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Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
                                      among nucleons
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Have a systematic expansion of the Hamiltonian 
in terms of diagrams

Construct the most general Hamiltonian which is 
consistent with the chiral symmetry of QCD

(3NFs arise naturally at N2LO)!

Modern realistic nuclear forces 
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

⟨jm j′m′|V |jm j′m′⟩
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Chiral EFT for nuclear forces: 

Need at LEAST 3NF!!! 
(“cannot” do RNB physics without…)!

Single particle spectrum at Efermi:!
!

Saturation of nuclear matter:!

[T. Otsuka et al.,
Phys Rev. Lett  105, 
032501 (2010)]

[A. Carbone et al.,  
Phy.s Rev. C 88, 044302!!(2013)]

SYMMETRIC NUCLEAR MATTER WITH CHIRAL THREE- . . . PHYSICAL REVIEW C 88, 044302 (2013)

Note that the N2LO potential yields a poorer reproduction of
the phase shifts for selected partial waves compared to the
richer N3LO force.

Most nuclear matter calculations using chiral forces have
been performed within a perturbative framework starting
from evolved interactions. In Ref. [43], convergence has
been analyzed order by order in many-body perturbation
theory. Results have been obtained up to third order, including
particle-particle and hole-hole propagation [43]. In principle,
the equation of state should be independent of the evolution
scales in the 2NF and the 3NF. Moreover, in the perturbative
regime, results should only be mildly dependent on the order in
perturbation theory. Our nonperturbative calculations include
contributions to all orders and hence are neither limited to the
perturbative regime nor dependent on the order of perturbation
theory. If the diagrammatic summation is complete, it should
lead to scale-invariant results.

We test this hypothesis by performing calculations at
different evolution scales, in both the two- and the three-
body sectors. We evolve the 2NF using a free-space SRG
transformation [37]. The transformation renormalizes the 2NF,
suppressing off-diagonal matrix elements and giving rise to
a universal low-momentum interaction. The SRG evolution
flow also induces many-body forces, which should be taken
into account to keep the calculation complete. Following the
philosophy of Ref. [43], we incorporate the effect of induced
forces through the refitting of the cD and cE LECs to the 3H
binding energy and 4He matter radius. We use the values given
in Table I of [43]. Note that in this process we assume that
the operatorial and momentum structures of the original and
the induced 3NFs are the same. Furthermore, we explore the
dependence of our results on the 3NF cutoff, !3NF, appearing
in the density-dependent 2NF. A more complete calculation
would require running a SRG evolution including the 3NF [41].

We present the results of this exploration in Fig. 8.
Numerical calculations obtained using the SRG on the 2NF
have a saturation point which is much closer to the empirical
value when compared to the original force. Moreover, if
the 2NF has been SRG-evolved, the results are somewhat
independent of the cutoff. Overall, one can say that the
more the 2NF is evolved downward, the more attractive the

0 0.08 0.16 0.24 0.32

Density, ρ [fm
-3

]

-20

-15

-10

-5

0

5

10

E
ne

rg
y/

nu
cl

eo
n,

 E
/A

 [
M

eV
]

N3LO+N2LO dd

λ/Λ3NF=2.0/2.5 fm
-1

λ/Λ3NF=2.0/2.0 fm
-1

λ/Λ3NF=1.8/2.0 fm
-1

T=5 MeV

FIG. 8. (Color online) SCGF results for the energy per nucleon
of SNM as a function of the density at a temperature of T = 5 MeV.
Different lines represent different choices of cutoffs for the 2NF, λ,
and the 3NF, !3NF.

saturation curve becomes. This effect is a consequence of the
shift in importance between the 2NF and the induced 3NF
associated with the SRG. There is also a small dependence on
!3NF, but the differences agree well with those presented in
Ref. [43].

The large differences between the results obtained with
evolved and unevolved forces is striking. If correlations and
induced many-body forces had been fully taken into account,
one would have expected a much closer agreement between
the results. This difference might indicate that the assumptions
associated with induced 3NFs are not necessarily robust.
Missing induced three-body forces, which up to now have
not been included in SNM calculations, could resolve this
discrepancy. Alternatively, the difference is also an indication
of missing many-body effects such as, for instance, higher
orders in the treatment of the 3NF. It must be emphasized that
the present way to proceed when applying SRG evolution
in infinite matter should be improved by carrying out the
evolution on a full Hamiltonian with both two- and three-body
forces. Recently, improvements toward the solution of this
problem have been presented for calculations in pure neutron
matter [41], where a full Hamiltonian has been consistently
evolved. All in all, our results seem to contradict the idea that
induced 3NFs can be treated simply in nuclear matter.

In terms of evolved interactions, our nonperturbative
calculations can be used to check whether the perturbative
regime is actually reached. To this end, we compare, in
Fig. 9, our results to the perturbative calculations presented
in Ref. [43]. The BHF and SCGF calculations have been
performed with a SRG-evolved 2NF and a 3NF with the same
cut-offs, λ/!3NF = 2.0/2.0 fm−1. Whereas the Brueckner
results have been obtained with a zero-temperature code, the
SCGF calculations have been extrapolated to zero temperature
by means of a simple procedure. At low temperatures,
the Sommerfeld expansion indicates that the effect of tem-
perature is quadratic and is the same, but with opposite sign,
for the energy and the free energy [47]. Consequently, the
semi-sum of both thermodynamical potentials is an estimate
of the zero-temperature energy. We obtain an extremely
good agreement between both many-body approaches and
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FIG. 9. (Color online) Comparison of results for the energy per
nucleon of SNM obtained with different approaches using the same
SRG-evolved 2NF and a 3NF. Circles correspond to extrapolated
SCGF results, whereas squares are BHF calculations at T = 0 MeV.
Diamonds correspond to the results of Hebeler et al. [43].
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Inclusion of NNN forces  

✺ NNN forces can enter diagrams in three different ways: 

Correction to external 
1-Body interaction!

Correction to  
non-contracted  
2-Body interaction!

pure 3-Body 
contribution!

1
4
_! gII (ω)-

- Contractions are with fully correlated density 
 matrices  (BEYOND a normal ordering…) 

 A. Carbone, CB, et al., Phys. Rev. C88, 054326 (2013)-
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! Define new 1- and 2-body interactions and  
 use only interaction-irreducible diagrams!
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   (BEYOND a normal ordering…) 
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Inclusion of NNN forces  

effectively: 
- Second order PT 
diagrams with 3BFs: 
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In Eq. (10), the two-time two-particle/two-hole propaga-
tor

GII

�⌘,�✏

(t � t0) = G4�pt

�⌘,�✏

(t+, t; t0, t0+) (12)

is an appropriate time ordering of Eq. (3) and the con-
tracted propagators yield the exact 1B and 2B reduced
density matrices:

⇢1B
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The e↵ective Hamiltonian (9) not only regroups Feyn-
man diagrams in a more e�cient way but it also allow
to extract the e↵ective 1B and 2B terms from higher or-
der interactions. Averaging the 3BF over one and two
spectator particles in the medium is expected yield the
most important contributions to the many-body dynam-
ics [27, 30]. We note that Eqs. (10) and (11) are exact
and are derived rigorously from the pertubative expan-
sion. Details of the proof are discussed in App. B. As
long as only interaction irreducible diagrams are used to-
gether with eH, this gives a systematic way to generate
e↵ective in medium interactions, it ensures that symme-
try factors are correct and no diagram is over counted.

This approach can be seen as a generalisation of the
normal ordering of the Hamiltonian with respect to the
reference state |�N

0

i, that has already been used in nu-
clear physic applications with 3BFs [27, 30, 39]. If the
unperturbed propagators G(0) and GII,(0) were used in

Eqs. (10) and (11), the e↵ective operators
b

eU and
b

eV would
trivially reduced to the contracted 1B and 2B terms of
normal ordering. In the present case, however, the con-
traction is performed with respect to the exact correlated
density matrices and the e↵ective Hamiltonian eH can be
thought as reordered with respect the the many-body
ground-state | N

0

i, which takes into account the correla-
tions of the system. Note that, following the procedure of
App. B, the full contraction of the original hamiltonian,
H, will yield to the exact ground state energy

E
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in accordance with our analogy between the eH = H
0

+ eH
1

and the usual normal ordered hamiltonian. In the latter,

(a) (b)

FIG. 3. 1PI, skeleton and interaction irreducible self-energy
diagrams appearing at 2nd-order in the perturbative expan-
sion of Eq. (7), making use of the e↵ective hamiltonian of
Eq. (9).

the 0B contraction part is simply the expectation value
of H with respect to the reference state.

A. Self-energy expansion up to third order

For a 2B Hamiltonian, the only possible interaction
reducible contribution is the extended Hartree-Fock dia-
gram. This is the second term on the right hand side of
Eq. (10) and Fig. (1). It appears only at first order in
any SCGF expansion and it is routinely included in most
GF calculations with 2B forces. Thus, regrouping dia-
grams in terms of e↵ective interactions, such as Eqs. (10)
and (11), becomes useful only when 3BF or higher terms
are present. Here, we are interested in the new diagrams
that need to be considered when one includes 3BFs. To
this purpose we derive and list all interaction irreducible
contributions to the proper self-energy, up to third order
in perturbation theory.

At first order, only one interaction irreducible contri-
bution is present which exactly corresponds to eU :

⌃?,(1)

↵�

= eU
↵�

, (16)

Being a self-energy insertion itself, eU will not appear in
any other skeleton diagram. In spite of the fact that
it only contributes to Eq. (16), the e↵ective 1B poten-
tial is very important because it defines in full the en-
ergy independent part of the self energy, hence it rep-
resents the (static) mean field seen by every particle.
Through Eq. (10), we see that this potential incorpo-
rates three separate terms, including the Hartree-Fock
potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
propagates two-particle–one-hole (2p1h) and two-hole–
one-particle (2h1p) states. Fig. 3b is the new diagram
arising from explicit 3BF interactions, which may ex-
pected to be less important: this describes contributions
from 3p2h and 3h2p excitations at higher excitation en-
ergies and, moreover, 3BFs are generally weaker than
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(a) (b)

(c) (d)

FIG. 4. The one interaction irreducible diagrams (a) and the
three interaction reducible ones (b, c and d) that are contained
in Fig. 3a.

the corresponding 2BF (typically, < cW >⇡ 1

10

< bV >
for nuclear interactions [25, 39]). Note that, by expand-
ing the e↵ective 2B interaction according to Eq. (11),
the contribution of Fig. 3a splits in the four diagrams of
Fig. 4 [see also a similar example in Fig. 16]. Therefore,
at second order we have a total of five skeleton diagrams
of which only two are interaction irreducible and need to
be calculated when using the e↵ective interactions.

Figure 5 shows all the 17 interaction irreducible con-
tributions at third order. Diagrams 5a and 5b are the
only third order terms that come from only 2B interac-
tions, while the others are introduced by 3BFs. Again,
by expanding the eV e↵ective interaction would generate
a much larger number of diagrams (53 in total) of which
only two contain only 2BFs.

These diagrams are ordered in Fig. 5 in terms of in-
creasing numbers of 3B interactions and of increasing
number of particle-hole excitations. This should qualita-
tively correspond to decreasing importance of their con-
tributions. Diagrams 5a-5c only involve 2p1h and 2h1p
intermediate configurations, normally needed to describe
particle addition and removal energies to main quasipar-
ticle peaks as well as total ground state energies. Nu-
merically 5a and 5b only require evaluating Eq. (11) be-
forehand but can otherwise be dealt with using existing
2BF codes. They have already been exploited to include
3BFs in nuclear structure studies [21, 28, 31, 32]. Dia-
gram 5d includes one 3B irreducible interaction term and
still need to be investigated within the SCGF method,
although comparison to studies of normal ordered hamil-
tonians in [27, 30] clearly suggest smaller corrections to
the total energy with respect to 5a and 5b. This is in line
with the qualitative analysis of the number of eV and fW
interaction entering these diagrams. Note that 5a-5c all
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FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3rd-order in perturbative expansion (7),
making use of the e↵ective hamiltonian of Eq. (9).

this boils down to the equation of motion of the operators
in interaction picture [6]:
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where the delta functions come from the derivative of the
step-function decomposition of the time-ordered product
in. Eq. (19) gives the inverse operator of G(0).

The same procedure applied to the exact propagator,
G(t� t0), requires the time-derivative of the annihilation
operators in the Heisenberg picture. For the hamiltonian
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The e↵ective Hamiltonian (9) not only regroups Feyn-
man diagrams in a more e�cient way but it also allow
to extract the e↵ective 1B and 2B terms from higher or-
der interactions. Averaging the 3BF over one and two
spectator particles in the medium is expected yield the
most important contributions to the many-body dynam-
ics [27, 30]. We note that Eqs. (10) and (11) are exact
and are derived rigorously from the pertubative expan-
sion. Details of the proof are discussed in App. B. As
long as only interaction irreducible diagrams are used to-
gether with eH, this gives a systematic way to generate
e↵ective in medium interactions, it ensures that symme-
try factors are correct and no diagram is over counted.

This approach can be seen as a generalisation of the
normal ordering of the Hamiltonian with respect to the
reference state |�N

0

i, that has already been used in nu-
clear physic applications with 3BFs [27, 30, 39]. If the
unperturbed propagators G(0) and GII,(0) were used in

Eqs. (10) and (11), the e↵ective operators
b

eU and
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eV would
trivially reduced to the contracted 1B and 2B terms of
normal ordering. In the present case, however, the con-
traction is performed with respect to the exact correlated
density matrices and the e↵ective Hamiltonian eH can be
thought as reordered with respect the the many-body
ground-state | N

0

i, which takes into account the correla-
tions of the system. Note that, following the procedure of
App. B, the full contraction of the original hamiltonian,
H, will yield to the exact ground state energy
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in accordance with our analogy between the eH = H
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and the usual normal ordered hamiltonian. In the latter,
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FIG. 3. 1PI, skeleton and interaction irreducible self-energy
diagrams appearing at 2nd-order in the perturbative expan-
sion of Eq. (7), making use of the e↵ective hamiltonian of
Eq. (9).

the 0B contraction part is simply the expectation value
of H with respect to the reference state.

A. Self-energy expansion up to third order

For a 2B Hamiltonian, the only possible interaction
reducible contribution is the extended Hartree-Fock dia-
gram. This is the second term on the right hand side of
Eq. (10) and Fig. (1). It appears only at first order in
any SCGF expansion and it is routinely included in most
GF calculations with 2B forces. Thus, regrouping dia-
grams in terms of e↵ective interactions, such as Eqs. (10)
and (11), becomes useful only when 3BF or higher terms
are present. Here, we are interested in the new diagrams
that need to be considered when one includes 3BFs. To
this purpose we derive and list all interaction irreducible
contributions to the proper self-energy, up to third order
in perturbation theory.

At first order, only one interaction irreducible contri-
bution is present which exactly corresponds to eU :

⌃?,(1)

↵�

= eU
↵�

, (16)

Being a self-energy insertion itself, eU will not appear in
any other skeleton diagram. In spite of the fact that
it only contributes to Eq. (16), the e↵ective 1B poten-
tial is very important because it defines in full the en-
ergy independent part of the self energy, hence it rep-
resents the (static) mean field seen by every particle.
Through Eq. (10), we see that this potential incorpo-
rates three separate terms, including the Hartree-Fock
potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
propagates two-particle–one-hole (2p1h) and two-hole–
one-particle (2h1p) states. Fig. 3b is the new diagram
arising from explicit 3BF interactions, which may ex-
pected to be less important: this describes contributions
from 3p2h and 3h2p excitations at higher excitation en-
ergies and, moreover, 3BFs are generally weaker than
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to extract the e↵ective 1B and 2B terms from higher or-
der interactions. Averaging the 3BF over one and two
spectator particles in the medium is expected yield the
most important contributions to the many-body dynam-
ics [27, 30]. We note that Eqs. (10) and (11) are exact
and are derived rigorously from the pertubative expan-
sion. Details of the proof are discussed in App. B. As
long as only interaction irreducible diagrams are used to-
gether with eH, this gives a systematic way to generate
e↵ective in medium interactions, it ensures that symme-
try factors are correct and no diagram is over counted.
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density matrices and the e↵ective Hamiltonian eH can be
thought as reordered with respect the the many-body
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sion of Eq. (7), making use of the e↵ective hamiltonian of
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the 0B contraction part is simply the expectation value
of H with respect to the reference state.

A. Self-energy expansion up to third order

For a 2B Hamiltonian, the only possible interaction
reducible contribution is the extended Hartree-Fock dia-
gram. This is the second term on the right hand side of
Eq. (10) and Fig. (1). It appears only at first order in
any SCGF expansion and it is routinely included in most
GF calculations with 2B forces. Thus, regrouping dia-
grams in terms of e↵ective interactions, such as Eqs. (10)
and (11), becomes useful only when 3BF or higher terms
are present. Here, we are interested in the new diagrams
that need to be considered when one includes 3BFs. To
this purpose we derive and list all interaction irreducible
contributions to the proper self-energy, up to third order
in perturbation theory.

At first order, only one interaction irreducible contri-
bution is present which exactly corresponds to eU :

⌃?,(1)
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, (16)

Being a self-energy insertion itself, eU will not appear in
any other skeleton diagram. In spite of the fact that
it only contributes to Eq. (16), the e↵ective 1B poten-
tial is very important because it defines in full the en-
ergy independent part of the self energy, hence it rep-
resents the (static) mean field seen by every particle.
Through Eq. (10), we see that this potential incorpo-
rates three separate terms, including the Hartree-Fock
potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
propagates two-particle–one-hole (2p1h) and two-hole–
one-particle (2h1p) states. Fig. 3b is the new diagram
arising from explicit 3BF interactions, which may ex-
pected to be less important: this describes contributions
from 3p2h and 3h2p excitations at higher excitation en-
ergies and, moreover, 3BFs are generally weaker than
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where the delta functions come from the derivative of the
step-function decomposition of the time-ordered product
in. Eq. (19) gives the inverse operator of G(0).
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↵�

= eU
↵�

, (16)
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B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (15)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (20a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (20b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (20c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩

= −i
even
∑

N

c∗NcN ⟨ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩

= −i
even
∑

N

c∗NcN ⟨ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 ⟩

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)
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4

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (15)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
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{

aa(t)a
†
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ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (20c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{
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|Ψ0⟩ , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22
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Gorkov Green’s functions and equations 

✺!Set!of!4!Green’s!func7ons!

[Gorkov!1958]!

Gorkov equations


[V.!Somà,!T.!Duguet,!CB,!Pys.!Rev.!C84,!046317!(2011)!]!



✺!1st!order!➟!energy?independent!self?energy!

✺!2nd!order!➟!energy?dependent!self?energy!

✺!Gorkov!equa7ons! eigenvalue!problem!

V.!Somà,!CB,!T.!Duguet,!,!Phys.!Rev.!C!89,!024323!(2014)!
V.!Somà,!CB,!T.!Duguet,!Phys.!Rev.!C!87,!011303R!(2013)!
V.!Somà,!T.!Duguet,!CB,!Phys.!Rev.!C!84,!064317!(2011)!

Open-shells: 1st & 2nd order Gorkov diagrams 



[V.)Somà,&T.&Duguet,&CB,&Pys.&Rev.&C84,&046317&(2011)&]&

Espressions for 1st & 2nd order diagrams 



with the normalization condition 

Energy independent eigenvalue problem 

[V.!Somà,!T.!Duguet,!CB,!Pys.!Rev.!C84,!046317!(2011)!]!
Gorkov equations 



Lanczos reduction of self-energy  Testing Krylov projection
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Deinsity of states!
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Binding energies 

(Extrapolation to infinite model space from  
[Furnstahl, Hagen, Papenbrok 2012] and [Coon et al. 2012]) 
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FIG. 1. (Color online) Binding energy for 44Ca (upper panel) and
74Ni (lower panel) as a function of the harmonic oscillator spacing
~⇥ and for an increasing size Nmax ⇤ max (2n + l) of the single-
particle model space. Results are from (sc0) second-order Gorkov-
SCGF calculations. The inserts show a zoom on the most converged
results.

methods. Overall, convergence is well attained for Nmax = 13.
In 44Ca, going from Nmax = 11 to Nmax = 13 lowers the min-
ima by just a few keV. Also, the binding energy calculated for
Nmax = 13 varies by less than 200 keV over a wide range of ~⇥
values. In 74Ni, going from Nmax = 11 to Nmax = 13 yields an
additional 600 keV, while scanning a large range of oscillator
frequencies only changes the binding energy by about 1 MeV.

Table I lists the results obtained for various observables
of interest in the ground state of 44Ca and 74Ni. The values
quoted are extrapolated to infinite oscillator basis size using
the method proposed in Ref. [28]. At this point, results are
mostly illustrative because of the lack of 3N forces. The lat-
ter play a key role in the saturation of nuclear matter such
that omitting it generates too much binding and too small nu-
clei when using soft 2N interactions [18]. The neglect of 3N
forces also induces too small pairing gaps as a result of the
too low density of states in the nucleon addition and removal
spectra (see below). It is our short-term objective to add 3N
forces to the present theoretical scheme.

Figure 2 displays one-neutron addition and removal spec-
tral strength distributions (SSD) in 44Ca. Results are shown
over a large range of final states in 43Ca and 45Ca characterized
by spectroscopic factors as small as 2.10�3 (i.e. 0.2%). One
observes a fragmentation of the spectroscopic strength that is
characteristic of correlated many-body systems. Overall the
pattern is similar to the one found in doubly-magic nuclei [3].
Close to the Fermi energy, however, one notices a feature that
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FIG. 2. (Color online) One-neutron addition and removal spec-
tral strength distributions in 44Ca obtained from second-order (sc0)
Gorkov-SCGF calculations. For each final state in 43Ca (left to the
dashed line) and in 45Ca (right to the dashed line), the spectroscopic
factor is plotted as a function of its separation energy to the ground
state of 44Ca. Energies above 0 MeV correspond to n+44Ca scatter-
ing states [26]. Final states with di�erent J� values are separated for
clarity. Results correspond to the minimum of the convergence plots
shown in Fig. 1. Although center of mass motion is subtracted by
using Hint, the variation of that correction going from A to A±1 is
neglected. The associated error is small in such medium-mass nu-
clei [21].

is unique to open-shell nuclei, i.e. the 7/2� strength is equally
fragmented into additional and removal channels, which re-
sults in the fact that both 43Ca and 45Ca ground-states have an-
gular momentum and parity J� = 7/2�. Such a fragmentation
reflects static pairing correlations that manifest themselves as
a result of emerging degeneracies in the ground state of open-
shell nuclei. It is the main strength of Gorkov-SCGF theory
to explicitly handle such degeneracies and resulting pairing
correlations.

The right column in the upper panel of Fig. 3 supplies a
zoom of Fig. 2 around the Fermi energy for states with spec-
troscopic factors larger than 10�1 (i.e. 10%). The left column
provides the same quantities for first-order (i.e. HFB) calcula-
tions. Last but not least, the center column displays e�ective
single-neutron energies. The same information is provided for
74Ni in the lower panel of Fig. 3.

The main fragmentation of the strength is absent from first-
order calculations, i.e. it is due to dynamical correlations that
come in at second order and that are qualitatively the same as
for closed-shell nuclei. Contrarily, the fragmentation of the
strength in the vicinity of the Fermi energy into two peaks
of (essentially) equal strength is qualitatively accounted for

Somà,!CB,!Duguet,!Phys.!Rev.!C!87,!011303!(2013)!Towards medium/heavy open-shell
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Binding energies 
✺ Systematic along isotopic/isotonic chains has become available 

➟ Systematic along isotopic/isotonic chains has become possible 

➟ Accuracy is good (close to CCSD and FRPA) and improvable 

➟ Of course, need proper interactions and (at least) NNN forces… 
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Truncation 
scheme:!

Dyson formulation 
(closed shells)!
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Ab-initio Nuclear Computation & BcDor code  
BoccaDorata code: 
(C. Barbieri  2006-14 
 V. Somà      2011-14 
A. Cipollone 2012-13) 

Code history: 

-   Provides a C++ class library for handling many-body 
propagators (≈40,000  lines, OpenMPI based). 

-   Allows to solve for nuclear spectral functions, many-body 
propagators, RPA responses, coupled cluster equations and 
effective interaction/charges for the shell model. 

new Gorkov formalism for  
open-shell nuclei (at 2nd order)!

Three-nucleon forces (≈50 cores, 
35 Gb but on the rise…)!
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Ab-initio Nuclear Computation & BcDor code  
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  From here you can download a public version of my self-consistent Green’s function (SCGF) code for
nuclear physics. This is a code in J-coupled scheme that allows the calculation of the single particle
propagators (a.k.a. one-body Green’s functions) and other many-body properties of spherical nuclei.
   This version allows to:

- Perform Hartree-Fock calculations.
- Calculate the the correlation energy at second order in perturbation theory (MBPT2).
- Solve the Dyson equation for propagators (self consistently) up to second order in the self-energy.
- Solve coupled cluster CCD (doubles only!) equations.

  When using this code you are kindly invited to follow the creative commons license agreement, as
detailed at the weblinks below.  In particular, we kindly ask you to refer to the publications that led the
development of this software.

Relevant references (which can also help in using this code) are:
   Prog. Part. Nucl. Phys. 52, p. 377 (2004),
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Spectroscopic Factors 



Quenching of absolute spectroscopic factors�

Overall quenching of spectroscopic 
factors! is driven by: 
SRC          "  ~10% 
part-vibr. coupling " dominant 
“shell-model“    " in open shell 
-

[CB,!Phys.-Rev.-LeT.!103,!202520!(2009)]-

S 5
6N

i(r
,ω

) [
fm

-3
M

eV
-1
]�

3  SHELL  
MODEL�

2 PARTICLE-VIBRATION  
COUPLING�

1  SHORT RANGE  
CORRELATIONS�

57Ni 

55Ni 

3�1�
2   +  3�

…with analogous conclusions for 48Ca!

56Ni 
NN-N3LO(500) 



Spectroscopic factors @ limits of stability 

174 A. Gade, T. Glasmacher / Progress in Particle and Nuclear Physics 60 (2008) 161–224

Fig. 6. One-nucleon knockout schematics. A nucleon is removed from the projectile upon peripherally colliding with
a light target, here 9Be. Gamma-ray spectroscopy in coincidence with the knockout residue serves to identify the final
state. The longitudinal momentum distribution of the residue provides information on the ⌥-value of the knocked-out
nucleon. Adapted with permission from [75].
c⇥ 2003, by Macmillan Publishers Ltd: Nature.

At the NSCL, direct one-nucleon knockout reactions from fast exotic beams have been
developed into a powerful tool to extend the detailed study of the nuclear wave function to short-
lived species [73,74]. In the collision of a fast projectile beam with a light, absorptive target,
typically 9Be, a neutron or proton is removed from the projectile in a single-step, direct reaction:
9Be (AZ, A�1Z + ⇥ )X and 9Be (AZ, A�1Z � 1 + ⇥ )X. The shape of the longitudinal momentum
distribution of the heavy residue carries the information on the orbital angular momentum (⌥-
value) of the knocked-out nucleon – in analogy to the angular distributions in the conventional,
low-energy transfer reactions. Gamma-ray spectroscopy in coincidence with the projectile-like
knockout residue provides the identification of the final state. In comparison to reaction theory,
spectroscopic factors, which relate to the occupation number of single-particle orbitals, can
be derived from measured partial cross sections to individual final states of the residue. One-
nucleon knockout reactions thus provide an identification of single-particle components in the
ground state wave function of the unstable projectile and a measure of the relative separation
and occupation of singe-particle levels. These quantities allow for detailed tracking of changes
in nuclear structure beyond the valley of � stability on the level of the single-particle degree of
freedom. The relative location of single-particle orbits and their occupation by nucleons provide
benchmark tests for modern theories – for ab initio calculations applicable for light nuclei below
mass A = 12 as well as for many-body shell-model approaches that are largely based on effective
interactions.

At intermediate beam energies (⇤50 MeV/nucleon), a theoretical description [76,77] in
the framework of straight-line trajectories (eikonal approach) and sudden approximation is
applicable. Therefore, the model dependence is reduced compared to the classical low-energy
transfer reactions, whose calculation involves the Distorted Wave Born Approximation (DWBA)
or higher-order formalisms, and which depend strongly on entrance- and exit-channel optical
model potentials [78] that have not been established for nuclei with extreme neutron-to-proton
ratios.

One-nucleon knockout reactions at intermediate beam energies have been successfully applied
at rates of less than 1 particle/s. The high sensitivity is tied to the high-beam energy that (i) allows
for the use of thick targets to enable high-luminosity experiments with low beam rates, (ii) leads
to strongly forward-focused reaction residues and (iii) ensures an optimum signal-to-noise ratio
from event-by-event particle tracking in the entrance and all exit channels.

A. GADE et al. PHYSICAL REVIEW C 77, 044306 (2008)
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FIG. 6. (Color online) Reduction of the measured nucleon knock-
out cross sections (spectroscopic strength) relative to theoretical
values as a function of the difference in separation energies of
the two nucleon species, !S (see text). The data points are from
Refs. [5,13–16,19,24]. Those from the present work, labeled 24Si and
28S, appear on the extreme left- and right-hand sides of the figure.
Only experimental uncertainties are included.

of the differences in separation energies of the deficient and
excess nucleon species in the projectile, !S. For proton
removal we define !S = Sp − Sn and for neutron removal
!S = Sn − Sp, where Sn and Sp are the effective nucleon
separation energies. The quantity !S is a measure of the
asymmetry of the Fermi surfaces in each nucleus. !S takes
on large negative values for reactions where a weakly bound
nucleon of the excess species is removed and large positive
values for reactions where a strongly bound nucleon of the
deficient species is removed.

The plot includes data points from both heavy-ion-induced
one-proton and one-neutron knockout reactions and from
the electron-induced proton removal from stable nuclei.
Unlike the earlier comparisons of the (e, e′p) spectroscopic
strengths with the extreme independent-particle model, that
yield factors Rs ≈ 0.6-0.7, here we compare with shell-model
spectroscopic factors, as was carried out in Ref. [24]. Near
!S = 0 — the stable and well-bound systems — the values
cluster around reduction factors Rs ≈ 0.5–0.7, with heavy-ion
and electron-induced knockout in agreement. At the extremes
of nuclear binding, reduction factors Rs ≈ 0.25–0.40 are
found in the removal of a nucleon of the deficient species [e.g.,
the results from the present study of (24Si,23Si) and (28S,27S),
whereas the reduction factors are much closer to unity, with
Rs ≈ 0.80–1.0, when the removed nucleon is in excess (e.g.,
the results from the present study of (24Si,23Al) and (28S, 27P)].
The results of the present work fit nicely into the existing
systematics and give additional support to the suggestion
that the strength of correlation effects, missing to an (as yet)
unknown extent from effective interaction theories — here the
shell model — depend on the asymmetry of the two nucleon
Fermi surfaces. The present work suggests an enhancement of
the correlation effects experienced by strongly bound valence
nucleons of the deficient type and weakened correlations of
the excess nucleons at the weakly bound Fermi surface.
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FIG. 7. (Color online) Deduced values of Rs for the reactions
9Be(24Si,23Al)X and 9Be(24Si,23Si)X as obtained using different
Skyrme parametrizations as input to the HF calculations used for
the reaction methodology. The Rs factors obtained when using the
Skm∗, Sly4, Bsk9, Skxs15, Skxs20, and Skxs25 interactions agree
within the quoted uncertainties on the value deduced using the SkX
Skyrme parametrization used here. The SkX values are indicated by
the horizontal lines.

Finally, we address the sensitivity of the reaction method-
ology to details of the Skyrme interaction used to constrain
the residue densities and the rms radii rsp of the wave
functions of the removed nucleons. Figure 7 shows the
deduced suppression factors Rs for the reactions 9Be (24Si,
23Al)X and 9Be(24Si, 23Si)X for several different Skyrme
parametrizations, including the SkX model, favored here.

