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Chapter 1

Preliminaries: Basic Formulae
of Second Quantization and
Pictures

Many-body Green’s functions (MBGF) are a set of techniques that originated
in quantum field theory but have also found wide applications to the many-
body problem. In this case, the focus are complex systems such as crystals,
molecules, or atomic nuclei. However, many-body Green’s functions still
share the same language with elementary particles theory, and have several
concepts in common. To apply this formalism, one needs to use of the cre-
ation/destruction operators of second quantization and the Heisenberg and
interaction pictures of quantum mechanics.

The purpose of this chapter is to gather the basic results of second quan-
tization and pictures, so that they can be used for reference later on. One
the way, we will introduce some of the notation to be used in our discussions.

1.1 A Note on Single-Particle Indices

The following conventions will be used in most of these notes.

When needed, the boldface r will be used to refer to the position of
particles in coordinate space and k for momentum space. When internal
degrees of freedom are present, x≡(r, σ, τ , ...) will be used. However,
most of the results to be discussed are valid for any general single particle
basis. Thus, we will use greek indices, α,β,γ,. . ., to refer to all the states in
the baisis. In general, {αi} is a complete set of orthonormalized one-body
wave functions and will be assumed to be discrete, unless it implies a loss of
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generality.1

In many-body theory one often starts from a product wave function de-
cribing a set of non interacting particles that occupy given orbits (called the
reference state). This could be a Slater determinant for fermions or a macro-
scopic condensate orbit for bosons. It is customary to reserve the latin letters
h,i,j,k,l for the levels occupied in the reference state (which are called hole
orbits) and m,n,p,q,. . . for the unoccupied orbits of the basis (the particle
orbits).

Since removing a hole orbit from the reference state leads to a systems
with fewer particles, we extend the use latin hole indices to indicate states
of N − 1,N − 2,. . . particles. Here, N is the number of particles in the
referecnce state. Analogously, particle indices will be used to distinguish
states of N ,N + 1,N + 2,. . . particles. This notation will include labelling
exact many-body eigenstates of the Hamiltoninan. It should not be felt as
unnatural: the eigenstates ofN−1 andN+1 bodies can be seen as excitations
of the systems and directly are related to quasiholes and suasiparticle in the
Landau sense.

1.2 Second Quantization

Most of the processes described by many-body Green’s functions involve the
transfer of particles to/from the intital sysytem. Thus it is useful to extend
the Hilbert space to allow for states with different particle numbers. In fact
we will use the Fock space which includes a complete basis set for each possi-
ble number of particles, from zero (the vacuum) to infinity. The basis states
of the Fock space can be taken to be product of one-body wave functions
and must be automatically symmetrized or antisymmetrized (for bosons and
fermions, respectively). Using Dirac’s bra and ket notation one can specify
the basis states just by saying how many particles nα are contained in each
single particle orbit α. For example, the state2

|nα1 = 3, nα2 = 0, nα3 = 2, nα4 = 2, nα5 = 0, . . . 〉 , (1.1)

contains a total of N=
∑
i nαi=7 particles, distributed over the orbits α1, α3

and α4. Obviously this must be a bosons state, or it would violate the Pauli
exclusion principle with disastrous consequences. Note that, also due to

1What the {αi} represent depends on the systems one wants to study (e.g., harmonic
oscillator wave functions for nucleons in a nucleus or atoms in a trap, orthogonalized
gaussian orbits in a molecule, Bloch vectors in a crystal, and so on...).

2In this case the corresponding product wave function would be the symmetrized
S[φα1(r1)φα1(r2)φα1(r3)φα3(r4)φα3(r5)φα4(r6)φα4(r7)].
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Pauli, we can only say how many particles are in each orbit but not “which”
particles.

The completeness relation in Fock space is

I =
nmax∑
n1=0

nmax∑
n2=0

nmax∑
n3=0

· · ·
nmax∑
nα=0

· · · (1.2)

|n1, n2, n3, . . . nα, . . . 〉〈n1, n2, n3, . . . nα, . . . |

and includes the vacuum state |0〉 ≡ |nα = 0,∀α〉. nmax is 1 for fermions and
∞ for bososns. States with different number of particles are orthogonal by
definition.

The second quantization formalism introduces the creation operator c†α
which adds a particle in state α to a vector of the Fock space. Its self-
adjoint cα removes a particle from the same state and is called destruction or
annihilation operator. Their effect on Fock states is the same as that for the
cration and annihilation of harmonic oscillator quanta in the linear oscillator
problem

c†α|n1, n2, . . . nα, . . .〉 =
√
nα + 1 |n1, n2, . . . nα + 1, . . .〉 , (1.3)

cα|n1, n2, . . . nα, . . .〉 =
√
nα |n1, n2, . . . nα − 1, . . .〉 , (1.4)

where we momentarily neglect a conventional signs that appears for fermions
[see Eqs. (1.11) and (1.12) below]. Note that destroying and empty states
(cα|nα = 0〉 = 0) gives the c-numer zero, and not the vacuum state |0〉.
From these relations it follows that c†αcα|nα〉 = nα|nα〉 yields the number of
particles the state α. The operator for the total number of particles is then,

N =
∑
α

c†αcα . (1.5)

The eigenvalues of N are non negative integers and its eigenstates are wave
functions with a definite number of particle. By applying Eqs. (1.3) and (1.4)
to these states, one can see that the following commutation relations must
apply,

[N, cα] = −cα ,
[
N, c†α

]
= c†α . (1.6)

Equations from (1.2) to (1.6) are valid for both boson and fermions.
Eq. (1.4) makes it impossible to create Fock states by removing a parti-
cle from an alredy empty orbit. However, there is still no restriction on the
nuber of particles that can be added in the case of Fermions. The correct
Pauli statistics is imposed by choosing different commutation and anticom-
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mutation relations3,[
cα, c

†
β

]
= δα,β , [cα, cβ] =

[
c†α, c

†
β

]
= 0 , for bososns (1.7){

cα, c
†
β

}
= δα,β , {cα, cβ} =

{
c†α, c

†
β

}
= 0 , for fermions (1.8)

With both these relations, Eq. (1.6) is still valid. At the same time the an-
ticommutator c†αc

†
β = −c†βc†α (⇒ c†αc

†
α=0) imposes the antisymmetrization of

fermionic wave functions and restrict the occupation of each orbit to nα=0,1
only.

