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•  Green’s functions 
•  Propagators                names for the same objects 
•  Correlation functions 

•  Many-body Green’s functions  " Green’s functions applied to the 
MB problem 

•  Self-consistent Green’s functions (SCGF) " a particular 
approach to calculate GFs 



Propagating a free particle 
Consider a free particle with Hamiltonian 

  h1 = t + U(r) 
the eigenstates and egienenergies are  
 

The time evolution is 
         #   

 
 
 
 
with:     wave fnct. at t=0 

     wave fnct. at time t  



Propagating a free particle 
Green’s function (=propagator) for a free particle: 
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Propagating a free particle 
Green’s function (=propagator) for a free particle: 
 
 
 
 
 
 
 

   ! states 
 

   ! energies 

Fourier transform  
of the eigenspectrum!�

The spectrum of the Hamiltonian 
is separated by the FT because 
the time evolution is driven  
by H:�















Definition of one-body GF 
With explicit time dependence: 
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Use a probe (ANY probe) to eject the particle we are 
interested to: 

 
 
 
 
 
 
 
 
 
Basic idea: 
•  we know, e, e’ and p  
•  “get” energy and momentum of pi: pi = ke’ + kp – ke 

              Ei = Ee’ + Ep - Ee 
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Better to choose 
 large transferred 

momentum and weak 
probes!!!�

Spectroscopy via knock out reactions-basic idea 



Knock-out processes 

•  Initial state: 

•  Final state:  

•  Probe:   

"      particle flying out, 
better if interacting as 
little as possible with the 
rest of the system �

" This can be anything: it transfers 
energy, and momentum q to the system; 
it’s the simplest model for such a probe�

;�



Knock-out processes 

•  Transition matrix element: 

 Impulse Approximation (IA) means 
throwing away this part. If the 
particle is ejected with very high 
momentum transfer, it is usually a 
good approximation�



Knock-out processes 

" The plane wave approximation 
assumes the  flies out without 
interacting with the rest of the 
system. This is OK in some cases. In 
others, one has to worry about the 
distortion due to final state 
interactions.�



Knock-out processes 
•  Use the Fermi Golden rule: 

•  “missing” momentum: 
•  “missing” energy 

•  In plane wave impulse approximation (PWIA): 

probe 

Interpreted 
as energy and 
momentum of 
initial particle!!�

PWIA is not always justified, 
but it is all OK for our display 
purposes: 
Can “see” the spectral fnct.!!!�



One-hole spectral function 
Overlap function: 

 
Spectroscopic factor: 
 
 
 
 
 
Integrate Sh over p : !   spectral strength distribution 
 
Integrate Sh over ω : !   momentum distribution 

= 1 ,  for free fermions 
< 1 ,  for interacting particles 

  (correlations!!)�



Knock-out processes 
 
So, I can “see” Sh(p,ω): 
 
 
 
 
 
 
 
 

  …does it really work ?!?!?!? 

probe 

x-sec for 
scattering on a 
free particle� PWIA is not always justified, 

but it is all OK for our display 
purposes: 
Can “see” the spectralfnct.!!!�



Concept of correlations 

Em [MeV]  

σred ≈ S(h) 

10-50 

Spectral function: distribution of 
momentum (pm) and energies (Em) 

Saclay data for 16O(e,e’p) 
[Mougey et al., Nucl. Phys. A335, 35 (1980)]�
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Concept of correlations 

Em [MeV]  

σred ≈ S(h) 

10-50 
0p1/2 
0p3/2 

0s1/2 

Spectral function: distribution of 
momentum (pm) and energies (Em) independent 

particle picture 

Saclay data for 16O(e,e’p) 
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Concept of correlations 

Em [MeV]  

σred ≈ S(h) 
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0p1/2 
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correlations 

Spectral function: distribution of 
momentum (pm) and energies (Em) independent 

particle picture 
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Particle-vibration 
coupling (PV)!