As mentioned in Sec. III, we use the SkX Skyrme inter-
action [35] for the nuclear densities and single-particle rms
radii because it has been extensively tested with regard to size
and binding energy observables [36–38]. But there are other
Skyrme parameter sets available. The main difference between
them can be related to the nuclear-matter incompressibility K
and the slope of the neutron equation-of-state near nuclear-
matter density Pn. Pn is correlated with the neutron-skin
thickness in nuclei with N ̸= Z [52] and hence can be a
source of uncertainty for the densities and single-particle radii
in nuclei far from stability. The SkX interaction has a relatively
large incompressibility, K = 270 MeV, and a neutron skin of
T = rn − rp = 0.16 fm for 208Pb, where rp/n is the rms radius
for protons/neutrons. Thus, we need to test the sensitivity of
our results to reasonable variations in the Skyrme parameters
related to these quantities. The results for one-proton and
one-neutron removal from 24Si are shown in Fig. 7. Skm∗ [53]
is used because it gives a slightly better surface diffuseness for
the charge density [37,54] compared to SkX. This change can
be traced to a smaller nuclear matter incompressibility, which
is smaller for Skm∗ (K = 215 MeV) compared to SkX. The
recent Skxs15, Skxs20, and Skxs25 Skyrme interactions [54]
represent a reasonable variation of neutron-skin thickness in
208Pb [52], with T = 0.15, 0.20, and 0.25 fm, respectively,
and all have K = 200 MeV. We also compare to results
with the widely used Sly4 interaction [55] (K = 230 MeV
and T = 0.16 fm) and with the Bsk9 interaction [56] ob-
tained from a recent global fit to binding energies together
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fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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FIG. 3 (color online). Radial dependence of (a), (b) the OFs for
WS and microscopic (SCGF) [30] form factors normalized to 1;
(c), (d) the OF difference $ (SCGF#WS).

TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.

RHFB
rms r0 C2Sexp C2Sth Rs C2Sexp C2Sth Rs

Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
14O (d, 3He) 13N 0.00 1=2# 3.03 1.23 1.14(16)(15) 1.55 0.73(10)(10) 1.58(22)(2) 1.58 1.00(14)(1)

3.50 3=2# 2.77 1.12 0.94(19)(7) 1.90 0.49(10)(4) 1.00(20)(1) 1.90 0.53(10)(1)
16O (d, t) 15O 0.00 1=2# 2.91 1.46 0.91(9)(8) 1.54 0.59(6)(5) 0.96(10)(7) 1.73 0.55(6)(4)
16O (d, 3He) 15N [19,20] 0.00 1=2# 2.95 1.46 0.93(9)(9) 1.54 0.60(6)(6) 1.25(12)(5) 1.74 0.72(7)(3)

6.32 3=2# 2.80 1.31 1.83(18)(24) 3.07 0.60(6)(8) 2.24(22)(10) 3.45 0.65(6)(3)
18O (d, 3He) 17N [21] 0.00 1=2# 2.91 1.46 0.92(9)(12) 1.58 0.58(6)(10)
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fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions
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assuming a !l ¼ 1 transferred angular momentum, as
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In the second approach, we employed ab initio SFs and
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(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.
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14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
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! Analysis of 14O(d,t)13O and 14O(d,3He)13N transfer reactions @ SPIRAL!

-  Overlap functions and strengths from GF 

-  Rs independent of asymmetry!

[F. Flavigny et al, PRL110, 122503 (2013)] 

radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
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FIG. 4 (color online). Reduction factors Rs obtained with (a) a
WS OF and the SLy4 interaction [31], averaged over four
entrance and two exit potentials, and compared to shell-model
calculations performed with the WBT interaction [37] in the
0pþ 2@! valence space; (b) a microscopic (SCGF) form factor
[30]. The detail of error bars is given in text.
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Ab-initio calculations explain the Z/N dependence but the 
effect is much lower than suggested by direct knockout 
 
Effects of continuum become important at the driplines 

Spectroscopic factor are strongly 
correlated to p-h gaps: 
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This term automatically corrects for the zero point motion in
the oscillator basis but it depends explicitly on the number
of particles. In this work, we are interested in transitions to
states with different numbers of nucleons (A ± 1) and aim at
computing directly the differences between the total energies.
Therefore, the above correction should not be employed in
the present case. One may note that the separation of the
center-of-mass motion is an issue related to the choice made for
the model space, rather than the many-body method itself. For
example, expressing the propagators directly in momentum
space would allow an exact separation. In this situation, the
transformation between the center-of-mass and laboratory
frames for systems with a nucleon plus a A-nucleons [or
(A-1)-nucleons] core would also be simple.

A. Choice of κM

Equation (16) introduces a single parameter (κM ) in our
calculations. The reason for this modification is that the spec-
troscopic factors of the valence orbits are strongly sensitive to
the particle-hole gap. This sensitivity is to be expected because
collective modes in the 56Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower excitation
energies and higher probability of admixture with valence
orbits. To extract meaningful predictions for spectroscopic
factors it is therefore necessary to constrain the Fermi gaps
for protons and neutrons to their experimental values.

To investigate this dependency we repeated our calculations
for values of κM in the range 0.4–0.7 MeV. Figure 3 shows
the resulting neutron spectroscopic factors for the valence
p3/2 quasiparticle and f7/2 quasihole. These are plotted
as a function of the calculated particle-hole gap "Eph =
ε+

1p3/2,n=0 − ε−
0f7/2,k=0. The results correspond to model spaces

of different dimensions (eight or ten oscillator shells) and
oscillator frequencies (h̄$ = 10 or 18 MeV). The gap "Eph
increases with κM but the dependence on the model space is
weak. We notice that, once the experimental value of "Eph
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FIG. 3. (Color online) Dependence of neutron spectroscopic
factors (given as a fraction of the independent-particle model value)
for the 1p3/2 and the 0f7/2 valence orbits with respect to the ph gap
"Eph. For each model space, different points correspond to different
choices of κM in the range 0.4–0.7 MeV.

is reproduced, the spectroscopic factors are well defined and
found to be converged with respect to the given model space.

All results reported below were obtained with a fixed value
of κM = 0.57 MeV. In the Nmax = 9 model space and an
oscillator energy h̄$ = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliable to within
1–2% of the independent-particle model value.

B. Convergence with respect to the model space

Figure 4 shows the dependence of the neutron 1p3/2 particle
and the 0f7/2 hole energies with respect to the oscillator
frequency and the size of the model space. As can be seen
from this figure, the single-particle energies for these two
single-particle states tend to stabilize around eight to ten
major shells. This finding concords both with coupled-cluster
calculations that employ a G matrix as effective interaction
for 16O, see Refs. [71] and [70], and with analogous Green’s
functions studies [31]. It remains, however, to make an
extensive comparison between coupled-cluster theory and the
Green’s functions approach to find an optimal size of the
model space with a given nucleon-nucleon interaction. Finally,
we plot in Fig. 5 the neutron valence single-particle energies
for all the single-particle states in the 1p0f shell. The latter
results were obtained with our largest model space, ten major
shells with Nmax = 9 and the single-particle orbital momentum
l ! 7. As can be seen from this figure, there is still, although
weak, a dependence upon the oscillator parameter. To perform
calculations beyond ten major shells will require nontrivial
extensions of our codes.
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Knockout & transfer experiments

tected in the High-Resolution Array (HiRA) [22] in coin-
cidence with the recoil residues detected in the S800 focal
plane [23]. An array of 16 HiRA telescopes [22] was
placed at 35 cm from the target where they subtended polar
angles of 6! " !lab " 45!. Each telescope contained
65 "m thick !E and 1500 "m thick E silicon strip de-
tectors, backed by 3.9 cm thick CsI(Tl) crystals. The strips
in these telescopes effectively subdivided each telescope
into 1024 pixels of 2 mm# 2 mm area. Detailed descrip-
tions of experimental setup can be found in Ref. [20].

Deuterons were identified in HiRAwith standard energy
loss techniques using the energy deposited in the!E and E
Silicon strip and CsI detectors. Reaction residues were
identified in the S800 spectrometer using the energy loss
and the time-of-flight (TOF) information of the focal plane
detectors [23]. Figures 1(a)–1(c) show the Q value spectra
for deuterons that stop in the thick Si detector for
pð34;36;46Ar; dÞ33;35;45Ar. The observed resolutions of 500,
470, and 410 keV FWHM for the transitions to the ground
states of 33;35;45Ar, respectively, agree with the expectation
from GEANT4 [24] simulations taking into account the finite
beam spot size, the energy resolution of the Si detectors,
energy loss, and angular straggling in the target.
Measurements using a 1:7 mg=cm2 carbon target reveal
that the background from reactions on carbon is negligible
when both deuteron and the heavy recoil are detected. The
absolute normalization of the cross section was achieved to
within 10% by directly counting the beam particles with a
microchannel plate detector [25] placed&10 cm upstream
of the target. This also provided the start TOF signal for
particles detected by the S800 spectrometer.

Figures 1(d)–1(f) show the differential cross sections for
the ground state transition of pð34Ar; dÞ33Ar,
pð36Ar; dÞ35Ar, and pð46Ar; dÞ45Ar, respectively. The solid
circles in the lower panels denote the data from present
measurements, and the open squares in Fig. 1(e) denote
previous 36Ar ðp; dÞ35Ar data in normal kinematics at
33:6 MeV=nucleon [21]. The agreement between the mea-
sured cross sections from the present work and Ref. [21]
for the first excited state is also very good [20]. For
pð46Ar; dÞ45Ar reaction, the ground state (f7=2) and the
first excited state (542 keV, p3=2) were not resolved for
center-of-mass angles larger than 8!. Fortunately, the l
values for the ground state (l ¼ 3) and first excited state
(l ¼ 1) are different, resulting in very different angular
distributions. Specifically, the angular distribution for the
excited state exhibits a deep minimum near !c:m: ¼

20!–27!, close to a factor of 100 smaller than that of
ground state; therefore, the cross sections for the ground
state could be unambiguously extracted [20].
The dashed curves in Figs. 1(d)–1(f) show the ADWA

calculations using the CH89 potential with the conven-
tional neutron bound-state Woods Saxon potential. The
solid lines in Figs. 1(d)–1(f) show the ADWA calculations
using the JLM microscopic potential and the bound-state
neutron potential, which have been constrained by Hartree-
Fock calculations. Both calculations reproduce the shape
of experimental angular distributions. Normalizing the
ADWA model calculations to the data results in the SF
values listed in Table I. Similar to previous analyses,
SFðJLMþ HFÞ values are about 30% smaller than the SF
(CH89) values. The ground state neutron SF’s for 34Ar and
36Ar were calculated in the sd-shell model space using
USDB effective interaction [26]. The ground state neutron
SF for 46Ar was calculated in the sd-pf model space using
the interaction of Nummela et al. [27].

TABLE I. Experimental and theoretical neutron spectroscopic factors (SF) and reduction factors (Rs) for ground state 34Ar, 36Ar and
46Ar.

(theo.) (expt.) (expt.)
Isotopes lj# Sn(MeV) !S (MeV) SF(LB-SM) SFðJLMþ HFÞ RsðJLMþ HFÞ SF(CH89) RsðCH89Þ

34Ar s1=2þ 17.07 12.41 1.31 0:85) 0:09 0:65) 0:07 1:10) 0:11 0:84) 0:08
36Ar d3=2þ 15.25 6.75 2.10 1:60) 0:16 0:76) 0:08 2:29) 0:23 1:09) 0:11
46Ar f7=2* 8.07 *10:03 5.16 3:93) 0:39 0:76) 0:08 5:29) 0:53 1:02) 0:10

FIG. 2 (color online). Reduction factors Rs ¼
SFðexptÞ=SFðLB-SMÞ as a function of the difference between
neutron and proton separation energies, !S. The solid and open
circles represent Rs deduced in JLMþ HF and CH89 approach
using the present transfer reaction data, respectively. The open
triangles denote the Rs from knockout reactions [11]. The
dashed line is the best fit of Rs of 32;34;46Ar from knockout
reactions. The use of different !S values from the present work
and knockout reactions in Ref. [11] is explained in Ref. [28].
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clei with 3 ! Z ! 28 [13,14]. For most excited states of
stable nuclei with 3 ! Z ! 24, the agreement is slightly
worse, but within 30% [14]. If one uses a different optical
model potential, developed by Jeukenne, Lejeune, and
Mahaux (JLM) [16] with conventional scale factors of
!V ¼ 1:0 and !W ¼ 0:8 for the real and imaginary parts,
and constrains the geometry of these potentials and that of
the transferred-neutron bound state by Hartee-Fock calcu-
lations [17], one observes an overall reduction #30% in
the measured ground state spectroscopic factors [18]. This
implies reduction factors Rs $ ðexperimentalSFÞ=ðLB'
SM SFÞ of 30% in the latter approach, similar to the
reductions in proton SF’s extracted from (e, e0p) measure-
ments [19].

Regardless of the choice of optical model potential or
the geometry of the mean-field potential for the transferred
neutron, systematic analyses of neutron transfer reactions
display no strong dependence of the reduction factor Rs on
the neutron-proton asymmetry of the nuclei [13,14,18].
However, systematic uncertainties inherent in comparing
SF’s from different experiments published over a period of
more than 40 years reduce the sensitivity of such studies.

The available transfer reaction data include very few
neutron-rich or neutron-deficient nuclei. To explore more

extreme asymmetries, we extracted the ground state neu-
tron SF’s for 34Ar and 46Ar from (p, d) reactions using
proton-rich 34Ar and neutron-rich 46Ar beams in inverse
kinematics. SF’s from knockout reactions on these nuclei
have been published, and a significant reduction of the
neutron SF for 34Ar has been reported [11]. The difference
between the neutron and proton separation energy (!S),
which characterizes the relative shift of neutron and proton
Fermi energies in these nuclei, is 12.41 and '10:03 MeV
for 34Ar and 46Ar, respectively. In previous studies of
transfer reactions, there were no nuclei with j!Sj (
7 MeV [13,18].
In the present experiments, the deuteron angular distri-

butions from pð34Ar; dÞ 33Ar and pð46Ar; dÞ45Ar transfer
reactions were measured using radioactive secondary
beams of 34Ar and 46Ar at 33 MeV=nucleon at the
National Superconducting Cyclotron Laboratory at
Michigan State University [20]. The pð36Ar; dÞ35Ar reac-
tion was also measured using a degraded 36Ar primary
beam at 33 MeV=nucleon to compare with data previously
measured in normal kinematics [21]. These beams were
transported and focused on polyethylene targets ðCH2Þn
targets with areal densities of 7:10 mg=cm2 for 34;36Ar
and 2:29 mg=cm2 for 46Ar reactions. Deuterons were de-

FIG. 1 (color online). Q-value spectrum [(a)–(c), top panels] and ground state deuteron angular distributions [(d)–(f), bottom panels]
of pð34;36;46Ar; dÞ33;35;46Ar. The open squares in panel (e) are data from previous normal kinematics experiments [21]. The solid and
dashed lines represent the calculations using JLMþ HF and CH89 approach, respectively.
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The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass

nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-

model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic

explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body

systems. This leads to repulsive contributions to the interactions among excess neutrons that change the

location of the neutron drip line from 28O to the experimentally observed 24O. Since the mechanism is

robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of

heavy elements in neutron-rich environments.

DOI: 10.1103/PhysRevLett.105.032501 PACS numbers: 21.10.!k, 21.30.!x, 21.60.Cs, 27.30.+t

One of the central challenges of nuclear physics is to
develop a unified description of all nuclei created in the
laboratory and the cosmos based on the underlying forces
between neutrons and protons (nucleons). This involves
understanding the sequences of isotopes in the nuclear
chart, Fig. 1, from the limits of proton-rich nuclei to the
neutron drip line. These limits have been established ex-
perimentally up to oxygen with proton number Z ¼ 8.
Mapping out the neutron drip line for larger Z [1] and
exploring unexpected structures in neutron-rich nuclei are
a current frontier in the physics of rare isotopes. The years
of discovery in Fig. 1 highlight the tremendous advances
made over the last decade.

Figure 1 shows that the neutron drip line evolves regu-
larly with increasing proton number, with an odd-even
bound-unbound pattern due to neutron halos and pairing
effects. The only known anomalous behavior is present in
the oxygen isotopes, where the drip line is strikingly close
to the stability line [2]. Already in the fluorine isotopes,
with one more proton, the drip line is back to the regular
trend [3]. In this Letter, we discuss this puzzle and show
that three-body forces are necessary to explain why 24O
[4,5] is the heaviest oxygen isotope.

Three-nucleon (3N) forces were introduced in the pio-
neering work of Fujita and Miyazawa (FM) [6] and arise
because nucleons are composite particles. The FM 3N
mechanism is due to one nucleon virtually exciting a
second nucleon to the !ð1232 MeVÞ resonance, which is
deexcited by scattering off a third nucleon, see Fig. 3(e).

Three-nucleon interactions arise naturally in chiral ef-
fective field theory (EFT) [7], which provides a systematic
basis for nuclear forces, where nucleons interact via pion
exchanges and shorter-range contact interactions. The re-
sulting nuclear forces are organized in a systematic expan-

sion from leading to successively higher orders, and
include the! excitation as the dominant part of the leading
3N forces [7]. The quantitative role of 3N interactions has
been highlighted in recent ab initio calculations of light
nuclei with A ¼ N þ Z & 12 [8,9].
We first discuss why the oxygen anomaly is not repro-

duced in shell-model calculations derived from micro-
scopic NN forces. This can be understood starting from
the stable 16O and adding neutrons into single-particle
orbitals (with standard quantum numbers nlj) above the
16O core. We will show that correlations do not change this
intuitive picture. Starting from 16O, neutrons first fill the
0d5=2 orbitals, with a closed subshell configuration at 22O
(N ¼ 14), then the 1s1=2 orbitals at 24O (N ¼ 16), and
finally the 0d3=2 orbitals at 28O (N ¼ 20). For simplicity,
we will drop the n label in the following.

FIG. 1 (color online). Stable and unstable nuclei with Z & 14
and neutron number N [35]. The oxygen anomaly in the location
of the neutron drip line is highlighted. Element names and years
of discovery of the most neutron-rich nuclei are given. The axis
numbers indicate the conventional magic numbers.
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In Fig. 2, we show the single-particle energies (SPEs) of
the neutron d5=2, s1=2 and d3=2 orbitals at subshell closures
N ¼ 8, 14, 16, and 20. The evolution of the SPEs is due to
interactions as neutrons are added. For the SPEs based on
NN forces in Fig. 2(a), the d3=2 orbital decreases rapidly as
neutrons occupy the d5=2 orbital, and remains well bound
from N ¼ 14 on. This leads to bound oxygen isotopes out
to N ¼ 20 and puts the neutron drip line incorrectly at 28O.
This result appears to depend only weakly on the renor-
malization method or the NN interaction used. We dem-
onstrate this by showing SPEs calculated in the G matrix
formalism [10], which sums particle-particle ladders, and
based on low-momentum interactions Vlow k [11] obtained
from chiral NN interactions at next-to-next-to-next-to-
leading order (N3LO) [12] using the renormalization
group. Both calculations include core polarization effects
perturbatively [including diagram Fig. 3(d) with the !
replaced by a nucleon and all other second-order diagrams]
and start from empirical SPEs [13] in 17O. The empirical
SPEs contain effects from the core and its excitations,
including effects due to 3N forces.

We next show in Fig. 2(b) the SPEs obtained from the
phenomenological forces SDPF-M [13] and USD-B [14]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2(a): As neutrons occupy the d5=2 orbital, with
N evolving from 8 to 14, the d3=2 orbital remains almost at
the same energy and is not well bound out to N ¼ 20. The
dominant differences between Figs. 2(a) and 2(b) can be
traced to the two-body monopole components, which de-
termine the average interaction between two orbitals. The
monopole components of a general two-body interaction V
are given by an angular average over all possible orienta-
tions of the two nucleons in orbitals lj and l0j0 [15],

Vmono
j;j0 ¼

X

m;m0
hjmj0m0jVjjmj0m0i=

X

m;m0
1; (1)

where the sum over magnetic quantum numbers m and m0

can be restricted by antisymmetry (see [16,17] for details).
The SPE of the orbital j is effectively shifted by Vmono

j;j0

multiplied by the occupation number of the orbital j0. This
leads to the change in the SPE and determines shell struc-
ture and the location of the drip line [16–19].
The comparison of Figs. 2(a) and 2(b) suggests that the

monopole interaction between the d3=2 and d5=2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction on
the d3=2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [20].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repulsive
monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion principle.
Figure 3(a) depicts the leading contribution to NN forces
due to the excitation of a !, induced by the exchange of
pions with another nucleon. Because this is a second-order
perturbation, its contribution to the energy and to the two-
neutron monopole components has to be attractive. This is
part of the attractive d3=2 " d5=2 monopole component
obtained from NN forces.
In nuclei, the process of Fig. 3(a) leads to a change of the

SPE of the j, m orbital due to the excitation of a core
nucleon to a !, as illustrated in Fig. 3(b) where the initial
valence neutron is virtually excited to another j0,m0 orbital.
As discussed, this lowers the energy of the j, m orbital
and thus increases its binding. However, in nuclei this
process is forbidden by the Pauli exclusion principle, if
another neutron occupies the same orbital j0, m0, as shown
in Fig. 3(c). The corresponding contribution must then be
subtracted from the SPE change due to Fig. 3(b). This is
taken into account by the inclusion of the exchange dia-
gram, Fig. 3(d), where the neutrons in the intermediate
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FIG. 2 (color online). Single-particle energies of the neutron
d5=2, s1=2 and d3=2 orbitals measured from the energy of 16O as a
function of neutron number N. (a) SPEs calculated from a G
matrix and from low-momentum interactions Vlow k. (b) SPEs
obtained from the phenomenological forces SDPF-M [13] and
USD-B [14]. (c),(d) SPEs including contributions from 3N
forces due to ! excitations and chiral EFT 3N interactions at
N2LO [25]. The changes due to 3N forces based on ! excitations
are highlighted by the shaded areas.
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state have been exchanged and this leads to the exchange of
the final (or initial) orbital labels j, m and j0, m0. Because
this process reflects a cancellation of the lowering of the
SPE, the contribution from Fig. 3(d) has to be repulsive for
two neutrons. Finally, we can rewrite Fig. 3(d) as the FM
3N force of Fig. 3(e), where the middle nucleon is summed
over core nucleons. The importance of the cancellation
between Figs. 3(a) and 3(e) was recognized for nuclear
matter in Ref. [21].