To create the basis (1.2), one simply acts several times on |0〉 with creation
operators. The normalized many-body states are given by

|n1, n2, · · · , nα, · · ·〉 =
1√

n1! n2! . . . nα! . . .
(c†1)n1(c†2)n2 · · · (c†α)nα · · · |0〉 ,

(1.9)
which simplifies in the fermion case because it can only be nα!=1,

|n1, n2, · · · , nα, · · ·〉 = (c†1)n1(c†2)n2 · · · (c†α)nα · · · |0〉 . (1.10)

Note that only for the case of bosons Eq. (1.9) is independent on the order
in which the creations operators are applied. For Fermoins a phase sign
is introduced by changing the order and one must put extra care to avoid
confusions. Ususally one chooses a specific order in the {α} and then stick
to it. Once this is done the correct fermionic version of Eqs. (1.3) and (1.4)

c†α|n1, n2, . . . nα, . . .〉 = δ0,nα(−)sα
√
nα + 1|n1, n2, . . . nα + 1, . . .〉 , (1.11)

cα|n1, n2, . . . nα, . . .〉 = δ1,nα(−)sα
√
nα |n1, n2, . . . nα − 1, . . .〉 , (1.12)

with
sα = n1 + n2 + n3 + · · ·+ nα−1 . (1.13)

The creation operator for a particle in position r of coordinate space is
indicated by ψ(r). If {uα(r)} are the single particle wave functions of a
general orthonormal basis, the creation (and annihilation) operators in the
two representation are related via a unitary transormation,

ψ†(r) =
∑
α

c†αu
∗
α(r) , (1.14)

c†α =
∫
dr ψ†(r)uα(r) . (1.15)

3Here, [A,B] ≡ AB−BA and {A,B} ≡ AB−BA are the commutator and anticommu-
tors, respectively. Later on we will also use the more compact notation [A,B]∓ ≡ AB∓BA
to indicate both at the same time. Otherwise, [ , ] without sign will always be a com-
mutator.
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It follows that to create a particle in a state α one simply superimposes
eigenstates of position with weights given by the corresponding wave func-
tion,

|α〉 = c†α|0〉 =
∫
dr uα(r)|r〉 . (1.16)

where
|r〉 = ψ†(r)|0〉 . (1.17)

is a particle localized in r. Analogously, one can extract the wave funcion
corresponding to a one-body Fock state by

uα(r) = 〈r|α〉 . (1.18)

These relations are extentded to states of any particle number, where

|r1, r2, . . . rN〉 =
1√
N !
ψ†(r1)ψ†(r2) · · ·ψ†(rN)|0〉 . (1.19)

and the first quantization wave function of an N-body Fock state is

〈r1, r2, . . . rN |n1, n2, . . .〉 = Φ(r1, r2, . . . rN ; {n}) . (1.20)

1.2.1 Examples

• If |r′〉 and |p〉 are eigenstates of position and momentum one has

〈r′|r〉 = δ(r− r′) , (1.21)

〈r|p〉 =
1

(2πh̄)3/2
eirp/h̄ . (1.22)

• Given the Fock state |αβ〉=c†αc
†
β|0〉, the corresponding antisymmetrized

wave function in first quantization is

Φαβ(r1, r2) = 〈r1r2|αβ〉 (1.23)

=
1√
2
〈0|ψ(r2)ψ(r1)c†αc

†
β|0〉 (1.24)

=
1√
2

∑
γδ

uγ(r1)uδ(r2)〈0|cδcγc†αc
†
β|0〉 . (1.25)

Using the (anti)commutator relations (1.7) and (1.8) one finds that
cδcγc

†
αc
†
β|0〉=(δα,γδβ,δ ± δα,γδβ,δ) |0〉, with the upper (lower) sign refer-

ring to bosons (fermions). This leads to the usual symmetrized and
antisymmetrized product wave functions of Slater type,

Φαβ(r1, r2) =
1√
2
{uα(r1)uβ(r2)± uβ(r1)uα(r2)} . (1.26)
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1.3 Operators in Fock Space

1.3.1 Operators

Let O = O(r) be a one-body operator that acts independently on each par-
ticle of the systems. The expression for its matrix elements in coordinate
systems depends on the number of particles N and is

〈r′1, r′2, . . . r′N |O|r1, r2, . . . rN〉 =

 N∏
j=1

δ(ri − r′i)

 N∑
i=1

O(ri) . (1.27)

The corresponding results for a generic Fock states can be related to the
latter by inserting a completeness relation based on the position states (1.19),

〈n′1, n′2, . . . |O|n1, n2, . . .〉

=
N∑
i=1

∫
dr1

∫
dr2 · · ·

∫
drN〈n′1, n′2, . . . |r1, r2, . . . rN〉

×O(ri)〈r1, r2, . . . rN |n1, n2, . . .〉 (1.28)

=
1

N !

N∑
i=1

∫
dr1

∫
dr2 · · ·

∫
drN〈n′1, n′2, . . . |ψ†(r1)ψ†(r2) · · · ψ†(rN)|0〉

×O(ri)〈0|ψ(r)N · · ·ψ(r)2ψ(r)1|n1, n2, . . .〉

=
1

(N − 1)!

∫
dr1

∫
dr2 · · ·

∫
drN〈n′1, n′2, . . . |ψ†(r1)ψ†(r2) · · · ψ†(rN)

×O(r1)ψ(r)N · · ·ψ(r)2ψ(r)1|n1, n2, . . .〉

In the last line we have removed the sum over the interacting particle since
it gives N times the same contribution. The projection on the vacuum state
|0〉〈0| can be subsituted with the identity becose the operators ψ(r) (ψ(r)†)
have already annihilated all the particle contained in the ket (bra) vectors.

We still need to perform the integration on the coordinates r2 to rN .
This is easlily done remembering that

∫
drψ(r)†ψ(r) is the particle number

operator in coordinate space (1.5). One starts integrating over rN to get a
factor of 1, then the integral over rN−1 gives 2, and so on up to cancelling
the factor (N − 1)! at the denomonator. Finally,

〈n′1, n′2, . . . |O|n1, n2, . . .〉 =
∫
dr 〈n′1, n′2, . . . |ψ(r)†O(r)ψ(r)|n1, n2, . . .〉 .

(1.29)
The one-body operator in second quantization representation is therefore

O =
∫
dr ψ(r)†O(r)ψ(r)

=
∑
αβ

oαβ c
†
αcβ , (1.30)
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where oβα are the metrix elements in the generic basis {α}, as can be verified
inseting Eq. (1.14) in the latter equation

oαβ =
∫
dr u∗α(r)O(r)uβ(r) . (1.31)

For a two body operator (symmetric in the exchange of ri and rj),

V =
N∑
i<j

V (ri, rj) , (1.32)

one obtains

V =
∫
dr1

∫
dr2ψ(r1)†ψ(r2)†V (ri, r2)ψ(r2)ψ(r1)

=
1

2

∑
αβγδ

ṽαβ,γδ c
†
αc
†
βcδcγ (1.33)

=
1

4

∑
αβγδ

vαβ,γδ c
†
αc
†
βcδcγ ,

with the matrix elements

ṽαβ,γδ =
∫
dr1

∫
dr2u

∗
α(r1)u∗β(r2)V (r1, r2)uγ(r1)uδ(r2) , (1.34)

Note the particular order of the destruction operators in Eq. (1.33), which
is inverted with respect to the creation ones. Attention must be paied to
this in case of fermionic systems since this introduces an extra phase (for
bososn the ordering is irrelevant). In many case is turns out to be more
convenient including the 1

4
factor and employing the (anti)symmetrized form

to the matrix elements

vαβ,γδ =
∫
dr1

∫
dr2u

∗
α(r1)u∗β(r2)V (r1, r2) [uγ(r1)uδ(r2)± uδ(r1)uγ(r2)] ,

(1.35)
where + (-) refer to bosons (fermions).

When also a three-body interaction (symmetric in the particle indeces)
is necessary,

W =
N∑

i<j<k

W (ri, rj, rk) , (1.36)

the corresponding operator in second quantization is

W =
1

3!

∑
αβγµνλ

w̃αβγ,µνλ c
†
αc
†
βc
†
γcλcνcµ , (1.37)
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with

w̃αβγ,µνλ =
∫
dr1

∫
dr2

∫
dr3

×u∗α(r1)u∗β(r2)u∗γ(r3)W (r1, r2, r3)uµ(r1)uν(r2)uλ(r3) . (1.38)

(1.39)

1.3.2 Expectation values

Let’s asume that that we have a state |ΨN〉 of a system of N particles. This
does not need to be a basis vector and can be any Fock state, for example, an
exact solution of the Scrödinger equation. The expectation value of a one-
body operator O can be calculated with a simple sum involving the one-body
reduced density matrix, which is defined as

ραβ = 〈ΨN |c†βcα|ΨN〉 . (1.40)

By comparing to Eq. (1.30), it is easily seen that

〈ΨN |O|ΨN〉 =
∑
αβ

ρβαoαβ = Tr (ρO) . (1.41)

The diagonal matrix elements of the density matrix ραα give the ex-
pecteation value of the operator c†αcα, which is interpreted as quantifying of
the occupation of the single particle orbit α in the state |ΨN〉. From Eq. (1.5)
one finds the obvious results that summing over all occupations must give
the total number of particles,

Tr (ρ) =
∑
α

ραα = N . (1.42)

These results are particularly interesting since the theory of many-body
Green’s functions does not attempt any calculation of the full many-body
wave function. Rather the focus is on determining directly quantities ralted
to the density matrices, which are calculated in terms of basic excitation
modes of the system. Thus, even if one does not compute the complete
ground state wave function, Eqs. (1.41) and (1.42) tell us that it is still
possible to extract the expectation values of interesting observables.

It is also useful to insert the complete set of eigenstates {|ΨN−1
k 〉} of the

(N-1)-particle system into (1.40)

ραα = 〈c†αcα〉 =
∑
k

∣∣∣〈ΨN−1
k |cα|ΨN〉

∣∣∣2 . (1.43)
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This result is interesting because the overlap function 〈ΨN−1
k |cα|ΨN〉 gives the

probablility amplitude that the system collapses into a state |ΨN−1
k 〉 after a

particle has been removed from the state α. This quantity can be probed
in a measurment that involves the suddend ejection of a particle.4 One also
sees that what is observed in particle emission experiments to one final state
should not be directly interpreted as occupation numbers, since Eq. (1.43)
requires a sum over all possible final states.

In an analogous way, we introduce the two-body reduced density matrix

Γγδ,αβ = 〈ΨN |c†αc
†
βcδcγ|ΨN〉 . (1.44)

With this definition the expectation value of a two-body Hamiltonian be-
comes5

〈ΨN |H|ΨN〉 =
∑
αβ

ρβαtαβ +
1

4

∑
αβγδ

Γγδ,αβvαβ,γδ

= Tr (ρT ) +
1

4
Tr (ΓV ) . (1.45)

1.4 Pictures in Quantum Mechanics

The time evolution of a quantum mechanical system is determined by the
Scrödinger equation. There exist different approaches to keep track of time
dependence, which are commonly referred to as pictures. The three most
relevant are the Schrödinger, the Heisenberg and the interaction (also called
Dirac) pictures. The last two are important for our discussions because they
are used in the definition of Green’s functions and to develop their expansion
in Feynman diagrams.

In the Scrödinger picture the wave function carries all the time depen-
dence, as described by the corresponding equation,

ih̄
d

dt
|ΨS(t)〉 = H |ΨS(t)〉 . (1.46)

If one knows the state of the system |Ψt0〉 = |ΨS(t = t0)〉 at time t0 the
evolution at later times is fixed by Eq. (1.46). This can be formally solved
to give the result

|ΨS(t)〉 = U |Ψt0〉 , (1.47)

4This is only a first order approximation to the measured cross section and care must
be taken to undertsand additional effects, such as final state interactions. Nevertheless,
knock out experiments are one of the best tools available to understand the many-body
dynamics of a system.

5Note that the factor 1
4 appears since we are using fully symmetrized (or antisym-

metrized) matrix elements of V , Eq. (1.35).
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where U is the time evolution operator

U ≡ U(t, t0) = e−iH(t−t0)/h̄ . (1.48)

The idea of the Heisenberg picture is simply the opposite: keeping the
wave function constant at the time t0 while the operators evolve. Since U is a
unitary operator, one simply inverts the time propagation of the Schrödinger
state and instead applies it to the operator,

|ΨH〉 = U † |ΨS(t)〉 = |Ψt0〉 , (1.49)

OH(t) = U † OS U . (1.50)

With these definitions the expectation values of Heisenberg operators remain
unchanged and commutation rules evolve according to Eq. (1.50), as long as
they are evaluated at equal times [AH(t), BH(t)]∓ = U † [AS, BS]∓ U . The
evolution of Heisenberg operators is given by

ih̄
d

dt
OH(t) =

[
OH(t), H

]
. (1.51)

which is valid only for time-independent Schrödinger operators (OS 6= OS(t)).
Note that the Heisenberg Hamiltonian does not depend of the time since it
commutes with itself.

In the interaction picture is a hybrid between the former two. In this
case one splits the hamiltonian in two parts, H = H0 + H1. One drives
the evolution of the operators and the other the evolution of wave functions.
Let H0 be the part that applies to the operators. Thus one defines the
corresponding time evolution operator

U0 ≡ U0(t, t0) = e−iH0(t−t0)/h̄ , (1.52)

which is applied to the operators and used to partially invert the evolution
of the Schrödinger state (the correct expression for Ũ is given further below),

|ΨI(t)〉 = U †0 |ΨS(t)〉 = Ũ |Ψt0〉 , (1.53)

OI(t) = U †0 O
S U0 . (1.54)

The corresponding equations for time evolution are

ih̄
d

dt
|ΨI(t)〉 = HI

1 (t) |ΨI(t)〉 , (1.55)

ih̄
d

dt
OI(t) =

[
OI(t), H0

]
, (1.56)
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where H0 reamins time independent but HI
1 (t) evolves according to

HI
1 (t) = U †0 H1 U0 . (1.57)

Normally is it assumed that H0 is simple enough to allow for an exact
solution of the many-body problem. The remaining part HI

1 (t) (possibly a
small perturbation) may then be used to evolve |ΨI(t)〉. This last correction
leads to the exact solution of the problem. However, HI

1 (t) is now dependent
of time and Eq. (1.55) one cannot be solved for Ũ by simply exponentiating
as done for U and U0. The formal solution for the time evolution operator
of a state in interaction pictue can be found in standard textboooks. Here,
we just show the result,

Ũ(t− t0)

= 1 +
∞∑
n=1

1

n!

