nucleus !!!

• Unique for a correlated many-body system 

• Information available for electrons in atoms (Hartree-Fock) 

• Not for electrons in solids  
• Not for atoms in quantum liquids 
• Not for quarks in nucleons

⇒ Demonstrates the value of the study of the nucleus 

 for its intrinsic interest  
 as a quantum many-body problem!
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Schrödinger-like equation from DE
• Do for finite system with discrete bound states 
• Appropriate Lehmann representation 

• using continuum thresholds 
• and notation
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SE from DE
• Noninteracting propagator: poles different from interacting one 
• Take limits as for sp problem to obtain eigenvalue problem 

• with 
• and 
• as before 
• Rewrite in different sp basis (coordinate space) 

• employing basis transformation on self-energy and noninteracting 
propagator
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Invert and remember
• Rearrange by using 

• same operation yields (U local and spin-independent) 

• Combine: cancellation of auxiliary potential (as it should) 

•        does not contain auxiliary potential 
• Like SE but energy dependent potential (energy in = energy out)
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Quasiholes
• For quasihole solutions 

• Normalization of quasihole wave function is spectroscopic factor!
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reactions and structure

Dispersive Optical Model
• Claude Mahaux end of 1980s 

– connect traditional optical potential to bound-state potential 
– crucial idea: use the dispersion relation for the nucleon self-energy 
– smart implementation: use it in its subtracted form  
– applied successfully to 40Ca and 208Pb in a limited energy window 
– employed traditional volume and surface absorption potentials and a local energy-

dependent Hartree-Fock-like potential 
– Reviewed in Adv. Nucl. Phys. 20, 1 (1991) 

• Radiochemistry group at Washington University in St. Louis: Charity 
and Sobotka propose to use it for a sequence of Ca isotopes —> 
data-driven extrapolations to the drip line 
- First results 2006 PRL 
- Subsequently —> attention to data below the Fermi energy related to ground-state 

properties —> Dispersive Self-energy Method (DSM)



“Mahaux” analysis

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)

Optical potential used to analyze elastic nucleon scattering data 

Extend analysis  employing the optical potential (A+1⇒ particle  
part of propagator) to include structure information related to the  
levels in A-1 (⇒ hole part of propagator) 

Employ exact relation between real and imaginary part of self-energy 
(dispersion relation) and take advantage of empirical information 
concerning the imaginary part of the optical potential 

Use subtracted dispersion relation (at EF) and assume standard  
surface and volume contributions



(e,e’p) and DOM

• Analysis of (e,e’p) involves Woods-Saxon bound states 
and distorted waves subject to standard local optical 
potential 
• DOM fits can be extended to include all the 
“bare” (e,e’p) cross section data by incorporating the DOM 
bound wave function and the relevant optical potential 
(with Z ⇒ Z-1) 
• Thus yielding “consistent” information only fitted to data 
without any other intermediate step!!! 



Employed equations for “local” implementation

Woods-Saxon form factor

“HF” includes “main” 
effect of nonlocality 
⇒ k-mass

Subtracted  
dispersion relation 
equivalent to 
following page

“Time” 
nonlocality 
⇒ E-mass
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reactions and structure

Optical potential <--> nucleon self-energy
• e.g. Bell and Squires --> elastic T-matrix = reducible self-energy 
• Mahaux and Sartor  

– relate dynamic (energy-dependent) real part to imaginary part 
– employ subtracted dispersion relation 

General dispersion relation for self-energy: 

Calculated at the Fermi energy 

Subtract 
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Adv. Nucl. Phys. 20, 1 (1991)



Locality and other approximations

Mahaux

with

Dispersive part: - assumed large E contribution and m*
HF correlated 

             ⇒ can use nuclear matter model 
             and introduces asymmetry in Im part 
           - nonlocality of Im Σ smooth  

              ⇒ replace by local form identified with the  
             imaginary part of the optical-model potential 
             with volume and surface contributions

VHF (rm, r0m0) = Re ⌃⇤(rm, r0m0; "F ) ) VHF (r;E) = UHF (E)f(XHF )

f(XHF ) = [1 + exp(XHF )]
�1

XHF =

r �RHF

aHF

RHF = rHFA
1/3

UHF (E) = UHF ("F ) +


1� m⇤

HF

m

�
(E � "F )



Infinite matter self-energy

Real and imaginary part of the  

(retarded) self-energy 

• kF = 1.35 fm-1  

• T = 5 MeV 

• k = 1.14 fm-1 

Note differences due to  

NN interaction

Asymmetry w.r.t. the Fermi energy related to phase space for p and h



Approximations to solving Dyson equation

• No     dependence of self-energy apart from standard spin-orbit 
• Assumed form of “HF” potential fixed geometry 
• Factorization of energy and radial dependence is assumption 
• Imaginary part of self-energy at low-energy is spiky (poles) 
 ⇒ extra fragmentation at low energy (open-shell nuclei!) 
• Expressions for occupation numbers “heuristic” (⇒ wrong for N or Z) 
• Z-factors not useful except near      (exact there) 
• Division volume & surface “physical” but … 
• Volume terms from nuclear matter should also include asymmetry

`j

"F



Exact solution of Dyson equation

• Coordinate space technique employed for atoms can be employed 
to solve Dyson equation including any true nonlocality (Van Neck) 
• Yields

spectral density (spectral function for α = β) and therefore

the one-body density matrix including occupation numbers (α = β) 
and last but not least

the ground state energy ⇒ useful constraints (includes also Z & N)
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Combined analysis of protons in 40Ca and 48Ca 
Charity, Sobotka, & WD nucl-ex/0605026

Goal:  Extract asymmetry dependence 
 δ = (N - Z)/A 

⇒ Predict large asymmetry properties 60Ca

 Phys. Rev. Lett. 97, 162503 (2006)



Features of simultaneous fit to 40Ca and 48Ca data

• Surface contribution assumed symmetric around  
 Represents coupling to low-lying collective states (GR) 

• Volume term asymmetric w.r.t.      taken from nuclear matter 
• Geometric parameters     and     fit but the same for both nuclei 
• Decay (in energy) of surface term identical also 
• Possible to keep volume term the same (consistent with exp) and 
 independent of asymmetry 
• “HF” and surface parameters different and can be extrapolated 
 to larger asymmetry 

• Surface potential stronger and narrower around      for 48Ca 
• Both elastic scattering and (e,e’p) data included in fit

"F

"F

"F
ri ai
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Fit and predictions of n & p elastic scattering cross sections
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Present fit and predictions of polarization data
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Spin rotation parameter (not fitted)
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Fit and predictions 
Of reaction cross sections



Fit of reaction cross sections



Fit to (e,e´p) data

radii of 
bound state  
wave functions

spectroscopic 
factors

widths of strength 
distribution



Potentials



Pairing of  
protons on  
account of pn  
correlations?!

Proton single-particle structure and asymmetry

Increased 
correlations 

with increasing 
asymmetry!



Polarization effect on sp energies



Occupation numbers



Shell n(α)

0s1/2 0.968
0p3/2 0.956
0p1/2 0.951
0d5/2 0.925
0d3/2 0.885
1s1/2 0.860

0f7/2 0.063
0f5/2 0.044
0p3/2 0.031
0p1/2 0.028
….

Occupation numbers from  
low-energy correlations from theoretical work

Including SRC depletion effect by 
treating energy 
dependence of G-matrix

Rijsdijk et al., Nucl. Phys. A550,159 (1992)



Spectroscopic factor



A. Gade et al. Phys. Rev. Lett. 93, 042501 (2004)

Z=18 
N=14

Z=8 
N=14

neutrons more correlated with increasing proton number 
and accompanying increasing separation energy.

RS ≠ not spectroscopic factor



Parameters



Potentials

Effective mass

Occupation numbers

 Phys. Rev. C76, 044314 (2007)
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What’s the physics? GT resonance?

NPA369,258(1981)PRC31,1161(1985)

IAS

More on this next DOM lecture
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Extrapolation  
for large N  
of sp levels

Old 48Ca(p,pn) data 
J.W.Watson et al. 
Phys. Rev. C26,961 (1982) 
~ consistent with DOM
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Spectroscopic factors as a function of δ

Occupation numbers

Protons more correlated with δ

Neutrons not much change

neutrons
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Driplines

Proton dripline wrong by 1 

Neutron dripline more complicated:  60Ca and 70Ca particle bound 
Intermediate isotopes unbound 
Reef?
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Atoms

protons in Ca

electrons in Ne 
Data from (e,2e)

protons in stable 
closed-shell nuclei

(e,e’p) DOM

Neutron-proton asymmetry

Liquid 3He

ZFZF

Nuclei

weak correlations

very strong correlations 
Data from (n,n’)

asymmetry  
(BE) “knob”

Correlations in ...

δ
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Outlook

• Explore the underlying physics 
• More experimental information from elastic nucleon scattering is important! 

• lots of informative experiments to be done with radioactive beams 
• Neutron experiments on 48Ca and 48Ca(p,d) in the 47Ca continuum 
• Data-driven extrapolations to the neutron dripline 

• More DOM analysis requires nonlocal potentials —> 
• Exact solution of the Dyson equation with nonlocal potentials (next time) 