The process in Fig. 3(d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated in
Fig. 4(d). The resulting SPE evolution is shown in Fig. 2(c)

for the G matrix formalism, where a standard pion-N-!
coupling [22] was used and all 3N diagrams of the same
order as Fig. 3(d) are included. We observe that the repul-
sive FM 3N contributions become significant with increas-
ing N and the resulting SPE structure is similar to that of
phenomenological forces, where the d3=2 orbital remains
high. Next, we calculate the SPEs from chiral low-
momentum interactions Vlow k, including the changes due

to the leading (N2LO) 3N forces in chiral EFT [23], see
Figs. 3(f)–3(h). We consider also the SPEs where 3N-force
contributions are only due to ! excitations [24]. The lead-
ing chiral 3N forces include the long-range two-pion-
exchange part, Fig. 3(f), which takes into account the
excitation to a ! and other resonances, plus shorter-range
3N interactions, Figs. 3(g) and 3(h), that have been con-
strained in few-nucleon systems [25]. The resulting SPEs
in Fig. 2(d) demonstrate that the long-range contributions
due to ! excitations dominate the changes in the SPE
evolution and the effects of shorter-range 3N interactions
are smaller. We point out that 3N forces play a key role for
the magic number N ¼ 14 between d5=2 and s1=2 [26], and
that they enlarge theN ¼ 16 gap between s1=2 and d3=2 [5].
The contributions from Figs. 3(f)–3(h) (plus all ex-

change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons
in the core. This is also motivated by recent coupled-cluster
calculations [27], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.
Finally, we take into account many-body correlations by

diagonalization in the valence space. The resulting ground-
state energies of the oxygen isotopes are presented in
Fig. 4. Figure 4(a) (based on phenomenological forces)
implies that many-body correlations do not change our
picture developed from the SPEs: The energy decreases
to N ¼ 16, but the d3=2 neutrons added out to N ¼ 20

FIG. 3 (color online). Processes involving 3N contributions.
The external lines are valence neutrons. The dashed and thick
lines denote pions and ! excitations, respectively. Nucleon-hole
lines are indicated by downward arrows. The leading chiral 3N
forces include the long-range two-pion-exchange parts, diagram
(f), which take into account the excitation to a ! and other
resonances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).
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(d)  Schematic picture of two-
       valence-neutron interaction
       induced from 3N force

FIG. 4 (color online). Ground-state energies of oxygen isotopes measured from 16O, including experimental values of the bound 16–
24 O. Energies obtained from (a) phenomenological forces SDPF-M [13] and USD-B [14], (b) a Gmatrix and including FM 3N forces
due to ! excitations, and (c) from low-momentum interactions Vlow k and including chiral EFT 3N interactions at N2LO as well as only
due to ! excitations [25]. The changes due to 3N forces based on ! excitations are highlighted by the shaded areas. (d) Schematic
illustration of a two-valence-neutron interaction generated by 3N forces with a nucleon in the 16O core.
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The fujita-Miyazawa 3NF provides repulsion 
through Pauli screening of other 2NF terms:!

The oxygen dripline is at 24O, at odds with 
other neighbor isotope chains.  
 
 Phenomenological shell model interaction 
reflect this in the s.p. energies but no 
realistic NN interaction alone is capable of 
reproducing this…!
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Use effective degrees of freedom: p,n,pions

Effective Field Theory:  Bridges the non-perturbative low-energy regime of QCD with forces
                                      among nucleons

L =
⇤

k

ck

�
Q

�b

⇥k

Have a systematic expansion of the Hamiltonian 
in terms of diagrams

Construct the most general Hamiltonian which is 
consistent with the chiral symmetry of QCD

N3LO (Λ = 500Mev/c) 
chiral NN interaction  

(3NFs arise naturally at N2LO)!

N2LO (Λ = 400Mev/c) 
chiral 3N interaction  

SRG evolution to %=2.0 fm
-1!

VNN ! V3N 
induced !

V3N 
full!

“induced” 
Hamiltoninan!

“full” 
Hamiltoninan![Jurgenson,!Navrá7l,!Furnstahl,!!

Phys.!Rev.!LeM.!103,!082501!(2009);!
Hebeler,!Phys.!Rev.!C!85,!021002!(2012)]!

Chiral Nuclear forces - SRG evolved 



Convergence of s.p. spectra w.r.t. SRG 
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FIG. 6. (Color online) One-neutron separation energies with dominant spectroscopic factors versus neutron ESPEs in
16,20,22,24O. Each level is displayed for λ = 1.88 (open symbols), 2.00 (crosses), and 2.24 fm−1 (filled symbols). Results
are displayed for both HFB and second-order G-SCGF calculations. Panel (a): one- and two-body operators are retained in
the (initial and) transformed Hamiltonians. Panel (b): one-, two-, and three-body operators are retained in the initial and
transformed Hamiltonians.

tion between induced 4N interactions from the initial 2N
and 3N interactions, as discussed in Refs. [51, 52, 67, 68].
In order to verify that the pattern just discussed is not

specific to G-SCGF but reflects a generic aspect of the
many-body problem, we further compare in panel (b) of
Fig. 5 with MR-IM-SRG(2) calculations for the Hamil-
tonian containing 2N+3N forces. At the current level
of implementation, the MR-IM-SRG includes many-body
terms beyond G-SCGF, and allows an even more signif-
icant reduction of the scale dependence, while also ben-
efitting from the cancellation of induced 4N terms men-
tioned above. The residual running ranges from 50 keV
in 14O to 400 keV in 24O for λ ∈ [1.88, 2.24] fm−1. The
better many-body convergence of MR-IM-SRG(2) is also
reflected in the additional absolute binding [38, 53]. A
third-order G-SCGF truncation scheme will provide the
missing binding energy and will allow for a further atten-
uation of the scale dependence, as shown in Ref. [65] for
closed-shell oxygen isotopes.

C. Nuclear shell energies

First, we compare one-nucleon separation energies E±
k

with absolute ESPEs ecentp in 16,20,22,24O. For each spin

and parity, we consider the separation energy of the state
with the dominant strength13. As in the previous sec-
tion, we perform HFB and G-SCGF calculations using
the SRG-evolved 2N and 2N+3NHamiltonians, and com-
pile results from all four variants in Fig. 6, covering en-
ergies from −48MeV to +10MeV. Let us now list the
main lessons one can learn from these results.

• Combining panels (a) and (b), one can appreciate
the significant reduction of the scale dependence
of all one-nucleon separation energies obtained by
keeping 3N operators in the Hamiltonian and/or by
going from HFB to second-order G-SCGF.

• The running of ESPEs is qualitatively different
and quantitatively larger than for observable one-
nucleon separation energies. This is particularly
clear for the 2N+3N Hamiltonian: While the av-
erage spread of all displayed separation energies is
equal to 0.2MeV for λ ∈ [1.88, 2.24] fm−1, the av-
erage spread of ESPEs is equal to 1.1MeV. The

13 The two visible 5/2+ levels in 20O actually correspond to two dif-
ferent states with similar strength. The fact that two states with
equal strength appear near the Fermi energy is characteristic of
the superfluid and open-shell nature of 20O.

Cutoff dependence is reduces, indicating good convergence of many-body 
truncation and many-body forces!

NN terms (no induced 3NF)  "  !  NN+3NF fully included !
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! Ladder contributions to static self-energy are negligible (in oxygen)!
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! 3NF crucial for reproducing binding energies and driplines around oxygen 
 
!   cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]!

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)!

 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 
and   arXiv:1412.3002 [nucl-th] (2014) 

Results for the N-O-F chains 
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Benchmark of ab-initio methods in 
the oxygen isotopic chain  Benchmarking different ab-initio methods in the 

oxgyen chain

!

Hebeler,'Holt,'Menendez,'Schwenk,''Ann.'Rev.'Nucl.'Part.'Sci.'in'press'(2015)'

Calcula7ons'based'on'
chiral'NN'and'3NF'forces.'
Con7nuum'not'taken'into'
account''
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!   d3/2 raised by genuine 3NF 

!   cf. microscopic shell model [Otsuka 
et al, PRL105, 032501 (2010).]!

Results for the N-O-F chains 
 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 

and   arXiv:1412.3002 [nucl-th] (2014) 



! 3NF crucial for reproducing binding energies and driplines around oxygen 
 
!   cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]!

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)!

 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 
and   arXiv:1412.3002 [nucl-th] (2014) 

Results for the N-O-F chains 
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! Single particle spectra 
slightly to spread and 

 
!   systematic 

underestimation of radii!

 A. Cipollone, CB, P. Navrátil, arXiv:1412.3002 [nucl-th] (2014) 
Results for the oxygen chain 
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!  induced and full 3NF investigated 
! genuine (N2LO) 3NF needed to reproduce the energy curvature and S2n 

! N=20 and Z=20 gaps overestimated! 
! Full 3NF give a correct trend but over bind! 

Ab-initio calculation of the whole Ca: induced and full 3NF investigated 
!
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! First ab-initio calculation over a contiguous portion of the nuclear 
chart—open shells are now possible through the Gorkov-GF formalism 

Neighbouring Ar, K, Ca, Sc, and Ti chains 
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Two-neutron separation energies predicted by chiral  NN+3NF forces:!
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Neighbouring Ar, K, Ca, Sc, and Ti chains 

Works well in 
the pf shell!
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Two-neutron separation energies predicted by chiral  NN+3NF forces:!

! First ab-initio calculation over a contiguous portion of the nuclear 
chart—open shells are now possible through the Gorkov-GF formalism 
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Neighbouring Ar, K, Ca, Sc, and Ti chains 

Over estimated 
N=20 and Z=20 gaps!

Two-neutron separation energies predicted by chiral  NN+3NF forces:!

! First ab-initio calculation over a contiguous portion of the nuclear 
chart—open shells are now possible through the Gorkov-GF formalism 
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Two-neutron separation energies predicted by chiral  NN+3NF forces:!

Lack of deformation due 
to quenched cross-shell 
quadrupole excitations!

! First ab-initio calculation over a contiguous portion of the nuclear 
chart—open shells are now possible through the Gorkov-GF formalism 
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2N + 3NF (induced)! 2N + 3NF (FULL)!

-  sd-pf separation is 
overestimated even with 
leading order N2LO 3NF 

-  Correct increase of  
p3/2-f7/2 splitting (see 
Zuker 2003) 

 Neutron spectral distributions for 48Ca and 56Ni:!

The sd-pf shell gap 

+3NFs 
(NNLO)!

TABLE 1. Predicted matter radii (in fm) for 16O and 44Ca form SRG evolved 2N-
only interactions and by including induced and full 3NF. Experiment are charge radii.