(−i
h̄

)n ∫ t

t0
dt1

∫ t

t0
dt2 · · ·

∫ t

t0
dtnT

[
HI

1 (t1)HI
1 (t2) · · ·HI

1 (tn)
]

= exp
{−i
h̄

∫ t

t0
dt′T

[
HI

1 (t′)
]}

, (1.58)

where the last line is used as a symbolic notation for the one above and
T [· · ·] is the time ordering operator, defined in such a way that the latest
time apperas at the far left.

The expansion (1.58) is of particular importance since it is central in
applying perturbation theory to Green’s functions and to derive the cor-
responding rules for Feynman diagrams. The interaction picture has also
another powerful application in quantum field theory: by applying a small
fictitious external perturbation to the system, it is possible to derive useful
relations among Green’s functions. This apporach leads to self-consistent
equations for the propagators and shows how to construct approximations of
propagators that satisfy conservation laws. We will discuss these points in
better details later on.

1.5 Exercises

• Derive equations (1.33) for the two-body operator in second quantiza-
tion.

• Derive the Hartee-Fock equations in second quantization

• Derive the matrix elements of the Hamiltonian H between the 1p and
2p1h configurations.

• Derive the matrix elements of H between the 1h and 2h1p states.
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Chapter 2

Basic Properties and
Definitions in Many-Body
Green’s Function Theory

2.1 Propagation of One Particle

Let us consider a particle in free space described by a single particle Hamil-
tonian h1. Its eigenstates and eigenenergies are

h1|φn〉 = εn|φn〉 . (2.1)

In general, if we put the particle in one of its |φn〉 orbits, it will remain
in the same state forever. Instead, we immagine to prepare the system in a
generic state |ψtr〉 (tr stands for ‘trial’) and then follow its time evolution.
If the trial state is created at time t=0, the wavefunction at a later time t is
given by [see Eq. (1.47)]

|ψ(t)〉 = e−ih1t/h̄|ψtr〉
=

∑
n

|φn〉e−iεnt/h̄〈φn|ψtr〉 . (2.2)

The second line shows that if one knows the eigentstates |φn〉, it is rel-
atively simple to compute the time evution: one expands |ψtr〉 in this basis
and let every component propagate independently. Eventually, at time t, we
want to know the probability amplitude that a measurement would find the
particle at position r,

〈r|ψ(t)〉 = 〈r|e−ih1t/h̄|ψtr〉

=
∫
dr′〈r|e−ih1t/h̄|r′〉〈r′|ψtr〉
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=
∫
dr′

∑
n

〈r|φn〉e−iεnt/h̄〈φn|r′〉〈r′|ψtr〉 (2.3)

≡
∫
dr′G(r, r′; t)ψtr(r

′) ,

which defines the propagator G. Obviously, once G(r, r′; t) is known it can
be used to calculate the evolution of any initial state. However,there is
more information included in the propagator. This is apparent from the
expansion in the third line of Eq (2.3): first, the braket 〈φn|r〉 = 〈φn|ψ†(r)|0〉
gives us the probability that putting a particle at position r and mesuring its
energy rgiht away, would make the system to collapse into the eigenstate |φn〉.
Second, the time evolution is a superposition of waves propagating with
different energies and could be inverted to find the eigenspectrum. Immagine
an experiment in which the particle is put at position r and picked up at r′

after some time t. If one can do this for different positions and elapsed times–
and with good resolution–then a Fourier transform would simply give back
the full eigenvalue spectrum. Such an experiment is a lot of work to carry
out! But would give us complete information on our particle.

We now want to apply the above ideas to see what we can learn by adding
and removing a particle in an environment when many others are present.
This can cause the particle to behave in an unxepected way, induce collective
excitations of the full systems, and so on. Moreover, the role played by the
physical vacuum in the above example, is now taken by an many-body state
(usually its ground state). Thus, it is also possible to probe the system by
removing particles.

2.2 One-Body Green’s Function

In the following we consider the Heisenberg description of the field operators,

ψ†s(r, t) = eiHt/h̄ ψ†s(r) e−iHt/h̄ , (2.4)

where the subscript s serves to indicate possible internal degrees of free-
dom (spin, isospin, etc...). We omit the superscrips H (Hiesenberg) and S
(Scrödinger) from the operators since the two pictures can be distinguished
from the presence of the time variable, which appears only in the first case.
Similarly,

ψs(r, t) = eiHt/h̄ ψs(r) e−iHt/h̄ , (2.5)

For the case of a general single-particle basis {uα(r)} one uses the following
creation and annihilation operators

c†α(t) = eiHt/h̄ c†α e
−iHt/h̄ , (2.6)

cα(t) = eiHt/h̄ cα e
−iHt/h̄ , (2.7)
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which are related to ψ†s(r, t) and ψs(r, t) through Eqs. (1.14) and (1.15).
In most applications the Hamiltonian is split in a unperturbed part H0

and a residual interaction
H = H0 + V . (2.8)

The N-body eigenstates of the full Hamiltonian are indicated with |ΨN
n 〉,

while |ΦN
n 〉 are the unperturbed ones

H |ΨN
n 〉 = EN

n |ΨN
n 〉 , (2.9)

H0 |ΦN
n 〉 = E(0),N

n |ΦN
n 〉 , (2.10)

The definitions given in the following are general and do not depend on
the type of interaction being used. Thus, most properties of Green’s functions
result from genaral principles of quantum mechanics and are valid for any
system.

2.2.1 Definitions

The two-points Green’s function describies the propagation of one particle
or one hole on top of the ground state |ΨN

0 〉. This is defined by

gss′(r, t; r
′, t′) = − i

h̄
〈ΨN

0 |T [ψs(r, t)ψ
†
s′(r

′, t′)]|ΨN
0 〉 , (2.11)

where T [· · ·] is the time ordering operator that imposes a change of sing for
each exchange of two fermion operators

T [ψs(r, t)ψ
†
s′(r

′, t′)] =

{
ψs(r, t)ψ

†
s′(r

′, t′) , t > t′ ,

±ψ†s′(r′, t′)ψs(r, t) , t′ > t ,
(2.12)

where the upper (lower) sign is for bosons (fermions). A similar definition
can be given for the non interacting state |ΦN

0 〉, in this case the Heisenberg
operators (2.4) to (2.7) must evolve only according to H0 and the notation
g(0) is used.