Configuration 
 interaction 
(shell model)!
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Concept of correlations 
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momentum (pm) and energies (Em) independent 
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Green’s functions in many-body theory 
One-body Green’s function (or propagator) describes the motion of quasi- 
particles and holes: 
 
 
 
 
 …this contains all the structure information probed by nucleon transfer 
(spectral!func7on): 

[pic. J. Sadoudi]"

Separation energies
and transfer strengths

2

15]. The method has later been applied to atoms and
molecules [12, 16] and recently to 56Ni [17] and 48Ca [18].
The ab initio results of Ref. [18] are in good agreement
with (e, e′p) data for spectroscopic factors from Ref. [19]
and also show that the configuration space needed for the
incorporation of long-range (surface) correlations is much
larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

⟨ΨA
0 |cα|Ψ

A+1
n ⟩⟨ΨA+1

n |c†β|Ψ
A
0 ⟩

E − (EA+1
n − EA

0 ) + iη

+
∑

k

⟨ΨA
0 |c

†
β|Ψ

A−1
k ⟩⟨ΨA−1

k |cα|ΨA
0 ⟩

E − (EA
0 − EA−1

k )− iη
, (1)

where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n ⟩, |ΨA−1
k ⟩ are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
⟨ΨA+1

n |c†α|Ψ
A
0 ⟩, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 ⟩ ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 ⟩
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ⋆
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ⋆(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ⋆(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ⋆(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves (ℓ, j, τ) are
decoupled, where ℓ,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ⋆(x,x′;E) =
∑

ℓjmjτ

Iℓjmj
(Ω,σ)

×

[

∑

na,nb

Rnaℓ(r)Σ
⋆
ab(E)Rnbℓ(r

′)

]

(Iℓjmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, ℓ, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rnℓ(r),
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larger than the space that can be utilized in large-scale
shell-model diagonalizations. In Ref. [20], the FRPA was
employed to calculate proton scattering on 16O and ob-
tain results for phase shifts and low-lying states in 17F.
However, the properties of the self-energy at larger scat-
tering energies which are now of great interest for the
developments of DOM potentials was not addressed. In
particular, one may expect to extract useful information
regarding the functional form of the DOM from a study
of the self-energy for a sequence of calcium isotopes. It
is the purpose of the present work to close this gap. We
have chosen in addition to 40Ca and 48Ca also to include
60Ca, since the latter isotope was studied with a DOM
extrapolation in Refs. [8, 9]. Some preliminary results of
these FRPA calculations for spectroscopic factors were
reported in Ref. [14] but the emphasis in the present work
is on the properties of the microscopically calculated self-
energies. The resulting analysis is intended to provide
a microscopic underpinning of the qualitative features of
empirical optical potentials. Additional information con-
cerning the degree and form of the non-locality of both
the real and imaginary parts of the self-energy will also
be addressed because it is of importance to assess the
current local implementations of the DOM method.
In Sec. II A we introduce some of the basic properties

for the analysis of the self-energy. The ingredients of the
FRPA calculation are presented in Sec. II C. The choice
of model space and realistic nucleon-nucleon (NN) inter-
action are discussed in Sec. III. We present our results
in Sec. IV and finally draw conclusions in Sec. V.

II. FORMALISM

In the Lehmann representation, the one-body Green’s
function is given by

gαβ(E) =
∑

n

⟨ΨA
0 |cα|Ψ

A+1
n ⟩⟨ΨA+1

n |c†β|Ψ
A
0 ⟩

E − (EA+1
n − EA

0 ) + iη

+
∑

k

⟨ΨA
0 |c

†
β|Ψ

A−1
k ⟩⟨ΨA−1

k |cα|ΨA
0 ⟩

E − (EA
0 − EA−1

k )− iη
, (1)

where α, β, ..., label a complete orthonormal basis set
and cα (c†β) are the corresponding second quantization
destruction (creation) operators. In these definitions,
|ΨA+1

n ⟩, |ΨA−1
k ⟩ are the eigenstates, and EA+1

n , EA−1
k

the eigenenergies of the (A ± 1)-nucleon isotope. The
structure of Eq. (1) is particularly useful for our pur-
poses. At positive energies, the residues of the first term,
⟨ΨA+1

n |c†α|Ψ
A
0 ⟩, contain the scattering wave functions for

the elastic collision of a nucleon off the |ΨA
0 ⟩ ground state,

while at negative energies they give information on fi-
nal states of the nucleon capture process. Consequently,
the second term has poles below the Fermi energy (EF )
which carry information about the removal of a nucleon
and therefore clarify the structure of the target state |ΨA