2NF only 2+3NF(ind.) 2+3NF(full) Experiment
16O: 2.10 2. 41 2.38 2.718±0.210 [19]

44Ca: 2.48 2.93 2.94 3.520±0.005 [20]

v(3NF)
�⇥ ,⌅⇤ = ⇤

µ ⌥

1
2�i

Z

C⇤
d w�⇥µ,⌅⇤⌥ g⌥µ( ) . (2)

These definition extend the normal ordering approach of Ref. [11] by contracting with
fully correlated propagators, as opposed to a mean-field reference state. The matrix
elements u(3NF)

�⇥ and v(3NF)
�⇥ ,⌅⇤ are then added to the existing 1N and 2N forces with

the caveat that only interaction irreducible diagrams are retained to ensure the correct
symmetry factors in the diagrammatic expansion [15].

After obtaining the sp propagator g( ) the total binding energy can be calculated as
usual through the Koltun sum rule which—due the the presence of 3NF—acquires the
corrected form

EA
0 = ⇤

� ⇥

1
4�i

Z

C⇤
d 

⇥
u�⇥ + ⇤�⇥

⇤
g⇥�( ) � 1

2
⌅⇥A

0 |Ŵ |⇥A
0 ⇧ . (3)

Eq. (3) is still an exact equation. However, it requires to evaluate the expectation value
of the 3NF part of the hamiltonian < Ŵ > which is calculated here to first order in Ŵ .

Calculations for closed sub-shell oxygen isotopes were performed for the chiral N3LO
2NF [16] and N2LO 3NF [17] with the cutoff of 400 MeV as introduced in Ref. [11].
These were evolved to a cutoff ⇧ = 1.88 fm�1 using free-space similarity renormaliza-
tion group (SRG) [18]. We employed large model spaces of up to 12 harmonic oscillator
shells with frequency h̄ =20 MeV. Results for the induced 3NF are obtained from the
SRG evolution of the original 2NF only and are indicated by red squares in Fig. 1. These
are to be considered analogous to predictions of the sole N3LO 2NF and systematically
under bind the oxygen isotopes. Adding full 3NFs, that include in particular the two-
pion exchange Fujita-Miyazawa contribution, reproduces experimental binding energies
throughout the isotopic chain and the location of the neutron dripline. Table 1 shows that
although SRG evolved 2NFs alone underestimate the nuclear radii, results improve with
the inclusion of 3NFs.

Gorkov formalism for open-shell isotopes. The Gorkov’s approach handles intrinsic
degeneracies of open shell systems by allowing the breaking of particle number sym-
metry. One considers the grand canonical hamiltonian �int = Hint � µpẐ � µnN̂ and
constrains expectation values of proton and neutron number operators to the expected
values. This allows defining a superfluid state which already accounts for pairing corre-
lation and can be used as reference for Green’s function diagrammatic expansion. The
formalism for Gorkov self-consistent Green’s function (Gorkov-SCGF) theory up to sec-
ond order in the self-energy has been worked out in full in Ref. [12], for 2N interactions
only. First results are reported in [13].

CB!et-al.,!arXiv:1211.3315![nucl?th]!



! Large J in free space SRG matter (must pay attention to its convergence) 
! Overall conclusions regarding over binding and S2n remain but details change 
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For the NN + 3N -induced Hamiltonian shown in Fig. 1(a),
we overbind the Ca isotopes for the considered values of λSRG.
However, the ground-state energies vary significantly with the
resolution scale λSRG due to the omitted induced beyond-3N
forces. Other sources, such as the E3max truncation and
NO2B approximation, can be ruled out because they are only
weakly sensitive to λSRG variations [2,10–12]. Furthermore,
the λSRG dependence of MR-IM-SRG(2) and CR-CC(2,3) is
comparable despite their different many-body content, which
implies that missing many-body effects cannot be its primary
source, either.

In Fig. 1(b), we show that the inclusion of an initial 3N
force reduces the λSRG dependence drastically. As discussed
in Ref. [2], this is a result of cancellations between induced
forces from the initial NN and 3N interactions. With this
reduced dependence on λSRG we find an overbinding that is
robust under variations of λSRG and slowly increasing from
8% for 36Ca to 12% for 54Ca.

We now consider the two-neutron separation energies S2n

shown in Fig. 2. Such differential quantities filter out global
energy shifts due to missing induced many-body forces, as well
as many-body and basis truncations. For instance, the absolute
variation of the S2n with λSRG in the NN + 3N -induced case
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FIG. 2. (Color online) Two-neutron separation energies of the
Ca isotopes for the (a) NN + 3N -induced and (b) NN + 3N -full
Hamiltonian with "3N = 350 and 400 MeV/c, for a range λSRG =
1.88 fm−1 (open symbols) to 2.24 fm−1 (solid symbols). Panel (c)
compares MR-IM-SRG(2) and second-order GGF [6–8] results with
the same input Hamiltonian, but slightly different SRG evolution [54].
Experimental values (black bars) are taken from [26,50].

is much weaker than the variation of the ground-state energies
in Fig. 1(a).

The S2n for the NN + 3N -induced Hamiltonian in Fig. 2(a)
show a pronounced shell closure at 40Ca, with S2n dropping
by more than 20 MeV. The 48Ca shell closure is weak
in comparison, albeit close to experimental data, and there
are even weaker hints of shell closures in 52,54Ca (the
reference states exhibit pairing in both cases). The S2n

increase notably from 42Ca to 48Ca, and weakly from 50Ca
to 52Ca. This is an indication that interaction components
which are being accessed as neutrons are added to the pf
shell are too attractive, which is consistent with the observed
overbinding. However, shell structure effects clearly also play
a role, because the overbinding becomes less severe around
48Ca before increasing again with the neutron number N ,
while the S2n are always decreasing between shell closures
beyond 52Ca.

The NN + 3N -induced Hamiltonian produces a distinct
drip-line signal in Figs. 1(a) and 2(a): 62Ca is consistently
unbound by 5–6 MeV with respect to 60Ca for our range of
λSRG. The change in S2n is much larger than the uncertainties
due to many-body and basis truncations, or missing induced
forces (see below). The inclusion of continuum effects in
Ref. [19] reduced the energy of low-lying unbound states only
by about 2 MeV, which is insufficient to bind isotopes with
N > 40 with respect to 60Ca. Without the inclusion of initial
3N forces, the drip line is therefore expected at N = 40.

In Fig. 2(b), we show S2n for NN + 3N -full Hamiltonians
with "3N = 350 and 400 MeV/c. The N = 20 shell closure
is weakened by the 3N forces, although the calculated S2n are
still larger than experimental data. As before, we observe an
increase of the separation energies for 42−48Ca and 50−52Ca,
but we note that the overbinding consistently increases with
N in this case [Fig. 1(b)]. Interestingly, the S2n trends in these
nuclei are flatter for "3N = 350 MeV/c than for 400 MeV/c,
which suggests a change in the shell structure of these nuclei.
Overall, the S2n are consistent under this variation of the 3N
cutoff. In contrast to the NN + 3N -induced case, both 52Ca
and 54Ca exhibit magicity, in agreement with experimental and
shell model results [24–26,55,56].

For large neutron numbers, the trends shown in Figs. 1(b)
and 2(b) are different from the NN + 3N -induced case.
56−60Ca are unbound with respect to 54Ca by a mere 1–2 MeV
(also see [19]). Consequently, these isotopes are sensitive to
continuum effects and details of the interaction, which could
lead to phenomena like neutron halos as proposed in [57].
Figure 2(b) also shows that the flat plateau of the S2n for
56−60Ca in the vicinity of zero is remarkably robust under the
variation of the cutoff of the initial 3N interaction from 400 to
350 MeV/c.

The Ca isotopes were also studied recently with the second-
order Gor’kov Green’s function (GGF) method. The S2n

published in Ref. [8] were obtained with the same NN + 3N -
full Hamiltonian with "3N = 400 MeV/c, but a smaller 3N
Jacobi HO model space was used for the SRG evolution than in
our calculations. While the S2n systematics remain the same,
we show updated GGF results [54] in Fig. 2(c) to allow a more
quantitative comparison with our MR-IM-SRG(2) separation
energies. The two methods agree well for mid-shell Ca

041302-3

! Large J in free space SRG matter (must pay attention to its convergence) 
! Overall conclusions regarding over binding and S2n remain but details change 
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!   Error bar in predictions are 
from extrapolating the many-

body expansion to convergence 
of the model space. 

Two-neutron separation energies 
for neutron rich K isotopes 

Measurements  
           @ ISOLTRAP !

The top panel in Fig. 5 shows the experimental and
computed HFB S2n values for the potassium and calcium
isotopic chains. The theoretical S2n are computed for nuclei
of even neutron number. Self-consistent quasiparticle
blocking of the odd protons is performed for the potassium
isotopes, by using the procedure described in Ref. [27].
A strength of the pairing interaction of −200 MeV fm3

reproduces the very smooth S2n trend observed in Ref. [11].
It describes correctly the experimental values on average
but underestimates the drop at the crossing of the magic
neutron numbers. A reduction of the strength of the pairing
interaction (solid lines) leads to a significant improvement
of the description of the experimental S2n trend. The
addition of the tensor term with the SLy5 interaction leads
to a change in the wrong direction. However, a recent
work [28] has shown that the effect of the tensor term in
mean-field calculations strongly depends on the way it is
constrained to experimental data.
In addition to the empirical HFB approach, it is now

possible to perform calculations up to the medium mass
region using ab initio methods (see, e.g., Refs. [29–36]).