If the Hamiltonian does not depend on time, the propagator (2.11) de-
pends only on the difference t− t′

gss′(r, r
′; t− t′) = − i

h̄
θ(t− t′)〈ΨN

0 |ψs(r)e−i(H−E
N
0 )(t−t′)/h̄ψ†s′(r

′)|ΨN
0 〉

∓ i
h̄
θ(t′ − t)〈ΨN

0 |ψ
†
s′(r

′)ei(H−E
N
0 )(t−t′)/h̄ψs(r)|ΨN

0 〉 . (2.13)

In this case it is useful to Froutier transform with respect to time and define

gss′(r, r
′;ω) =

∫
dτeiωτgss′(r, r

′; τ) . (2.14)
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By using the relation

θ(±τ) = ∓ limη→0+
1

2πi

∫ +∞

−∞
dω

e−iωτ

ω ± iη
, (2.15)

one obtains

gss′(r, r
′;ω) = gpss′(r, r

′;ω) + ghss′(r, r
′;ω)

= 〈ΨN
0 |ψs(r)

1

h̄ω − (H − EN
0 ) + iη

ψ†s′(r
′)|ΨN

0 〉 (2.16)

∓〈ΨN
0 |ψ

†
s′(r

′)
1

h̄ω + (H − EN
0 )− iη

ψs(r)|ΨN
0 〉 ,

In Eq. (2.16), gp propagates a particle from r′ to r, while gh propagates a
hole from r to r′. Note that the interpretation is that a particle is added
at r′, and later on some (indistiguishable) particle is removed from r′ (and
similarly for holes). In the mean time, it is the fully correlated (N ± 1)-
body system that propagates. We will discuss in the next chapter that in
many cases–and especially in the vicinity of the Fermi surface–this motion
mantains many characteristics that are typical of a particle moving in free
space, even if the motion itself could actually be a collective excitation of
many constituents. But since it looks like a single particle state we may still
refer to it as quasiparticle.

The same definitions can be made for any orthonormal basis {α}, leading
to the realtions

gαβ(t, t′) = − i
h̄
〈ΨN

0 |T [cα(t)c†β(t′)]|ΨN
0 〉 , (2.17)

where
gss′(r, t; r

′, t′) =
∑
αβ

uα(r, s)gαβ(t, t′)u∗β(r′, s′) , (2.18)

and

gαβ(ω) = 〈ΨN
0 |cα

1

h̄ω − (H − EN
0 ) + iη

c†β|ΨN
0 〉 (2.19)

∓〈ΨN
0 |c
†
β

1

h̄ω + (H − EN
0 )− iη

cα|ΨN
0 〉 .

Equations (2.17) and (2.19) are completely equivalent to the previous ones.
These may look a bit more abstract than the corresponding Eqs. (2.11)
and (2.16) but are more general since they show that the formalism can be
developed and applied in any orthonormal basis, without restricting oneself
to coordindate space.
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2.2.2 Lehmann Representation

As discussed in Sec. 2.1 for the one particle case, the information contained
in the propagators becomes more clear if one Fourier transforms the time
variable and inserts a completness for the intermediate states. This is so
because it makes the spectrum and the transition amplitudes to apper ex-
plicitely. Using the completeness relations for the (N ± 1)-body systems in
Eq. (2.19), one has

gαβ(ω) =
∑
n

〈ΨN
0 |cα|ΨN+1

n 〉〈ΨN+1
n |c†β|ΨN

0 〉
h̄ω − (EN+1

n − EN
0 ) + iη

(2.20)

∓
∑
k

〈ΨN
0 |c
†
β|ΨN−1

k 〉〈ΨN−1
k |cα|ΨN

0 〉
h̄ω − (EN

0 − EN−1
k )− iη

.

which is known as the Lehmann repressentation of a many-body Green’s
function1. Here, the first and second terms on the left hand side describe the
propagation of a (quasi)particle and a (quasi)hole excitations.

The poles in Eq. (2.20) are the energies relatives to the |ΨN
0 〉 ground state.

Hence they give the energies actually relased in a capture reaction experiment
to a bound state of |ΨN+1

n 〉. The residues are transition amplitudes for the
addition of a particle and take the name of spectroscopic amplitudes. They
play the same role of the 〈φn|r〉 wave function in Eq. (2.3). In fact these
energies and amplitudes are solutions of a Schrödinger-like equation: the
Dyson equation. The hole part of the propagator gives instead information
on the process of particle emission, the poles being the exact energy absorbed
in the process. For example, in the single particle Green’s function of a
molecule, the quasiparticle and quasihole poles are respectively the electron
affinities an ionization energies.

We will look at the physical significance of spectroscopic amplitudes in
the next Chapter and derive the Dyson equation (which is the fundamental
equation in many-body Green’s function theory) only later on, when devel-
opin the formalism.

2.2.3 Spectral function and dispersive relation

As a last definition, we rewrite the contents of Eq. (2.20) in a form that can
compared more easily to experiments. By using the relation

1

x± iη
= P 1

x
∓ iπδ(x) , (2.21)

1 H. Lehmann, Nuovo Cimento 11, 324 (1954).
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it is immediate to extract the one-body spectral function

Sαβ(ω) = Spαβ(ω) + Shαβ(ω) , (2.22)

where the partcle and hole components are

Spαβ(ω) = − 1

π
Im gpαβ(ω)

=
∑
n

〈ΨN
0 |cα|ΨN+1

n 〉〈ΨN+1
n |c†β|ΨN

0 〉 δ
(
h̄ω − (EN+1

n − EN
0 )
)
, (2.23)

Shαβ(ω) =
1

π
Im ghαβ(ω)

= ∓
∑
k

〈ΨN
0 |c
†
β|ΨN−1

k 〉〈ΨN−1
k |cα|ΨN

0 〉 δ
(
h̄ω − (EN

0 − EN−1
k )

)
. (2.24)

The diagonal part of the spectral function is interpreted as the probability
of adding [Spαα(ω)] or removing [Shαα(ω)] one particle in the state α leaving
the residual system in a state of energy ω.

By comparing Eqs. (2.23) and (2.24) to the Lehmann representation (2.20),
it is seen that the propagator is completely constrained by its imaginary part.
Indeed,

gαβ(ω) =
∫
dω′

Spαβ(ω′)

ω − ω′ + iη
+

∫
dω′

Shαβ(ω′)

ω − ω′ − iη
. (2.25)

In general the single particle propagator of a finite system has isolated
poles in correspondence to the bound eigenstates of the (N+1)-body system.
For larger enegies, where |ΨN+1

n 〉 are states in the continuum, it develops a
branch cut. The particle propagator gp(ω) is analytic in the upper half of
the complex plane, and so is the full propagator (2.16) for ω ≥ EN+1

0 − EN
0 .

Analogously, the hole propagator has poles for ω ≤ EN
0 −EN−1

0 and is analytic
in the lower complex plane. Note that high excitation energies in the (N-1)-
body system correspond to negative values of the poles EN

0 −EN−1
k , so gh(ω)

develops a branch cut for large negative energies.
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2.3 Observables from gαβ

2.3.1 Calculation of Expectation Values

The one-body density matrix (1.40) can be obtained from the one-body prop-
agator. One simply chooses the appropriate time ordering in Eq. (2.17)

ραβ = 〈ΨN
0 |c
†
βcα|ΨN

0 〉 = ±ih̄ limt′→t+ gαβ(t, t′) (2.26)

(where the upper sign is for bosons and the lower one is for fermions). Al-
ternatively, the hole spectral function can be used

ραβ = ∓
∫
dω Shαβ(ω) . (2.27)

Thus, the expectation value of a one-body operator, Eq. (1.41), on the ground
states |ΨN

0 〉 is usually written in one the following ways

〈ΨN
0 |O|ΨN

0 〉 = ∓
∑
αβ

∫
dω oαβ S

h
βα(ω)

= ±ih̄ limt′→t+
∑
αβ

oαβ gβα(t, t′) (2.28)

which are equivalent.
From the particle spectral function, one can extract the quantity

dαβ = 〈ΨN
0 |cαc

†
β|ΨN

0 〉 =
∫
dω Spβα(ω) (2.29)

which leads to the following sum rule∫
dωSαβ(ω) = dαβ ∓ ραβ = 〈ΨN

0 |[cα, c
†
β]∓|ΨN

0 〉 = δαβ . (2.30)

2.3.2 Sum Rule for the Energy

For the case of an Hamiltonian containing only two-body interactions,

H = U + V

=
∑
αβ

tαβ c
†
αcβ +

1

4

∑
αβγδ

vαβ,γδ c
†
αc
†
βcδcγ , (2.31)

there exist an important sum rule that relates the total energy of the state
|ΨN

0 〉 to its one-body Green’s function. To derive this, one makes use of the
equation of motion for Heisenberg operators (1.51), which gives

ih̄
d

dt
cα(t) = eiHt/h̄ [cα, H] e−iHt/h̄ , (2.32)
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with2

[cα, H] =
∑
β

tαβ cβ +
1

2

∑
βγδ

vαβγδc
†
βcδcγ , (2.33)

which is valid for both fermions and bosons.
If one uses Eq. (2.33) and derives the propagator (2.17) with respect to

time,

ih̄
∂

∂t
gαβ(t− t′) = δ(t− t′)δαβ +

∑
γ

tαγgγβ(t− t′)

− i
h̄

∑
ηγζ

1

2
vαη,γζ 〈ΨN

0 | T [c†η(t)cζ(t)cγ(t)c
†
β(t′)]|ΨN

0 〉 . (2.34)

The braket in the last line contains the four points Green’s function [see
Eq. (2.38)], which can describe the simultaneous propagation of two parti-
cles. Thus, one sees that applying the equation of motion to a propagator
leads to relations which contain Green’s functions of higher order. This result
is particularly important because it shows there exist a hierarchy between
propagators, so that the exact equations that determine the one-body func-
tion will depend on the two-body one, the two-body function will contain
contributions from three-body propagators, and so on.

For the moment we just want to select a particular order of the operators
in Eq. (2.34) in order to extract the one- and two-body density matrices. To
do this, we chose t′ to be a later time than t and take its limit to the latter
from above. This yields

±ih̄ limt′→t+
∑
α

∂

∂t
gαα(t− t′) = 〈T 〉+ 2〈V 〉 (2.35)

(note that for t 6= t′, the term δ(t − t′)=0 and it does not contribute to the
limit). This result can also be expressed in energy representation by inverting
the Fourier transformation (2.14), which gives

limτ→0−
∂

∂τ
gαβ(τ) = −

∫
dω ω Shαβ(ω) (2.36)

By combining (2.35) with Eq. (2.28) one finally obtains

〈H〉 = 〈U〉+ 〈V 〉 = ±ih̄ 1

2
limt′→t+

∑
αβ

{
δαβ

∂

∂t
+ tαβ

}
gβα(t− t′)

= ∓1

2

∑
αβ

∫
dω {δαβω + tαβ}Shβα(ω) . (2.37)

2We use the relation [A,BC]− = [A,B]C − B[C,A] = {A,B}C − B{C,A} which is
valid for both commutators and anticommutators

21



Surprisingly, for an Hamiltonian containing only two-body forces it is possible
to extract the ground state energy by knowing only the one-body propaga-
tor. This result was derived independently by Galitski and Migdal3 and by
Kolutn4. When interactions among three or more particles are present, this
relation has to be augmented to include additional terms. In these cases
higher order Green’s functions will appear explicitly.

2.4 Higher Order Green’s Functions

The definition (2.17) can be extended to Green’s functions for the propa-
gation of more than one particle. In general, for each additional particle it
will be necessary to introduce one additional creation and one annihilation
operator. Thus a 2n-points Green’s function will propagate a maximum of
n quasiparticles. The explicit definition of the 4-points propagator is

g4−pt
αβ,γδ(t1, t2; t′1, t

′
2) = − i

h̄
〈ΨN

0 |T [cβ(t2)cα(t1)c†γ(t
′
1)c†δ(t

′
2)]|ΨN

0 〉 , (2.38)

while the 6-point case is

g6−pt
αβγ,µνλ(t1, t2, t3; t′1, t

′
2, t
′
3) =

− i
h̄
〈ΨN

0 |T [cγ(t3)cβ(t2)cα(t1)c†µ(t′1)c†ν(t
′
2)c†λ(t

′
3)]|ΨN

0 〉 , (2.39)

It should be noted that the actual number of particles that are propagated
by these objects depends on the ordering of the time variables. Therefore the
information on transitions between eigenstates of the systems with N , N ± 1
and N ± 2 bodies are all encoded in Eq. (2.38), while additional states of
N ± 3-body states are included in Eq. (2.38). Obviously, the presence of so
many time variables makes the use of these functions extremely difficult (and
even impossible, in many cases). However, it is still useful to consider only
certain time orderings which allow to extract the information not included
in the 2-point propagator.

2.4.1 Two-particles–two-holes Propagator

The Two-particle–two-hole propagator is a two-times Green’s function de-
fined as

gIIαβ,γδ(t, t
′) = − i

h̄
〈ΨN

0 |T [cβ(t)cα(t)c†γ(t
′)c†δ(t

′)]|ΨN
0 〉 , (2.40)

3V. M. Galitski and A. B. Migdal, Sov. Phys.-JEPT 7, 96 (1958).
4D. S. Koltun, Phys. Rev. Lett. 28, 182 (1972); Phys. Rev. C 9, 484 (1974)
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which corresponds to the limit t′1 = t′+2 and t2 = t+1 of g4−pt.
As for the case of gαβ(t, t′), if the Hamiltonian is time-independent, Eq. (2.40)

is a function of the time difference only. Therefore it has a Lehmann repre-
sentation containing the exact spectrum of the (N ± 2)-body systems

gIIαβ,γδ(ω) =
∑
n

〈ΨN
0 |cβcα|ΨN+2

n 〉 〈ΨN+2n|c†γc
†
δ|ΨN

0 〉
ω − (EN+2

n − EN
0 ) + iη

−
∑
k

〈ΨN
0 |c†γc

†
δ|ΨN−2

k 〉 〈ΨN−2
k |cβcα|ΨN

0 〉
ω −

(
EN

0 − EN−2
k

)
− iη

. (2.41)

Similarly one defines the two-particle and two-hole spectral functions

SIIαβ, γδ(ω) = Sppαβ,γδ(ω) + Shhαβ,γδ(ω) , (2.42)

and

Sppαβ,γδ(ω) = − 1

π
Im gppαβ,γδ(ω)

=
∑
n

〈ΨN
0 |cβcα|ΨN+2

n 〉〈ΨN+2
n |c†γc

†
δ|ΨN

0 〉 δ
(
h̄ω − (EN+2

n − EN
0 )
)
, (2.43)

Shhαβ,γδ(ω) =
1

π
Im ghhαβ,γδ(ω)

= −
∑
k

〈ΨN
0 |c†γc

†
δ|ΨN−2

k 〉〈ΨN−2
k |cβcα|ΨN

0 〉 δ
(
h̄ω − (EN

0 − EN−2
k )

)
. (2.44)

Following the demonstration of Sec. 2.3.1, it is immediate to obtain rela-
tions for the two-body density matrix (1.44)

Γαβ,γδ = 〈ΨN |c†γc
†
δcβcα|ΨN〉 = −

∫
dωShhαβ,γδ(ω) (2.45)

and, hence, for the expectation value of any two-body operator

〈ΨN
0 |V |ΨN

0 〉 = −
∑
αβγδ

∫
dωvαβ,γδS

h
γδ,αβ(ω)

= +ih̄ limt′→t+
1

4

∑
αβγδ

vαβ,γδg
II
γδ,αβ(t, t′) . (2.46)

2.4.2 Polarization Propagator

The polarization propagator Παβ,γδ corresponds to the time ordering of g4−pt

in which a particle-hole excitation is created at one single time. Therefore,
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no process involving particle transfer in included. However it describes tran-
sition to the excitations of the system, as long as they can be reached with a
one-body operator. For example, this includes collective modes of a nucleus.
This is defined as

Παβ,γδ(t, t
′) = − i

h̄
〈ΨN

0 |T [c†β(t)cα(t)c†γ(t
′)cδ(t

′)]|ΨN
0 〉

+
i

h̄
〈ΨN

0 |c
†
βcα|ΨN

0 〉〈ΨN
0 |c†γcδ|ΨN

0 〉 . (2.47)

After including a completeness of |ΨN
n 〉 states in (2.47), the contribution

of to the ground states (at zero energy) is cancelled by the last term in the
equation. Thus one can Fourier transform to the Lehmann representation

Παβ,γδ(ω) =
∑
n6=0

〈ΨN
0 |c
†
βcα|ΨN

n 〉 〈ΨN
n |c†γcδ|ΨN

0 〉
ω − (EN

n − EN
0 ) + iη

−
∑
n6=0

〈ΨN
0 |c†γcδ|ΨN

n 〉 〈ΨN
n |c
†
βcα|ΨN

0 〉
ω + (EN

n − EN
0 )− iη

, (2.48)

Note that Παβ,γδ(ω) = Πδγ,βα(−ω) due to time reversal symmetry. Also the
forward and backward parts carry the same information.

Once again, the residues of the propagator (2.48) can be used to calculate
expectation values. In this case, given a one-body operator (1.30) on obtains
the transition matrix elements to any excited state

〈ΨN
n |O|ΨN

0 〉 =
∑
αβ

oβα〈ΨN
n |c
†
βcα|ΨN

0 〉 . (2.49)
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Chapter 3

Relation to Experimental Data

In this chapter we will partially explore the connection between the informa-
tion contained in various propagators and experimental data. The focus is
on the experimental properties that are probed by the removal of particles.
Also, from now on, we will only consider fermionic systems.

An important case is when the spectrum for the N ± 1-particle system
near the Fermi energy involves discrete bound states. This happens in finite
system like nuclei or molecules. In these cases the main quantity of interest
is the overlap wave function, which appears in the residues of Eq. (2.20) and
in Eq. (2.24). This is

ψoverlapk (r) = 〈ΨN−1
k |ψs(r)|ΨN

0 〉

=
√
N
∫
dr2

∫
dr3 · · ·

∫
drN (3.1)

×[ΨN−1
k (r2, r3, . . . rN)]∗ΨN

0 (r, r2, r3, . . . rN) .

The second line in Eq. (3.1) can be proved by using relations (1.19) and (1.20).
This integral comes out in the description of most particle knock out processes
because it represents the matrix element between the initial and final states,
in the case when the emitted particle is ejected with energy large enough the
it interacts only weakly with the residual system. The quantity of interest
here is the so called spectroscopic factor to the final state k,

Sk =
∫
dr|ψoverlapk (r)|2 . (3.2)

When the system is made of completely non interacting particles, Sk is unity.
In real cases however, correlations among the constituents reduce this value.
The possibility of extracting this quantity from experimental data gives us
information on the spectral function and therefore on the structure of the
correlated system.
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3.0.3 Spectroscopic strength from particle emission

In order to make the connection with experimental data obtained from knock-
out reactions, it is useful to consider the response of a system to a weak probe.
The hole spectral function introduced in Eq. (2.24) can be substantially “ob-
served” these reactions. The general idea is to transfer a large amount of
momentum and energy to a particle of a bound system in the ground state.
This is then ejected from the system, and one ends up with a fast-moving
particle and a bound (N − 1)-particle system. By observing the momentum
of the ejected particle it is then possible the reconstruct the spectral function
of the system, provided that the interaction between the ejected particle and
the remainder is sufficiently weak or treated in a controlled fashion, e. g. by
constraining this treatment with information from other experimental data.

