Saturation problem

• Two most important/elusive numbers in nuclear physics

- Historical perspective
- Hole-line expansion
- Conclusions but no solution!

- GFMC for light nuclei
- Some considerations and observations...

- Assess original assumptions
- Personal perspective & some recent results with chiral NN & NNN

Empirical Mass Formula

Global representation of nuclear masses (Bohr & Mottelson)

$$B = b_{vol}A - b_{surf}A^{2/3} - \frac{1}{2}b_{sym}\frac{(N-Z)^2}{A} - \frac{3}{5}\frac{Z^2e^2}{R_c}$$

- Volume term $b_{vol} = 15.56 \text{ MeV}$
- Surface term
- Symmetry energy
- Coulomb energy
- Pairing term must also be considered

- b_{surf} = 17.23 MeV
- b_{sym} = 46.57 MeV
- $R_c = 1.24 \ A^{1/3} \ fm$

Green's function V

Empirical Mass Formula

Plotted: most stable nucleus for a given A

Green's function V

Central density of nuclei

Multiply charge density at the origin by A/Z

- \Rightarrow Empirical density = 0.16 nucleons / fm³
- \Rightarrow Equivalent to k_F = 1.33 fm⁻¹

Nuclear Matter

N = Z

No Coulomb

 $A \Rightarrow \infty$, $V \Rightarrow \infty$ but $A/V = \rho$ fixed

"Two most important numbers"

 b_{vol} = 15.56 MeV and k_F = 1.33 fm⁻¹

Historical Perspective

- First attempt using scattering in the medium
- Formal development (linked cluster expansion)
- Low-density expansion
- Reorganized perturbation expansion (60s)
 involving ordering in the number of hole lines
- Variational Theory vs. Lowest Order BBG (70s)
- Variational results & next hole-line terms (80s)
- Three-body forces? Relativity? (80s)
- Confirmation of three hole-line results (90s)
- New insights from experiment about what nucleons are up to in the nucleus (90s & 00s)
- ONGOING to this day... with more emphasis on asymmetric matter ... symmetry energy Green's function V

Brueckner **1954** Goldstone **1956** Galítskíí **1958** Bethe & students **BBG-expansion** Clark, Pandharípande Day, Wiringa Urbana, CUNY Baldo et al. NIKHEF, Amsterdam JLab, Newport News, VA Saturation properties of nuclear matter

- Colorful and continuing story
- Initiated by Brueckner: proper treatment of SRC in medium -> ladder diagrams but only include pp propagation

 $\langle \boldsymbol{k}m_{\alpha}m_{\alpha'} | G(\boldsymbol{K}, E) | \boldsymbol{k}'m_{\beta}m_{\beta'} \rangle = \langle \boldsymbol{k}m_{\alpha}m_{\alpha'} | V | \boldsymbol{k}'m_{\beta}m_{\beta'} \rangle$ $+ \frac{1}{2} \sum_{m_{\gamma}m_{\gamma'}} \int \frac{d^{3}q}{(2\pi)^{3}} \langle \boldsymbol{k}m_{\alpha}m_{\alpha'} | V | \boldsymbol{q}m_{\gamma}m_{\gamma'} \rangle \frac{\theta(|\boldsymbol{q} + \boldsymbol{K}/2| - k_{F}) \ \theta(|\boldsymbol{K}/2 - \boldsymbol{q}| - k_{F})}{E - \varepsilon(\boldsymbol{q} + \boldsymbol{K}/2) - \varepsilon(\boldsymbol{K}/2 - \boldsymbol{q}) + i\eta} \langle \boldsymbol{q}m_{\gamma}m_{\gamma'} | G(\boldsymbol{K}, E) | \boldsymbol{k}'m_{\beta}m_{\beta'} \rangle$

- Brueckner G-matrix but Bethe-Goldstone equation...
- Dispersion relation $\langle \mathbf{k}m_{\alpha}m_{\alpha'}|G(\mathbf{K},E)|\mathbf{k}'m_{\beta}m_{\beta'}\rangle = \langle \mathbf{k}m_{\alpha}m_{\alpha'}|V|\mathbf{k}'m_{\beta}m_{\beta'}\rangle - \frac{1}{\pi} \int_{2\varepsilon_{F}}^{\infty} dE' \frac{\operatorname{Im} \langle \mathbf{k}m_{\alpha}m_{\alpha'}|\Delta G(\mathbf{K},E')|\mathbf{k}'m_{\beta}m_{\beta'}\rangle}{E - E' + i\eta}$ $\equiv \langle \mathbf{k}m_{\alpha}m_{\alpha'}|V|\mathbf{k}'m_{\beta}m_{\beta'}\rangle + \langle \mathbf{k}m_{\alpha}m_{\alpha'}|\Delta G_{\downarrow}(\mathbf{K},E)|\mathbf{k}'m_{\beta}m_{\beta'}\rangle$
- Include HF term in "BHF" self-energy

 $\Sigma_{BHF}(k;E)) = \int \frac{d^3k'}{(2\pi)^3} \frac{1}{\nu} \sum_{m_{\alpha}m_{\alpha'}} \theta(k_F - k') \left\langle \frac{1}{2} (\boldsymbol{k} - \boldsymbol{k}') m_{\alpha} m_{\alpha'} \right| G(\boldsymbol{k} + \boldsymbol{k}'; E + \varepsilon(\boldsymbol{k}') \left| \frac{1}{2} (\boldsymbol{k} - \boldsymbol{k}') m_{\alpha} m_{\alpha'} \right\rangle$

Below Fermi energy: no imaginary part

BHF

• DE for k < k_F yields solutions at

$$\varepsilon_{BHF}(k) = \frac{\hbar^2 k^2}{2m} + \Sigma_{BHF}(k; \varepsilon_{BHF}(k))$$

- with strength < 1
- Since there is no imaginary part below the Fermi energy, no momenta above k_F can admix -> problem with particle number
- Only sp energy is determined self-consistently
- Choice of auxiliary potential
 - Standard $U_s(k) = \Sigma_{BHF}(k; \varepsilon_{BHF}(k))$ only for k < k_F (0 above)
 - Continuous $U_c(k) = \Sigma_{BHF}(k; \varepsilon_{BHF}(k))$ all k
- Only one calculation of G-matrix for standard choice
- Iterations for continuous choice

BHF

- Propagator $G^{BHF}(k; E) = \frac{\theta(k k_F)}{E \varepsilon_{BHF}(k) + i\eta} + \frac{\theta(k_F k)}{E \varepsilon_{BHF}(k) i\eta}$
- Energy $\frac{E_0^A}{A} = \frac{\nu}{2\rho} \int \frac{d^3k}{(2\pi)^3} \left(\frac{\hbar^2 k^2}{2m} + \varepsilon_{BHF}\right) \theta(k k_F)$
- Rewrite using on-shell self-energy $\frac{E_0^A}{A} = \frac{4}{\rho} \int \frac{d^3k}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} + \frac{1}{2\rho} \int \frac{d^3k}{(2\pi)^3} \int \frac{d^3k'}{(2\pi)^3} \sum_{m_\alpha m_{\alpha'}} \theta(k_F - k) \theta(k_F - k')$

 $\left\langle \frac{1}{2}(\boldsymbol{k}-\boldsymbol{k}') \ m_{\alpha}m_{\alpha'} \right| G(\boldsymbol{k}+\boldsymbol{k}';\varepsilon_{BHF}(k)+\varepsilon_{BHF}(k')) \left| \frac{1}{2}(\boldsymbol{k}-\boldsymbol{k}') \ m_{\alpha}m_{\alpha'} \right\rangle$

• First term: kinetic energy free Fermi gas

• Compare $E^{HF} = \frac{1}{2} \sum_{p} \theta(p_F - p) \left[\frac{p^2}{2m} + \varepsilon^{HF}(p) \right]$ $= T_{FG} + \frac{1}{2} \sum_{pp'} \theta(p_F - p) \theta(p_F - p') \langle pp' | V | pp' \rangle$

 \cdot so BHF obtained by replacing V by G

QMPT 540

Lowest-order Brueckner theory (two hole lines)

 G_{BG}^{f} angle-average of

$$G_{BG}^{f}(k_{1},k_{2};E) = \frac{\theta(k_{1}-k_{F})\theta(k_{2}-k_{F})}{E-\varepsilon(k_{1})-\varepsilon(k_{2})+i\eta}$$