Thus, new mass calculations have been performed in the
ab initio GGF framework [31,37,38] that allow for the
study of open-shell nuclei. This method is particularly
suited for the present purpose due to the ease of calculating
odd-even systems, which also makes it a unique tool to
investigate neighboring isotopic chains.
In our calculations, the only input are two- and three-

body interactions fitted to properties of systems with
A ¼ 2, 3, and 4, without any further adjustments of the
parameters. GGF calculations have recently addressed
the region around Z ¼ 20 [31] and are extended here for
the first time beyond N ¼ 32 for potassium.
The present calculations made use of two- and three-

nucleon forces derived within chiral effective field theory at
next-to-next-to- and next-to-next-to-next-to-leading order
(N2LO and N3LO), respectively [39,40], extended to the
low-momentum scale λ ¼ 2.0 fm−1 by means of free-space
similarity renormalization-group techniques. The many-
body treatment is set by a second-order truncation in the
GGF self-energy expansion [37]. Model spaces up to 14
harmonic oscillator shells were employed, and three-body
interactions were restricted to basis states with E3max ≤ 16.
Infrared extrapolations of the calculated ground state
energies were subsequently performed following
Ref. [41]. We note that, in the present case, this procedure
is formally defective due to the different truncations of one-
and three-body model spaces. Nevertheless, we find that
the trend expected from Ref. [41] is qualitatively repro-
duced, although with larger extrapolation uncertainties.
This is in agreement with other calculations [35]. As an
example, we obtain binding energies of 439.52(0.71) MeV
for 51K and 443.31(0.85) MeV for 53K. This overbinding of
about 0.7 MeV=A is a general feature of currently available
chiral interactions, and it is a constant effect through-
out the whole isotopic chain that cancels in separation
energies [31,35,36].
GGF results for S2n of 47;49;51;53K and 48;50;52;54Ca are

shown in the bottom panel in Fig. 5 and are all resulting
from the infrared extrapolation. Different sources of
uncertainty affect the present theoretical results (see
Refs. [31,38] for a detailed discussion). In particular, this
method breaks particle-number symmetry (like HFB
theory) and generates the correct expectation values for
the proton and neutron numbers only on average, with a
finite variance. However, the associated errors are expected
to cancel with good accuracy for energy differences (such
as S2n). The uncertainties indicated in Fig. 5 are uniquely
those originating from the extrapolation fit and range
between 0.4 and 1.5 MeV with increasing mass number.
In general, GGF calculations are in fair agreement with
measured S2n, with the mismatch at 53K being on the order
of the truncation error. The significant drop from 51K to 53K
is qualitatively reproduced but overestimated by theory,
which also leads to an overestimation of the empirical shell
gap for potassium. In contrast to the N ¼ 28 gap, which is
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FIG. 5 (color online). Two-neutron separation energies for the
isotopic chains of potassium (left axes) and calcium (right axes);
note the shifted scales. Open symbols, data from Ref. [21]; filled
symbols, calcium data from Ref. [11] and new mass data from
this work. Top: With S2n values from HFB calculations using the
SLy4 (green lines) and the SLy5 (red lines) interaction, with
volume-type delta pairing of strength V0 ¼ −150 MeV fm3

(solid lines) or V0 ¼ −200 MeV fm3 (dashed lines). Bottom:
With S2n values obtained from ab initio Gorkov-Green function
theory (see the text for details).
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Theory tend to overestimate the 
gap at N=34, but overall good!
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imental data on the energy of the first-excited state is
needed to further test the validity of both models.

Very recently, ab initio calculations of open-shell nu-
clei have become possible in the Ca region [48] on the
basis of the self-consistent Gorkov-Green‘s function for-
malism [49]. State-of-the-art chiral two- (NN) [50, 51]
and three-nucleon (3N) [52] interactions adjusted to two-
, three- and four-body observables (up to 4He) are em-
ployed, without any further modification, in the com-
putation of systems containing several tens of nucleons.
We refer to Ref. [48] for further details. In the present
study, Gorkov-Green’s function calculations of the low-
est 1/2+ and 3/2+ states in 43�51K have been performed
by removing a proton from 44�52Ca. Similarly to Fig. 5,
the upper panel of Fig. 6 compares the results to exper-
imental data. The inversion of the states at N = 28 is
not obtained in the calculation, because odd-A spectra
are systematically too spread out [48]. This shortcom-
ing actually correlates with the systematic overbinding of
neighboring even-A ground-states. Still, one observes the
correct relative evolution of the 1/2+ state with respect to
the 3/2+ when going from 43K to 47K and then from 47K
to 49K. As a matter of fact, rescaling the theoretical re-
sults to the experimental ones at, e.g. 47K, demonstrates
that the relative evolution of the two states is quantita-
tively well reproduced. This result is very encouraging for
those first-ever systematic ab initio calculations in mid-
mass nuclei. Indeed, it allows one to speculate that cor-
recting in the near future for the systematic overbinding
produced in the Ca region by currently available chiral
EFT interactions, and thus the too spread out spectra of
odd-A systems, might bring the theoretical calculation in
good agreement with experiment. Although this remains
to be validated, it demonstrates that systematic spec-
troscopic data in mid-mass neutron-rich nuclei provide
a good test case to validate/invalidate specific features
of basic inter-nucleon interactions and innovative many-
body theories.

To complement the above analysis, the lower panel
of Fig. 6 provides the evolution of proton 1d

3/2 and
2s

1/2 shells. These two e↵ective single-particle energies
(ESPEs) recollects [49] the fragmented 3/2+ and 1/2+

strengths obtained from one-proton addition and removal
processes on neighboring Ca isotones. Within the present
theoretical description, the evolution of the observable
(i.e. theoretical-scheme independent) lowest-lying 1/2+

and 3/2+ states does qualitatively reflect the evolution
of the underlying non-observable (i.e. theoretical-scheme
dependent) single-particle shells. As such, the energy gap
between the two shells decreases from 4.81MeV in 43K to
2.39MeV in 47K, which is about 50% reduction. Adding
4 neutrons in the ⌫2p

3/2 causes the energy di↵erence to
increase again to 4.49MeV.

FIG. 6. (color online) Upper panel: energy di↵erence between
the lowest 1/2+ and 3/2+ states obtained in 43�51K from ab
initio Gorkov-Green‘s function calculations and experiment.
Lower panel: ⇡d

3/2 and ⇡s
1/2 e↵ective single-particle energies

in 43�51K.

B. Even-A

The configuration of the even-K isotopes arises from
the coupling between an unpaired proton in the sd shell
with an unpaired neutron. Di↵erent neutron orbits are
involved: starting from 38K where a hole in the ⌫1d

3/2

is expected, then gradually filling the ⌫1f
7/2 and finally,

the ⌫2p
3/2 for 48,50K.

In order to investigate the composition of the ground-
state wave functions of the even-K isotopes, we first com-
pare the experimental magnetic moments to the empiri-
cal values. Based on the additivity rule for the magnetic
moments (g factors) and assuming a weak coupling be-
tween the odd proton and the odd neutron, the empirical
magnetic moments can be calculated using the following
formula [53]: µ

emp

= g
emp

· I, with

g
emp

= g(j⇡)+g(j⌫)
2

+ g(j⇡)�g(j⌫)
2

j⇡(j⇡+1)�j⌫(j⌫+1)

I(I+1)

, (5)

where g(j⇡) and g(j⌫) are the g factors of the nuclei with
an odd proton or neutron from the corresponding orbit
and I the total spin. The calculations were performed
using the measured g factors of the neighboring isotopes
with the odd-even and even-odd number of particles in j⇡
and j⌫ , respectively. For the empirical values of unpaired
protons, results from Table III were used. The g factors
for the odd neutrons were taken from the corresponding
Ca isotones [54–57]. The obtained results with the list of
isotopes used for di↵erent configurations are presented in
Table VI.
A comparison between the experimental and empiri-

cal g factors is shown in Fig. 7. For 38K, the empirical
value calculated from 39K and 39Ca provides excellent

J. Papuga, et al., Phys. Rev. Lett. 110, 172503 (2013);  
Phys. Rev. C 90, 034321 (2014) 
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discussed by Smirnova et al. in Ref. [11], where a degen-
eracy of the ⇡2s

1/2 and ⇡1d
3/2 levels is predicted to occur

at N = 28 and returns to a ”normal” ordering (⇡2s
1/2

below ⇡1d
3/2) approaching N = 40 (Fig 1(c) in Ref. [11]).

The reordering of the orbitals is driven by the monopole
part of the proton-neutron interaction, which can be de-
composed into three components: the central, vector and
tensor. Initially Otsuka et al. [12] suggested that the
evolution of the ESPEs is mainly due to the tensor com-
ponent. However, in more recent publications [11, 13, 14]
several authors have shown that both the tensor term as
well as the central term have to be considered.

Regarding the shell model, potassium isotopes are ex-
cellent probes for this study, with only one proton less
than the magic number Z = 20. Nevertheless, little
and especially conflicting information is available so far
for the neutron-rich potassium isotopes. Level schemes
based on the tentatively assigned spins of the ground
state were provided for 48K [15] and 49K [16]. In addi-
tion, an extensive discussion was presented by Gaudefroy
[17] on the energy levels and configurations of N = 27, 28
and 29 isotones in the shell-model framework and com-
pared to the experimental observation, where available.
However, the predicted spin of 2� for 48K, is in contra-
diction with I⇡ = (1�) proposed by Królas et al. [15].
In addition, the nuclear spin of the ground state of 50K
was proposed to be 0� [18, 19] in contrast to the recent
� decay studies where it was suggested to be 1� [20].
The ground state spin-parity of 49K was tentatively as-
signed to be (1/2+) by Broda et al. [16], contrary to
the earlier tentative (3/2+) assignment from beta-decay
spectroscopy [21]. For 51K, the nuclear spin was tenta-
tively assigned to be (3/2+) by Perrot et al. [19].

Our recent hyperfine structure measurements of potas-
sium isotopes using the collinear laser spectroscopy tech-
nique provided unambiguous spin values for 48�51K and
gave the answer to the question as to what happens with
the proton sd orbitals for isotopes beyond N = 28. By
measuring the nuclear spins of 49K and 51K to be 1/2 and
3/2 [22] respectively, the evolution of these two states in
the potassium isotopes is firmly established. This is pre-
sented in Fig. 1 for isotopes from N = 18 up to N = 32
where the inversion of the states is observed at N = 28
followed by the reinversion back at N = 32. In addition,
we have confirmed a spin-parity 1� for 48K and 0� for
50K [26]. The measured magnetic moments of 48�51K
were not discussed in detail so far and will be presented
in this article. Additionally, based on the comparison
between experimental data and shell-model calculations,
the configuration of the ground-state wave functions will
be addressed as well. Finally, ab initio Gorkov-Green’s
function calculations of the odd-A isotopes will be dis-
cussed.
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FIG. 1. (color online) Experimental energies for 1/2+ and
3/2+ states in odd-A K isotopes. Inversion of the nuclear spin
is obtained in 47,49K and reinversion back in 51K. Results are
taken from [16, 23–25]. Ground-state spin for 49K and 51K
were established [22].
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FIG. 2. (color online) Schematic representation of the setup
for collinear laser spectroscopy at ISOLDE.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear
laser spectroscopy beam line COLLAPS [27] at
ISOLDE/CERN. The radioactive ion beam was produced
by 1.4-GeV protons (beam current about 1.7µA) im-
pinging on a thick UC

x

target (45 g/cm2). Ionization of
the resulting fragments was achieved by the surface ion
source. The target and the ionizing tube were heated to
around 2000 0C. The accelerated ions (up to 40 kV) were
mass separated by the high resolution separator (HRS).
The gas-filled Paul trap (ISCOOL) [28, 29] was used
for cooling and bunching of the ions. Multiple bunches
spaced by 90ms were generated after each proton pulse.
The bunched ions were guided to the setup for collinear
laser spectroscopy where they were superimposed with
the laser. A schematic representation of the beam line
for collinear laser spectroscopy is shown in Fig. 2.
A cw titanium:sapphire (Ti:Sa) laser was locked to the

4s 2S
1/2 ! 4p 2P

1/2 transition at 769.9 nm, providing
around 1mW power into the beam line. An applied
voltage of ±10 kV on the charge exchange cell (CEC)
provided the Doppler tuning for the ions, which were
neutralized through the collisions with potassium vapor.
Scanning of the hfs was performed by applying an addi-
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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