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Introduction to studies of infinite matter
Studies of infinite nuclear matter play an important role in nuclear physics.
The aim of this part of the lectures is to provide the necessary ingredients
for perfoming studies of neutron star matter (or matter in β-equilibrium) and
symmetric nuclear matter. We start however with the electron gas in two and
three dimensions for both historical and pedagogical reasons. Since there are
several benchmark calculations for the electron gas, this small detour will allow
us to establish the necessary formalism. Thereafter we will study infinite nuclear
matter

• at the Hartree-Fock with realistic nuclear forces and

• using many-body methods like coupled-cluster theory or in-medium SRG
as discussed in our previous sections.

http://computationalphysics.no


The infinite electron gas
The electron gas is perhaps the only realistic model of a system of many inter-
acting particles that allows for a solution of the Hartree-Fock equations on a
closed form. Furthermore, to first order in the interaction, one can also compute
on a closed form the total energy and several other properties of a many-particle
systems. The model gives a very good approximation to the properties of valence
electrons in metals. The assumptions are

• System of electrons that is not influenced by external forces except by an
attraction provided by a uniform background of ions. These ions give rise
to a uniform background charge. The ions are stationary.

• The system as a whole is neutral.

• We assume we have Ne electrons in a cubic box of length L and volume
Ω = L3. This volume contains also a uniform distribution of positive
charge with density Nee/Ω.

The homogeneous electron gas is one of the few examples of a system of many
interacting particles that allows for a solution of the mean-field Hartree-Fock
equations on a closed form. To first order in the electron-electron interaction,
this applies to ground state properties like the energy and its pertinent equation
of state as well. The homogeneus electron gas is a system of electrons that is
not influenced by external forces except by an attraction provided by a uniform
background of ions. These ions give rise to a uniform background charge. The
ions are stationary and the system as a whole is neutral. Irrespective of this
simplicity, this system, in both two and three-dimensions, has eluded a proper
description of correlations in terms of various first principle methods, except
perhaps for quantum Monte Carlo methods. In particular, the diffusion Monte
Carlo calculations of Ceperley and Ceperley and Tanatar are presently still
considered as the best possible benchmarks for the two- and three-dimensional
electron gas.

The electron gas, in two or three dimensions is thus interesting as a test-
bed for electron-electron correlations. The three-dimensional electron gas is
particularly important as a cornerstone of the local-density approximation in
density-functional theory. In the physical world, systems similar to the three-
dimensional electron gas can be found in, for example, alkali metals and doped
semiconductors. Two-dimensional electron fluids are observed on metal and liquid-
helium surfaces, as well as at metal-oxide-semiconductor interfaces. However, the
Coulomb interaction has an infinite range, and therefore long-range correlations
play an essential role in the electron gas.

At low densities, the electrons become localized and form a lattice. This so-
called Wigner crystallization is a direct consequence of the long-ranged repulsive
interaction. At higher densities, the electron gas is better described as a liquid.
When using, for example, Monte Carlo methods the electron gas must be
approximated by a finite system. The long-range Coulomb interaction in the
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electron gas causes additional finite-size effects that are not present in other
infinite systems like nuclear matter or neutron star matter. This poses additional
challenges to many-body methods when applied to the electron gas.

The infinite electron gas as a homogenous system
This is a homogeneous system and the one-particle wave functions are given by
plane wave functions normalized to a volume Ω for a box with length L (the
limit L→∞ is to be taken after we have computed various expectation values)

ψkσ(r) = 1√
Ω

exp (ikr)ξσ

where k is the wave number and ξσ is a spin function for either spin up or down

ξσ=+1/2 =
(

1
0

)
ξσ=−1/2 =

(
0
1

)
.

Periodic boundary conditions
We assume that we have periodic boundary conditions which limit the allowed
wave numbers to

ki = 2πni
L

i = x, y, z ni = 0,±1,±2, . . .

We assume first that the electrons interact via a central, symmetric and transla-
tionally invariant interaction V (r12) with r12 = |r1 − r2|. The interaction is spin
independent.

The total Hamiltonian consists then of kinetic and potential energy

Ĥ = T̂ + V̂ .

The operator for the kinetic energy can be written as

T̂ =
∑
kσ

~2k2

2m a†kσakσ.

Defining the Hamiltonian operator
The Hamiltonian operator is given by

Ĥ = Ĥel + Ĥb + Ĥel−b,

with the electronic part

Ĥel =
N∑
i=1

p2
i

2m + e2

2
∑
i 6=j

e−µ|ri−rj |

|ri − rj |
,
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where we have introduced an explicit convergence factor (the limit µ → 0 is
performed after having calculated the various integrals). Correspondingly, we
have

Ĥb = e2

2

∫ ∫
drdr′n(r)n(r′)e−µ|r−r′|

|r− r′| ,

which is the energy contribution from the positive background charge with
density n(r) = N/Ω. Finally,

Ĥel−b = −e
2

2

N∑
i=1

∫
drn(r)e−µ|r−xi|

|r− xi|
,

is the interaction between the electrons and the positive background.