0 ⟩
itself. Green’s function theory provides a natural frame-
work for describing physics both above and below the
Fermi surface in a consistent manner.
The propagator (1) can be obtained as a solution of

the Dyson equation,

gαβ(E) = g(0)αβ (E) +
∑

γδ

g(0)αγ (E)Σ⋆
γδ(E) gδβ(E) , (2)

in which g(0)(E) is the propagator for a free nucleon
(moving only with its kinetic energy). Σ⋆(E) is the irre-
ducible self-energy and represents the interaction of the
projectile (ejectile) with the target nucleus. Feshbach,
developed a formal microscopic theory for the optical po-
tential already in Ref. [21, 22] by projecting the many-
body Hamiltonian on the subspace of scattering states.
It has been proven that if Feshbach’s theory is extended
to a space including states both above and below the
Fermi surface, the resulting optical potential is exactly
the irreducible self-energy Σ⋆(E) [23] (see also Ref. [24]
and Ref. [25] for a shorter demonstration).
The above equivalence with the microscopic optical po-

tential is fundamental for the present study, since the
available knowledge from calculations based on Green’s
function theory can be used to suggest improvements of
optical models. In particular, in the DOM, the dispersion
relation obeyed by Σ⋆(E) is used to reduce the number of
parameters and to enforce the effects of causality. Thus
the DOM potentials can also be thought of as a repre-
sentation of the nucleon self-energy.

A. Self-Energy

For a J = 0 nucleus, all partial waves (ℓ, j, τ) are
decoupled, where ℓ,j label the orbital and total angu-
lar momentum and τ represents its isospin projection.
The irreducible self-energy in coordinate space (for ei-
ther a proton or a neutron) can be written in terms of
the harmonic-oscillator basis used in the FRPA calcula-
tion, as follows:

Σ⋆(x,x′;E) =
∑

ℓjmjτ

Iℓjmj
(Ω,σ)

×

[

∑

na,nb

Rnaℓ(r)Σ
⋆
ab(E)Rnbℓ(r

′)

]

(Iℓjmj
(Ω′,σ′))∗, (3)

where x ≡ r,σ, τ . The spin variable is represented by
σ, n is the principal quantum number of the harmonic
oscillator, and a ≡ (na, ℓ, j, τ) (note that for a J = 0 nu-
cleus the self-energy is independent ofmj). The standard
radial harmonic-oscillator function is denoted by Rnℓ(r),

[CB,!M.Hjorth?Jensen,!Pys.!Rev.!C79,!064313!(2009);!CB,!Phys.!Rev.!LeM.!103,!202502!(2009)]!
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Example of spectral function 56Ni 
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Nucleon elastic scattering 
The full Lehmann representation of the 
single particle propagator is 

! In real systems these is always a 
continuum for large particle and hole 
energies—The one body equation for the 
residues is the same in both discrete and 
continuum spectrum   �



One-hole spectral function 
Spectral function of infinite fermion systems 

[Picture credit: A. Damascelli, Rev. Mod. Phys. 75, 473 (2003)] 



Spectral function in asymm. matter 

A. Carbone, priv. comm. 

Spectral function, Log[A(p,ω)]
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Angle Resolved Photon Emission Spectroscopy (ARPES) 

An ARPES setup – spectroscopy at the Fermi surface 

[Pictures credit: A. Damascelli, et. al, Rev. Mod. Phys. 75, 473 (2003)] 

• Incoming beam of real 
photons 
• Measure the emitted 
electron 
• From angle and energy 
recover the momentum 
of the ejected particle 
+ separation energy 



Angle Resolved Photon Emission Spectroscopy (ARPES) 

An ARPES setup – spectroscopy at the Fermi surface 

[Rev. Mod. Phys. 75, 473 (2003)] 

! can “see” the Fermi surface!!�


