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Saturation problem
• Two most important/elusive numbers in nuclear physics 

• Historical perspective 

• Hole-line expansion 

• Conclusions but no solution! 

• GFMC for light nuclei 

• Some considerations and observations… 

• Assess original assumptions 

• Personal perspective & some recent results with chiral NN & NNN
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Empirical Mass Formula 
 Global representation of nuclear masses (Bohr & Mottelson)

• Volume term  bvol  = 15.56 MeV 

• Surface term  bsurf = 17.23 MeV 

• Symmetry energy  bsym = 46.57 MeV  

• Coulomb energy  Rc   = 1.24 A1/3 fm 

• Pairing term must also be considered
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Green’s function V 

Empirical Mass Formula

Plotted: most stable nucleus for a given A



Green’s function V 

Central density of nuclei
Multiply charge density at the origin by A/Z 
⇒  Empirical density = 0.16 nucleons / fm3 

⇒  Equivalent to kF = 1.33 fm-1

Nuclear Matter
N = Z 
No Coulomb 

A ⇒∞, V ⇒∞ but A/V = ρ  fixed 

“Two most important numbers”
bvol  = 15.56 MeV and kF = 1.33 fm-1
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Historical Perspective
• First attempt using scattering in the medium  Brueckner 1954 

• Formal development (linked cluster expansion)  Goldstone 1956 

• Low-density expansion     Galitskii 1958 

• Reorganized perturbation expansion (60s)  Bethe & students   

 involving ordering in the number of hole lines   BBG-expansion 

• Variational Theory vs. Lowest Order BBG (70s) Clark, Pandharipande

• Variational results & next hole-line terms (80s)  Day, Wiringa

• Three-body forces? Relativity? (80s)   Urbana, CUNY

• Confirmation of three hole-line results (90s)  Baldo et al.

• New insights from experiment     NIKHEF, Amsterdam 
about what nucleons are up to in the nucleus (90s & 00s) JLab, Newport News, VA

• ONGOING to this day… with more emphasis on asymmetric matter … symmetry energy



QMPT 540

Saturation properties of nuclear matter
• Colorful and continuing story 

• Initiated by Brueckner: proper treatment of SRC in medium -> 
ladder diagrams but only include pp propagation 

• Brueckner G-matrix but Bethe-Goldstone equation… 

• Dispersion relation 

• Include HF term in “BHF” self-energy 

• Below Fermi energy: no imaginary part
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BHF
• DE for k < kF yields solutions at 

• with strength < 1 

• Since there is no imaginary part below the Fermi energy, no 
momenta above kF can admix -> problem with particle number 

• Only sp energy is determined self-consistently 

• Choice of auxiliary potential 
– Standard                                                          only for k < kF (0 above) 

– Continuous                                                        all k 

• Only one calculation of G-matrix for standard choice 

• Iterations for continuous choice
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BHF
• Propagator 

• Energy 

• Rewrite using on-shell self-energy 

• First term: kinetic energy free Fermi gas 

• Compare 

• so BHF obtained by replacing V by G
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Lowest-order Brueckner theory (two hole lines)
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Old pain and suffering!

Figure adapted from Marcello Baldo (Catania)
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BHF
• Binding energy usually 

within 10 MeV from 
empirical volume term in 
the mass formula even 
for very strong repulsive 
cores 

• Repulsion always 
completely cancelled by 
higher-order terms 

• Minimum in density never 
coincides with empirical 
value when binding OK -> 
Coester band

Location of minimum determined  
by deuteron D-state probability



QMPT 540

Some remarks
• Variational results (end 1970s) gave more binding than G-matrix calculations 

• Interest in convergence of Brueckner approach 

• Bethe et al.: hole-line expansion had already been developed 

• G-matrix: sums all energy terms with 2 independent hole lines (noninteracting 
...) 

• Dominant for low-density 

• Phase space arguments suggests to group all terms with 3 independent hole 
lines as the next contribution 

• Requires technique from 3-body problem first solved by Faddeev -> Bethe-
Faddeev summation 

• First implemented by Ben Day 

• Including these terms generates minima indicated by✴in figure (Baldo et al.) 

• Better but not yet good enough
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More
• Variational results and 3-hole-line results more or less in 

agreement 

• Baldo et al. also calculated 3-hole-line terms with continuous 
choice for auxiliary potential and found that results do not depend 
on choice of auxiliary potential, furthermore 2-hole-line with 
continuous choice is already “almost” sufficient! 

• Conclusion: convergence appears OK for a given realistic two-body 
interaction for the energy per particle 

• Other quantities —> not always consistent (Hugenholtz-Van Hove) 

• Still nuclear matter saturation problem!
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Results hole-line expansion
• Original papers B.D.Day, PRC 24, 1203 (1981) & PRL47, 226 (1981) 

• Important confirmation Baldo et al. PRL81, 1584 (1998)
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Conclusion
• Given a realistic NN interaction, the energy of the ground state of 

nuclear matter can be calculated in a systematic way 

• Results at moderate densities converge to the same result for 
different choices for the auxiliary potential 

• Continuous choice at the BHF level already a good approximation 

• Different realistic interactions yield a saturation density that is 
too high and the amount of binding is reasonable or somewhat too 
large 

• Now what?
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Possible solutions
• Include three-body interactions: inevitable on account of isobar 

– Simplest diagram:                          space of nucleons -> 3-body force 

– Inclusion in nuclear matter still requires phenomenology to get saturation 
right  

– Also needed for few-body nuclei; there is some incompatibility 

• Include aspects of relativity 
– Dirac-BHF approach: ad hoc adaptation of BHF to nucleon spinors 

– Physical effect: coupling to scalar-isoscalar meson reduced with density 

– Antiparticles? Dirac sea? Three-body correlations? 