Single-particle Hartree-Fock energy
In the first exercise below we show that the Hartree-Fock energy can be written
as

εHFk = ~2k2

2me
− e2

Ω2

∑
k′≤kF

∫
drei(k′−k)r

∫
dr′ e

i(k−k′)r′

|r− r′|

resulting in

εHFk = ~2k2

2me
− e2kF

2π

[
2 + k2

F − k2

kkF
ln

∣∣∣∣k + kF
k − kF

∣∣∣∣]
The previous result can be rewritten in terms of the density

n = k3
F

3π2 = 3
4πr3

s

,

where n = Ne/Ω, Ne being the number of electrons, and rs is the radius of a
sphere which represents the volum per conducting electron. It can be convenient
to use the Bohr radius a0 = ~2/e2me. For most metals we have a relation
rs/a0 ∼ 2− 6. The quantity rs is dimensionless.

In the second exercise below we find that the total energy E0/Ne = 〈Φ0|Ĥ|Φ0〉/Ne
for for this system to first order in the interaction is given as

E0/Ne = e2

2a0

[
2.21
r2
s

− 0.916
rs

]
.

Exercise 1: Hartree-Fock single-particle solution for the
electron gas
The electron gas model allows closed form solutions for quantities like the single-
particle Hartree-Fock energy. The latter quantity is given by the following
expression

εHFk = ~2k2

2m − e2

V 2

∑
k′≤kF

∫
drei(k′−k)r

∫
dr′ e

i(k−k′)r′

|r− r′|
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aragraph!paragraph>paragraph>-0.5em

a) Show first that

εHFk = ~2k2

2m − e2kF
2π

[
2 + k2

F − k2

kkF
ln

∣∣∣∣k + kF
k − kF

∣∣∣∣]

Hint. Hint: Introduce the convergence factor e−µ|r−r′| in the potential and
use

∑
k →

V
(2π)3

∫
dk

Solution. We want to show that, given the Hartree-Fock equation for the
electron gas

εHFk = ~2k2

2m − e2

V 2

∑
p≤kF

∫
dr exp (i(p− k)r)

∫
dr′ exp (i(k− p)r′)

|r− r′|

the single-particle energy can be written as

εHFk = ~2k2

2m − e2kF
2π

[
2 + k2

F − k2

kkF
ln

∣∣∣∣k + kF
k − kF

∣∣∣∣] .
We introduce the convergence factor e−µ|r−r′| in the potential and use

∑
k →

V
(2π)3

∫
dk. We can then rewrite the integral as

e2

V 2

∑
k′≤kF

∫
dr exp (i(k′ − k)r)

∫
dr′ exp (i(k− p)r′)

|r− r′| = (1)

e2

V (2π)3

∫
dr
∫

dr′

|r− r′| exp (−ik(r− r′))
∫
dp exp (ip(r− r′)), (2)

and introducing the abovementioned convergence factor we have

lim
µ→0

e2

V (2π)3

∫
dr
∫
dr′ exp (−µ|r− r′|)

|r− r′|

∫
dp exp (i(p− k)(r− r′)). (3)

With a change variables to x = r− r′ and y = r′ we rewrite the last integral
as

lim
µ→0

e2

V (2π)3

∫
dp
∫
dy
∫
dx exp (i(p− k)x)exp (−µ|x|)

|x| .

The integration over x can be performed using spherical coordinates, resulting
in (with x = |x|)∫
dx exp (i(p− k)x)exp (−µ|x|)

|x| =
∫
x2dxdφd cos (θ) exp (i(p− k)x cos (θ))exp (−µx)

x
.

We obtain

4π
∫
dx

sin (|p− k|)x
|p− k| exp (−µx) = 4π

µ2 + |p− k|2 . (4)
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This results gives us

lim
µ→0

e2

V (2π)3

∫
dp
∫
dy 4π
µ2 + |p− k|2 = lim

µ→0

e2

2π2

∫
dp 1
µ2 + |p− k|2 , (5)

where we have used that the integrand on the left-hand side does not depend on
y and that

∫
dy = V .