 $\left\langle k\ell \left| G^{JST}(K,E) \right| k'\ell' \right\rangle = \left\langle k\ell \left| V^{JST} \right| k'\ell' \right\rangle + \frac{1}{2} \sum_{\ell''} \int_{0}^{\infty} \frac{dq}{\left(2\pi\right)^3} q^2 \left\langle k\ell \left| V^{JST} \right| q\ell'' \right\rangle G^{f}_{BG}(q;K,E) \left\langle q\ell'' \left| G^{JST}(K,E) \right| k'\ell' \right\rangle$

Spectrum
$$\varepsilon_{BHF}(k) = \frac{\hbar^2 k^2}{2m} + \Sigma_{BHF}(k;\varepsilon_{BHF}(k))$$

k < k_F \Rightarrow standard choice all k \Rightarrow continuous choice

Self-energy $\Sigma_{BHF}(k;E) = \frac{1}{\nu} \sum_{m,m'} \int \frac{d^3k'}{(2\pi)^3} \theta(k_F - k') \langle \vec{k}\vec{k'}mm' | G(\vec{k} + \vec{k'};E + \varepsilon_{BHF}(k')) | \vec{k}\vec{k'}mm' \rangle$

Energy

$$\frac{E}{A} = \frac{4}{\rho} \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \frac{\hbar^2 k^2}{2m} + \frac{1}{2\rho} \sum_{m,m'} \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \int \frac{d^3k'}{(2\pi)^3} \theta(k_F - k') \left\langle \vec{k}\vec{k} \,'\,mm' \right| G\left(\vec{k} + \vec{k} \,'; \varepsilon_{BHF}\left(k\right) + \varepsilon_{BHF}\left(k'\right) \right) \left| \vec{k}\vec{k} \,'\,mm' \right\rangle$$

Green's function V

Old pain and suffering!

Figure adapted from Marcello Baldo (Catania)

Green's function V

- Binding energy usually within 10 MeV from empirical volume term in the mass formula even for very strong repulsive cores
- Repulsion always completely cancelled by higher-order terms
- Minimum in density never coincides with empirical value when binding OK -> Coester band

Location of minimum determined by deuteron D-state probability

Some remarks

- Variational results (end 1970s) gave more binding than G-matrix calculations
- Interest in convergence of Brueckner approach
- Bethe et al.: hole-line expansion had already been developed
- G-matrix: sums all energy terms with 2 independent hole lines (noninteracting ...)
- Dominant for low-density
- Phase space arguments suggests to group all terms with 3 independent hole lines as the next contribution
- Requires technique from 3-body problem first solved by Faddeev -> Bethe-Faddeev summation
- First implemented by Ben Day
- Including these terms generates minima indicated by * in figure (Baldo et al.)
- Better but not yet good enough

QMPT 540

More

- Variational results and 3-hole-line results more or less in agreement
- Baldo et al. also calculated 3-hole-line terms with continuous choice for auxiliary potential and found that results do not depend on choice of auxiliary potential, furthermore 2-hole-line with continuous choice is already "almost" sufficient!
- Conclusion: convergence appears OK for a given realistic two-body interaction for the energy per particle
- Other quantities —> not always consistent (Hugenholtz-Van Hove)

• Still nuclear matter saturation problem!

Results hole-line expansion

- Original papers B.D.Day, PRC 24, 1203 (1981) & PRL47, 226 (1981)
- Important confirmation Baldo et al. PRL81, 1584 (1998)

Conclusion

- Given a realistic NN interaction, the energy of the ground state of nuclear matter can be calculated in a systematic way
- Results at moderate densities converge to the same result for different choices for the auxiliary potential
- Continuous choice at the BHF level already a good approximation
- Different realistic interactions yield a saturation density that is too high and the amount of binding is reasonable or somewhat too large

• Now what?

Possible solutions

Include three-body interactions: inevitable on account of isobar

- Inclusion in nuclear matter still requires phenomenology to get saturation right
- Also needed for few-body nuclei; there is some incompatibility
- Include aspects of relativity
 - Dirac-BHF approach: ad hoc adaptation of BHF to nucleon spinors
 - Physical effect: coupling to scalar-isoscalar meson reduced with density
 - Antiparticles? Dirac sea? Three-body correlations?
 - Spin-orbit splitting in nuclei OK
 - Nucleons less correlated with higher density? (compare liquid ³He) QMPT 540

Finite nuclei

• What can we learn from finite nuclei

- Almost exact calculations possible for light nuclei
- Not restricted to NN interactions
- Can include NNN interactions

• But interactions must be local for Monte Carlo results!

From a talk of Bob Wiringa (Argonne National Lab)

VARIATIONAL MONTE CARLO

Minimize expectation value of H

$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \ge E_0$$

Trial function (s-shell nuclei)

$$|\Psi_V\rangle = \left[1 + \sum_{i < j < k} U_{ijk}^{TNI}\right] \left[S \prod_{i < j} (1 + U_{ij})\right] |\Psi_J\rangle$$
$$|\Psi_J\rangle = \left[\prod_{i < j} f_c(r_{ij})\right] |\Phi_A(JMTT_3)\rangle$$

 $|\Phi_d(1100)\rangle = \mathcal{A}|\uparrow p\uparrow n\rangle \; ; \; |\Phi_\alpha(0000)\rangle = \mathcal{A}|\uparrow p\downarrow p\uparrow n\downarrow n\rangle$

$$U_{ij} = \sum_{p=2,6} u_p(r_{ij}) O_{ij}^p \; ; \; U_{ijk}^{TNI} = -\epsilon V_{ijk}(\tilde{r}_{ij}, \tilde{r}_{jk}, \tilde{r}_{ki})$$

Functions $f_c(r_{ij})$ and $u_p(r_{ij})$ obtained from coupled differential equations with v_{ij} .

QMPT 540

Correlation functions

QMPT 540

GREEN'S FUNCTION MONTE CARLO

Projects out lowest energy state from variational trial function

$$\Psi(\tau) = \exp[-(H - E_0)\tau]\Psi_V = \sum_n \exp[-(E_n - E_0)\tau]a_n\psi_n$$
$$\Psi(\tau \to \infty) = a_0\psi_0$$

Evaluation of $\Psi(\tau)$ done stochastically in small time steps $\Delta \tau$

$$\Psi(\mathbf{R}_n,\tau) = \int G(\mathbf{R}_n,\mathbf{R}_{n-1})\cdots G(\mathbf{R}_1,\mathbf{R}_0)\Psi_V(\mathbf{R}_0)d\mathbf{R}_{n-1}\cdots d\mathbf{R}_0$$

using the short-time propagator accurate to order $(\Delta \tau)^3$ (V_{ijk} term omitted for simplicity)

$$G_{\alpha\beta}(\mathbf{R},\mathbf{R}') = e^{E_0\Delta\tau} G_0(\mathbf{R},\mathbf{R}') \langle \alpha | \left[S \prod_{i< j} \frac{g_{ij}(\mathbf{r}_{ij},\mathbf{r}'_{ij})}{g_{0,ij}(\mathbf{r}_{ij},\mathbf{r}'_{ij})} \right] |\beta\rangle$$

where the free many-body propagator is

$$G_0(\mathbf{R}, \mathbf{R}') = \langle \mathbf{R} | e^{-K \bigtriangleup \tau} | \mathbf{R}' \rangle = \left[\sqrt{\frac{m}{2\pi \hbar^2 \bigtriangleup \tau}} \right]^{3A} \exp\left[\frac{-(\mathbf{R} - \mathbf{R}')^2}{2\hbar^2 \bigtriangleup \tau / m} \right]$$

and $g_{0,ij}$ and g_{ij} are the free and exact two-body propagators

$$g_{ij}(\mathbf{r}_{ij},\mathbf{r}'_{ij}) = \langle \mathbf{r}_{ij} | e^{-H_{ij} \Delta \tau} | \mathbf{r}'_{ij} \rangle$$

Mixed estimates

$$\langle O(\tau) \rangle = \frac{\langle \Psi(\tau) | O | \Psi(\tau) \rangle}{\langle \Psi(\tau) | \Psi(\tau) \rangle} \approx \langle O(\tau) \rangle_{\text{Mixed}} + [\langle O(\tau) \rangle_{\text{Mixed}} - \langle O \rangle_{V}]$$

$$\langle O(\tau) \rangle_{\text{Mixed}} = \frac{\langle \Psi_{V} | O | \Psi(\tau) \rangle}{\langle \Psi_{V} | \Psi(\tau) \rangle} \quad ; \quad \langle H(\tau) \rangle_{\text{Mixed}} = \frac{\langle \Psi(\tau/2) | H | \Psi(\tau/2) \rangle}{\langle \Psi(\tau/2) | \Psi(\tau/2) \rangle} \ge E_{0}$$

Propagator cannot contain p^2 , L^2 , or $(\mathbf{L} \cdot \mathbf{S})^2$ operators: $G_{\beta\alpha}(\mathbf{R}', \mathbf{R})$ has only v'_8 $\langle v_{18} - v'_8 \rangle$ computed perturbatively with extrapolation (small for AV18)

Fermion sign problem limits maximum τ :

 $G_{\beta\alpha}(\mathbf{R}', \mathbf{R})$ brings in lower-energy boson solution

 $\langle \Psi_V | H | \Psi(\tau) \rangle$ projects back fermion solution. but statistical errors grow exponentially

Constrained-path propagation, removes steps that have

 $\overline{\Psi^\dagger(\tau,\mathbf{R})\Psi(\mathbf{R})}=0$

Possible systematic errors reduced by 10 - 20 unconstrained steps before evaluating observables.

Effect of 3N attractive

More recent tuning 3N

QMPT 540

Energy of the ground state & NNN

• Energy sum rule (Migdal, Galitski & Koltun)

$$E/A = \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^\infty dk k^2 \frac{k^2}{2m} n_{\ell j}(k) + \frac{1}{2A} \sum_{\ell j} (2j+1) \int_0^\infty dk k^2 \int_{-\infty}^{\varepsilon_F} dE \ ES_{\ell j}(k;E)$$

- Not part of fit because it can only make a statement about the two-body contribution
- Result:
 - DOM ----> 7.91 MeV/A T/A ----> 22.64 MeV/A
 - 10% of particles (momenta > 1.4 fm-1) provide $\sim \frac{2}{3}$ of the binding energy!
 - Exp. 8.55 MeV/A
 - Three-body ---> 0.64 MeV/A "attraction" -> 1.28 MeV/A "repulsion"
 - Argonne GFMC ~ 1.5 MeV/A attraction for three-body <--> Av18

$$\begin{split} E_0^N &= \langle \Psi_0^N | \, \hat{H} \, | \Psi_0^N \rangle & \text{with three-body interaction} \\ &= \frac{1}{2\pi} \int_{-\infty}^{\varepsilon_F^-} dE \, \sum_{\alpha,\beta} \left\{ \langle \alpha | \, T \, | \beta \rangle + \, E \, \delta_{\alpha,\beta} \right\} \, \operatorname{Im} \, G(\beta,\alpha;E) - \frac{1}{2} \, \langle \Psi_0^N | \, \hat{W} \, | \Psi_0^N \rangle \\ & \text{reactions and structure} \end{split}$$

But how does this square with nuclear matter?

• From PRC 86, 064001 (2012)

- Requires a repulsive NNN at high density
- But: Argonne group <--> nuclear matter?

Physics of saturation

- How do we determine the saturation density
 - SRC
 - LRC
 - what are LRC in nuclei and nuclear matter
- How do we extract the binding energy at saturation

Saturation density and SRC

- Saturation density related to nuclear charge density at the origin. Data for ^{208}Pb \Rightarrow A/Z * $\rho_{ch}(0)$ = 0.16 fm $^{-3}$
- Charge at the origin determined by protons in s states
- Occupation of Os and 1s totally dominated by SRC as can be concluded from recent analysis of ²⁰⁸Pb(e,e´p) data and theoretical calculations of occupation numbers in nuclei and nuclear matter.
- Depletion of 2s proton also dominated by SRC:
 15% of the total depletion of 25% (n_{2s} = 0.75)

Conclusion: Nuclear saturation dominated by SRC

and therefore high-momentum components

Green's function V

What are the rest of the protons doing?

Jlab E97-006 Phys. Rev. Lett. 93, 182501 (2004) D. Rohe et al.