We assume that the N -particle system is initially in its ground state,

|Ψi〉 = |ΨN
0 〉, (3.3)

and makes a transition to a final N -particle eigenstate

|Ψf〉 = a†p|ΨN−1
n 〉, (3.4)

composed of a bound (N−1)-particle eigenstate, |ΨN−1
n 〉, and a particle with

momentum p.
For simplicity we consider the transition matrix elements for a scalar

external probe

ρ(q) =
N∑
j=1

exp (iq · rj), (3.5)

which transfers momentum q to a particle. Suppressing other possible sp
quantum numbers, like e.g. spin, the second-quantized form of this operator
is given by

ρ̂(q) =
∑
p,p′
〈p| exp (iq · r)|p′〉a†pap′ =

∑
p

a†pap−q. (3.6)

The transition matrix element now becomes

〈Ψf |ρ̂(q)|Ψi〉 =
∑
p′
〈ΨN−1

n |apa†p′ap′−q|ΨN
0 〉

=
∑
p′
〈ΨN−1

n |δp′,pap′−q + a†p′ap′−qap|ΨN
0 〉

≈ 〈ΨN−1
n |ap−q|ΨN

0 〉. (3.7)

The last line is obtained in the so-called Impulse Approximation (or Sudden
Approximation), where it is assumed that the ejected particle is the one that
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has absorbed the momentum from the external field. This is a very good
approximation whenever the momentum p of the ejectile is much larger than
typical momenta for the particles in the bound states; the neglected term
in Eq. (3.7) is then very small, as it involves the removal of a particle with
momentum p from |ΨN

0 〉.
There is one other assumption in the derivation: the fact that the final

eigenstate of the N -particle system was written in the form of Eq. (3.4), i.e.
a plane-wave state for the ejectile on top of an (N − 1)-particle eigenstate.
This is again a good approximation if the ejectile momentum is large enough,
as can be understood by rewriting the Hamiltonian in the N -particle system
as

HN =
N∑
i=1

p2
i

2m
+

N∑
i<j=1

V (i, j) = HN−1 +
p2
N

2m
+

N−1∑
i=1

V (i, N). (3.8)

The last term in Eq. (3.8) represents the Final State Interaction, or the in-
teraction between the ejected particle N and the other particles 1 . . . N − 1.
If the relative momentum between particle N and the others is large enough
their mutual interaction can be neglected, and HN ≈ HN−1 + p2

N/2m. The
result given by Eq. (3.7) is called the Plane Wave Impulse Approximation or
PWIA knock-out amplitude, for obvious reasons, and is precisely a removal
amplitude (in the momentum representation) appearing in the Lehmann rep-
resentation of the sp propagator [Eq. (3.1) and (2.24)].

The cross section of the knock-out reaction, where the momentum and
energy of the ejected particle and the probe are either measured or known,
is according to Fermi’s golden rule proportional to

dσ ∼
∑
n

δ(ω + Ei − Ef )|〈Ψf |ρ̂(q)|Ψi〉|2, (3.9)

where the energy-conserving δ-function contains the energy transfer ω of
the probe, and the initial and final energies of the system are Ei = EN

0

and Ef = EN−1
n + p2/2m, respectively. Note that the internal state of the

residual N − 1 system is not measured, hence the summation over n in
Eq. (3.9). Defining the missing momentum pmiss and missing energy Emiss
of the knock-out reaction as1

pmiss = p− q (3.10)

and
Emiss = p2/2m− ω = EN

0 − EN−1
n , (3.11)

1We will neglect here the recoil of the residual N − 1 system, i.e. we assume the mass
of the N and N − 1 system to be much heavier than the mass m of the ejected particle.
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respectively, the PWIA knock-out cross section can be rewritten as

dσ ∼
∑
n

δ(Emiss − EN
0 + EN−1

n )|〈ΨN−1
n |apmiss|ΨN

0 〉|2

= Sh(pmiss, Emiss). (3.12)

The PWIA cross section is therefore exactly proportional to the diagonal
part of the hole spectral function defined in Eq. (2.24). This is of course only
true in the PWIA, but when the deviations of the impulse approximation
and the effects of the final state interaction are under control, it is possible
to obtain precise experimental information on the hole spectral function of
the system under study.

3.0.4 An example: the (e, e′p) reaction

Several studies of reacton theory have been done in past years constrain and
improve the analysis of electron scattering reactions2. Although the actual
(e,e′p) experiments involve more complicated one-body excitation operators
than the one considered in the simple simple example above, the basic con-
clusions are not altered3.

In the practical analysis of an (e,e′p) experiment it is conventional to find
a local potential well (mostly of Woods-Saxon type) which will generate a sp
state at the removal energy for the transition that is studied. This state is
further required to provide the best possible fit to the experimental momen-
tum dependence of the cross section (with proper inclusion of complications
due to electron and proton distortion). The overall factor necessary to bring
the resulting calculated cross section into agreement with the experimental
data, can then be interpreted as the spectroscopic factor corresponding to
the “experimental” quasihole wave function according to Eq.(3.2).

The resulting cross sections obtained at the NIKHEF facility are shown
for four different nuclei in Fig. 3.14 It is important to realize that the shapes
of the wave functions in momentum space correspond closely to the ones
expected on the basis of a standard Woods-Saxon potential well (or more
involved mf wave functions). This is itself an important observation since
the (e,e′p) reaction probes the interior of the nucleus, a feat not available
with hadronically induced reactions.

While the shapes of the valence nucleon wave functions correspond to the
basic ingredients expected on the basis of years of nuclear structure physics

2See for example, S. Boffi, C. Giusti, F. D. Pacati, and M. Radici, Electromagnetic
Response of Atomic nuclei, Oxford Studies in Nuclear Physics (Clarendon, Oxford, 1996).

3S. Frullani and J. Mougey, Adv. Nucl. Phys. 14, 1 (1984).
4L. Lapikás, Nucl. Phys. A553, 297c (1993).
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Figure 3.1: Momentum distributions for various nuclei obtained from the
(e,e′p) reaction performed at NIKHEF (Note n. 4, p. 28).

experience, there is a significant departure with regard to the integral of the
square of these wave functions. This quantity is of course the spectroscopic
factor and is shown in Fig. 3.2 for the data obtained at NIKHEF. The results
shown in Fig. 3.2 indicate that there is an essentially global reduction of the
sp strength of about 35 % which needs to be explained by the theoretical
calculations. This depletion is somewhat less for the strength associated
with slightly more bound levels. An additional feature obtained in the (e,e′p)
reaction is the fragmentation pattern of these more deeply bound orbitals in
nuclei. This pattern is such that single isolated peaks are obtained only in the
immediate vicinity of the Fermi energy whereas for more deeply bound states
a stronger fragmentation of the strength is obtained with larger distance from
εF . This is beautifully illustrated by the (e,e′p) data from Quint5. Whereas
the 3s1/2 orbit exhibits a single peak, there is a substantial fragmentation of
the 1f strength as indicated in this figure. Additional information about the
occupation number of the former orbit is also available and can be obtained
by analyzing elastic electron scattering cross sections of neighboring nuclei.

5E. N. M. Quint, Ph.D. thesis, University of Amsterdam (1988).
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Figure 3.2: Spectroscopic factors from the (e,e′p) reaction as a function of
target mass. Data have been obtained at the NIKHEF facility (Note n. 4,
p. 28).

The actual occupation number for the 3s1/2 proton orbit obtained from this
analysis is about 10% larger than the quasihole spectroscopic factor 6 and
therefore corresponds to 0.75. All these features of the strength need to be
explained theoretically. This will be attempted in the material covered in
later sections.

6P. Grabmayr et al., Phys. Lett. B164, 15 (1985). P. Grabmayr, Prog. Part. Nucl.
Phys. 29, 251 (1992).
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