– Spin-orbit splitting in nuclei OK 

– Nucleons less correlated with higher density? (compare liquid 3He)
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Finite nuclei
• What can we learn from finite nuclei 

• Almost exact calculations possible for light nuclei 

• Not restricted to NN interactions 

• Can include NNN interactions 

• But interactions must be local for Monte Carlo results!
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From a talk of Bob Wiringa (Argonne National Lab)
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Effect of 3N attractive
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More recent tuning 3N



reactions and structure

Energy of the ground state & NNN
• Energy sum rule (Migdal, Galitski & Koltun) 

• Not part of fit because it can only make a statement about the 
two-body contribution 

• Result:  
– DOM ---> 7.91 MeV/A              T/A ---> 22.64 MeV/A 

– 10% of particles (momenta > 1.4 fm-1) provide ~⅔ of the binding energy! 

– Exp.         8.55 MeV/A 

– Three-body ---> 0.64 MeV/A “attraction” —> 1.28 MeV/A “repulsion” 

– Argonne GFMC ~ 1.5 MeV/A attraction for three-body <--> Av18
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But how does this square with nuclear matter?
• From PRC 86, 064001 (2012) 

• Requires a repulsive NNN at high density 

• But: Argonne group <—> nuclear matter?
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Physics of saturation

• How do we determine the saturation density 
– SRC 

– LRC 

– what are LRC in nuclei and nuclear matter 

• How do we extract the binding energy at saturation
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Saturation density and SRC
• Saturation density related to nuclear charge density at the origin. Data for 208Pb 

⇒ A/Z *ρch(0) = 0.16 fm-3   

• Charge at the origin determined by protons in s states 

• Occupation of 0s and 1s totally dominated by SRC as can be concluded from 
recent analysis of 208Pb(e,e´p) data and theoretical calculations of occupation 
numbers in nuclei and nuclear matter. 

• Depletion of 2s proton also dominated by SRC:  

      15% of the total depletion of 25%  (n2s = 0.75) 

• Conclusion: Nuclear saturation dominated by SRC 

               and therefore high-momentum components



Green’s function V 

What are the rest of the protons doing?
Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

12C

• Location of high-momentum components 
• Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994) 
 ⇒ 0.6 protons for 12C   10% —> important contribution to binding!

16O PRC51,3040(1995)
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Elastic  
electron 

scattering 
from 208Pb

B. Frois et al. 

Phys. Rev. Lett. 38, 152 (1977)

Mean field

Experiment



reactions and structure

Saturation density <—> Charge density
• Experimental results & empirical reproduction by DOM 
• A/Z *charge density —> depends on properties of symmetry 

energy
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Neutron matter distribution
DOM
Experiment

48Ca nuclear charge distribution

40Ca 48Ca
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Personal perspective 2003
• Based on results from (e,e’p) reactions as discussed here 

– nucleons are dressed (substantially) and this should be included in the 
description of nuclear matter (depletion, high-momentum components in the 
ground state, propagation w.r.t. correlated ground state <--> BHF?) 

– SRC dominate actual value of saturation density 

• from 208Pb charge density: 0.16 nucleons/fm3 

• determined from s-shell proton occupancy at small radius 

• occupancy determined mostly by SRC  

– Result for SCGF of ladders 

• Ghent discrete approach 

• St. Louis gaussians  

• ccBHF --> SCGF closer to box 

• do not include LRC!!

 Phys. Rev. Lett. 90, 152501 (2003)
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Why can’t we get it right?

• Look at hole-line expansion 

• Identify LRC contribution to the energy
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Results hole-line expansion
• Original papers B.D.Day, PRC 24, 1203 (1981) & PRL47, 226 (1981) 

• Important confirmation Baldo et al. PRL81, 1584 (1998)
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Some ingredients
• Wiggle: G-matrix 

• a) + b) = 2 hole-line = BHF 

• c) + d) +e) +f) = 3 hole-line 

• c) bubble 

• d) U insertion for C choice 

• e) ring 

• f) summed in Bethe-Faddeev
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Individual contributions gap choice

• PRL 81, 1584 (1998) Baldo et al.
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Continuous choice
• PRL 81, 1584 (1998) Baldo et al.
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Some comparisons
• SNM 

• SCGF Contribution of long-range correlations excluded
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What about long-range correlations 
in nuclear matter?