- Location of high-momentum components
- Integrated strength agrees with theoretical prediction Phys. Rev. C49, R17 (1994) $\Rightarrow 0.6 \text{ protons for } {}^{12}C \quad 10\% \longrightarrow \text{important contribution to binding!}$ ${}^{16}O \text{ PRC51,3040(1995)}$ Green's function V

Elastic electron scattering from ²⁰⁸Pb

B. Frois et al. Phys. Rev. Lett. **38**, 152 (1977)

Saturation density <--> Charge density

- Experimental results & empirical reproduction by DOM
- A/Z *charge density —> depends on properties of symmetry energy

⁴⁸Ca nuclear charge distribution

reactions and structure

Personal perspective 2003

- Based on results from (e,e'p) reactions as discussed here
 - nucleons are dressed (substantially) and this should be included in the description of nuclear matter (depletion, high-momentum components in the ground state, propagation w.r.t. correlated ground state <--> BHF?)
 - SRC dominate actual value of saturation density
 - from ²⁰⁸Pb charge density: 0.16 nucleons/fm³
 - determined from s-shell proton occupancy at small radius
 - $\boldsymbol{\cdot}$ occupancy determined mostly by SRC
 - Result for SCGF of ladders
 - Ghent discrete approach
 - St. Louis gaussians
 - ccBHF --> SCGF closer to box
 - do not include LRC!!

Phys. Rev. Lett. 90, 152501 (2003)

QMPT 540

Why can't we get it right?

Look at hole-line expansion

• Identify LRC contribution to the energy

Results hole-line expansion

- Original papers B.D.Day, PRC 24, 1203 (1981) & PRL47, 226 (1981)
- Important confirmation Baldo et al. PRL81, 1584 (1998)

Some ingredients

- Wiggle: G-matrix
- \cdot a) + b) = 2 hole-line = BHF

- c) + d) +e) +f) = 3 hole-line
- c) bubble
- d) U insertion for C choice
- e) ring
- f) summed in Bethe-Faddeev

Individual contributions gap choice

• PRL 81, 1584 (1998) Baldo et al.

Continuous choice

• PRL 81, 1584 (1998) Baldo et al.

QMPT 540

Some comparisons

PHYSICAL REVIEW C 86, 064001 (2012)

SNM

Comparative study of neutron and nuclear matter with simplified Argonne nucleon-nucleon potentials

M. Baldo,¹ A. Polls,² A. Rios,³ H.-J. Schulze,¹ and I. Vidaña⁴

SCGF Contribution of long-range correlations excluded

QMPT 540

What about long-range correlations in nuclear matter?

- Collective excitations in nuclei very different from those in nuclear matter
- Long-range correlations normally associated with small q
- Contribution to the energy like $dq q^2 \Rightarrow$ very small (except for e-gas)
- Contributions of collective excitations to the binding energy of nuclear matter dominated by pion-exchange induced excitations?!?

Inclusio "3N-"	on of ∆-isobars as and "4N-force"	S ()	ь)	c)
Nucl. Pł	nys. A389, 492 (1982)	d)		
k _F [fm ⁻¹]	1.0	1.2	1.4	1.6
third order	•			
a)	-0.303	-1.269	-3.019	-5.384
b)	-0.654	-1.506	-2.932	-5.038
c)	-0.047	-0.164	-0.484	-1.175
d)	0.033	0.095	0.220	0.447
e)	-0.104	-0.264	-0.589	-1.187
f)	0.041	0.137	0.385	0.962
Sum	-1.034	-2.971	-6.419	-11.375

Green's function V

Inclusion of $\Delta\text{-isobars}$ as 3N- and 4N-force

2N,3N, and 4N from B.D.Day, PRC24,1203(81)

Rings with Δ -isobars :

Nucl. Phys. A389, 492 (1982)

PPNPhys 12, 529 (1983)

 \Rightarrow No sensible convergence with Δ -isobars

Green's function V

Pion-exchange channel dominates

• Decomposition in spin-isospin excitations

	\$	М	T	Reid	
third order	0	0	0	-0.302	_
	່ 1	0	0	0.149	
	1	1	0	0.059	
	0	0	1	0.027	
	1	0	1	-3.492	
	1	1	1	0.540	
sum				-3.019	
fourth order	0	0	0	-0.060	_
	1	0	0	-0.017	
	1	1	0	-0.012	
	0	0	1	-0.004	
	1	0	1	-0.755	
	1	1	1	-0.317	
sum				-1.166	
total				-4.185	

Nuclear Saturation without π -collectivity

- Variational calculations treat LRC (on average) and SRC simultaneously (Parquet equivalence) so difficult to separate LRC and SRC
- Remove 3-body ring diagram from Catania hole-line expansion calculation \Rightarrow about the correct saturation density
- Hole-line expansion doesn't treat "real" Pauli principle very well
- Present results improve treatment of Pauli principle by selfconsistency of spectral functions => more reasonable saturation density; binding energy?!?

• Neutron matter: pionic contributions must be included (Δ)

Pion collectivity: nuclei vs. nuclear matter

- Pion collectivity leads to pion condensation at higher density in nuclear matter (including ∆-isobars) => Migdal ...
- No such collectivity observed in nuclei \Rightarrow LAMPF / Osaka data
- Momentum conservation in nuclear matter dramatically favors amplification of π-exhange interaction at fixed q
- In nuclei the same interaction is sampled over all momenta Phys. Lett. **B146**, 1(1984)

$$V_{\pi}(q) = -\frac{f_{\pi}^2}{m_{\pi}^2} \frac{q^2}{m_{\pi}^2 + q^2}$$

Needs further study

⇒ Exclude collective pionic contributions to nuclear matter binding energy

Green's function V

Two Nuclear Matter Problems

The usual one

The relevant one?!

- With $\pi\text{-collectivity}$ and only nucleons
- Variational + CBF and three hole-line results presumed OK (for E/A) but not directly relevant for comparison with nuclei!
- Add NNN —> adjust
- NOT OK if ∆-isobars are included explicitly
- Relevant for neutron matter

- Without *π*-collectivity
- Treat only SRC
- But at a sophisticated level by using self-consistency
- Confirmation from Ghent results ⇒ Phys. Rev. Lett.
 90, 152501 (2003)
- 3N-forces difficult $\Rightarrow \pi \dots$

Some comparisons

PHYSICAL REVIEW C 86, 064001 (2012)

• SNM

Comparative study of neutron and nuclear matter with simplified Argonne nucleon-nucleon potentials

M. Baldo,¹ A. Polls,² A. Rios,³ H.-J. Schulze,¹ and I. Vidaña⁴

Have I changed my mind?

Recent results for chiral interactions

- Systematic expansion in chiral perturbation theory
 - allows simultaneous construction of 2N and 3N interaction at appropriate orders
 - implemented with a very soft cut-off (500 MeV for example)
 - easy to compress nuclei —> small radii with NN
 - NNN strongly repulsive with higher density necessary

Nuclear matter saturation issues

- Old problem...
- Is it solved?
- Don't think so...
- Coupled cluster

PRC **89**, 014319 (2014) Can't do triton and saturation at the same time

- Lattice calculations
 Radius of ¹⁶O
 <r²>^{1/2}=2.3 fm<-> Exp 2.71 fm
 PRL112, 102501 (2014)
- SCGF only "SRC" no regulators

arXiv:1408.0717 PRC90,054322(2014) 3NF --> DD2NF

Saturation of symmetric nuclear matter: outlook

- Nuclear saturation problem
 - We know a lot ...
 - We can't get it right ...
 - Why not?
- Forces & methods
 - Chiral interactions + 3NF
 - Underbinds in SCGF (SRC only)
 - Coupled cluster: triton <-> nuclear matter cannot be reconciled
 - Comments
 - Not enough high-momentum content (JLab)
 NN interaction too soft
 - LRC (mainly pionic) contribute to energy
 - pion physics missing (NN static only???)
 - radii of heavier nuclei too small <--> saturation problem
 - empirical NNN in ⁴⁰Ca 1.28 MeV/A -> PRL 112, 162503 (2014)

- What to do?
 - Make chiral interactions consistent with JLab data (a little harder) —> good for finite nuclei as well
 - Continue to develop the techniques to deal with such a harder interaction (to be done for nuclei)
 - Revisit the formulation of the nuclear matter problem
 - Why?
 - pion-exchange in matter ≠ pionexchange in a finite system
 - Liquid drop notion only good for very short-range physics
 - LRC normally small $q \rightarrow$ no energy
 - Nuclear matter pions —> finite q —> increasing binding with density —> messes up saturation
 - see PRL90, 152501 (2003)