• Collective excitations in nuclei very different  
  from those in nuclear matter 

• Long-range correlations normally associated with small q 

• Contribution to the energy like dq q2 ⇒ very small (except for e-gas) 

• Contributions of collective excitations to the binding energy of 
  nuclear matter dominated by pion-exchange induced excitations?!?
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Inclusion of Δ-isobars as 
“3N-” and “4N-force”

kF [fm-1]   1.0    1.2    1.4    1.6 

third order 
a)  -0.303  -1.269  -3.019  -5.384 
b)  -0.654  -1.506  -2.932  -5.038 
c)  -0.047  -0.164  -0.484  -1.175 
d)   0.033    0.095   0.220    0.447 
e)  -0.104   -0.264   -0.589    -1.187 
f)   0.041    0.137    0.385    0.962 

Sum  -1.034  -2.971  -6.419  -11.375

Nucl. Phys. A389, 492 (1982)
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Inclusion of Δ-isobars as 3N- and 4N-force

⇒ No sensible convergence with Δ-isobars

Rings with Δ-isobars : 

2N,3N, and 4N from
B.D.Day, PRC24,1203(81)

Nucl. Phys. A389, 492 (1982)

PPNPhys 12, 529 (1983)
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Pion-exchange channel dominates
• Decomposition in spin-isospin excitations
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Nuclear Saturation without π-collectivity  
• Variational calculations treat LRC (on average) and SRC 

simultaneously (Parquet equivalence) so difficult to separate 
LRC and SRC 

• Remove 3-body ring diagram from Catania hole-line expansion 
calculation ⇒ about the correct saturation density 

• Hole-line expansion doesn’t treat “real” Pauli principle very well 
• Present results improve treatment of Pauli principle by self-

consistency of spectral functions => more reasonable 
saturation density; binding energy?!?  

• Neutron matter: pionic contributions must be included (Δ)
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Pion collectivity: nuclei vs. nuclear matter

Vπ (q) = −
fπ
2

mπ
2

q2

mπ
2 + q2

• Pion collectivity leads to pion condensation at higher density in  

   nuclear matter (including Δ-isobars) => Migdal ... 

• No such collectivity observed in nuclei ⇒ LAMPF / Osaka data 

• Momentum conservation in nuclear   

  matter dramatically favors amplification 

  of π-exhange interaction at fixed q 

• In nuclei the same interaction is sampled  

  over all momenta  Phys. Lett. B146, 1(1984) •Needs further study

⇒ Exclude collective pionic contributions to nuclear matter binding energy
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Two Nuclear Matter Problems

• With π-collectivity and only 
nucleons 

• Variational + CBF and     
three hole-line results 
presumed OK (for E/A) but 
not directly relevant for 
comparison with nuclei! 

• Add NNN —> adjust 
• NOT OK if Δ-isobars are 

included explicitly 
• Relevant for neutron matter

• Without π-collectivity  
• Treat only SRC 
• But at a sophisticated level 

by using self-consistency 
• Confirmation from Ghent 

results ⇒ Phys. Rev. Lett. 
90, 152501 (2003) 

• 3N-forces difficult ⇒ π ...

The usual one The relevant one?!
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Some comparisons
• SNM
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Have I changed my mind?

• Recent results for chiral interactions 

• Systematic expansion in chiral perturbation theory 
– allows simultaneous construction of 2N and 3N interaction at appropriate 

orders 

– implemented with a very soft cut-off (500 MeV for example) 

– easy to compress nuclei —> small radii with NN 

– NNN strongly repulsive with higher density necessary 
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Nuclear matter saturation issues
• Old problem… 

• Is it solved? 

• Don’t think so… 

• Coupled cluster 

PRC 89, 014319 (2014) 
Can’t do triton and saturation at the same time 

• Lattice calculations 
Radius of 16O 
<r2>1/2=2.3 fm<—> Exp 2.71 fm 
PRL112, 102501 (2014) 

• SCGF only “SRC” no regulators 

arXiv:1408.0717 PRC90,054322(2014) 
3NF —> DD2NF
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Saturation of symmetric nuclear matter: outlook
• Nuclear saturation problem 

– We know a lot … 

– We can’t get it right … 

– Why not? 

• Forces & methods 
– Chiral interactions + 3NF 

• Underbinds in SCGF (SRC only) 

• Coupled cluster: triton <-> nuclear matter 
cannot be reconciled 

– Comments 
• Not enough high-momentum content (JLab) 

—> NN interaction too soft 

• LRC (mainly pionic) contribute to energy 

• pion physics missing (NN static only???) 

• radii of heavier nuclei too small <—> 
saturation problem 

• empirical NNN in 40Ca 1.28 MeV/A —> PRL 
112, 162503 (2014) 

• What to do? 
– Make chiral interactions consistent 

with JLab data (a little harder) —> 
good for finite nuclei as well 

– Continue to develop the techniques 
to deal with such a harder 
interaction (to be done for nuclei) 

– Revisit the formulation of the 
nuclear matter problem 

• Why? 
– pion-exchange in matter ≠ pion-

exchange in a finite system 

– Liquid drop notion only good for very 
short-range physics 

– LRC normally small q —> no energy 

– Nuclear matter pions —> finite q —> 
increasing binding with density —> 
messes up saturation   

– see PRL90, 152501 (2003)