Introducing spherical coordinates we can rewrite the integral as

lim
µ→0

e2

2π2

∫
dp 1
µ2 + |p− k|2 = e2

2π2

∫
dp 1
|p− k|2 = (6)

e2

π

∫ kF

0
p2dp

∫ π

0
dθ cos (θ) 1

p2 + k2 − 2pk cos (θ) , (7)

and with the change of variables cos (θ) = u we have

e2

π

∫ kF

0
p2dp

∫ π

0
dθ cos (θ) 1

p2 + k2 − 2pk cos (θ) = e2

π

∫ kF

0
p2dp

∫ 1

−1
du

1
p2 + k2 − 2pku,

which gives
e2

kπ

∫ kF

0
pdp {ln(|p+ k|)− ln(|p− k|)} .

Introducing new variables x = p + k and y = p − k, we obtain after some
straightforward reordering of the integral

e2

kπ

[
kkF + k2

F − k2

kkF
ln

∣∣∣∣k + kF
k − kF

∣∣∣∣] ,
which gives the abovementioned expression for the single-particle energy.

aragraph!paragraph>paragraph>-0.5em

b) Rewrite the above result as a function of the density

n = k3
F

3π2 = 3
4πr3

s

,

where n = N/V , N being the number of particles, and rs is the radius of a
sphere which represents the volum per conducting electron.

Solution. Introducing the dimensionless quantity x = k/kF and the function

F (x) = 1
2 + 1− x2

4x ln
∣∣∣∣1 + x

1− x

∣∣∣∣,
we can rewrite the single-particle Hartree-Fock energy as

εHFk = ~2k2

2m − 2e2kF
π

F (k/kF ),
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and dividing by the non-interacting contribution at the Fermi level,

εF0 = ~2k2
F

2m ,

we have
εHFk
εF0

= x2 − e2m

~2kFπ
F (x) = x2 − 4

πkFa0
F (x),

where a0 = 0.0529 nm is the Bohr radius, setting thereby a natural length scale.
By introducing the radius rs of a sphere whose volume is the volume occupied

by each electron, we can rewrite the previous equation in terms of rs using that
the electron density n = N/V

n = k3
F

3π2 = 3
4πr3

s

,

we have (with kF = 1.92/rs,

εHFk
εF0

= x2 − e2m

~2kFπ
F (x) = x2 − rs

a0
0.663F (x),

with rs ∼ 2− 6 for most metals.
It can be convenient to use the Bohr radius a0 = ~2/e2m. For most metals

we have a relation rs/a0 ∼ 2− 6.
aragraph!paragraph>paragraph>-0.5em

c) Make a plot of the free electron energy and the Hartree-Fock energy and
discuss the behavior around the Fermi surface. Extract also the Hartree-Fock
band width ∆εHF defined as

∆εHF = εHFkF
− εHF0 .

Compare this results with the corresponding one for a free electron and comment
your results. How large is the contribution due to the exchange term in the
Hartree-Fock equation?

Solution. We can now define the so-called band gap, that is the scatter between
the maximal and the minimal value of the electrons in the conductance band of
a metal (up to the Fermi level). For x = 1 and rs/a0 = 4 we have

εHFk=kF

εF0
= −0.326,

and for x = 0 we have
εHFk=0
εF0

= −2.652,

which results in a gap at the Fermi level of

∆εHF =
εHFk=kF

εF0
− εHFk=0

εF0
= 2.326.
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This quantity measures the deviation from the k = 0 single-particle energy and
the energy at the Fermi level. The general result is

∆εHF = 1 + rs
a0

0.663.

The following python code produces a plot of the electron energy for a free
electron (only kinetic energy) and for the Hartree-Fock solution. We have chosen
here a ratio rs/a0 = 4 and the equations are plotted as funtions of k/fF .

import numpy as np
from math import log
from matplotlib import pyplot as plt
from matplotlib import rc, rcParams
import matplotlib.units as units
import matplotlib.ticker as ticker
rc(’text’,usetex=True)
rc(’font’,**{’family’:’serif’,’serif’:[’Hartree-Fock energy’]})
font = {’family’ : ’serif’,

’color’ : ’darkred’,
’weight’ : ’normal’,
’size’ : 16,
}

N = 100
x = np.linspace(0.0, 2.0,N)
F = 0.5+np.log(abs((1.0+x)/(1.0-x)))*(1.0-x*x)*0.25/x
y = x*x -4.0*0.663*F

plt.plot(x, y, ’b-’)
plt.plot(x, x*x, ’r-’)
plt.title(r’{\bf Hartree-Fock single-particle energy for electron gas}’, fontsize=20)
plt.text(3, -40, r’Parameters: $r_s/a_0=4$’, fontdict=font)
plt.xlabel(r’$k/k_F$’,fontsize=20)
plt.ylabel(r’$\varepsilon_k^{HF}/\varepsilon_0^F$’,fontsize=20)
# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.savefig(’hartreefockspelgas.pdf’, format=’pdf’)
plt.show()

From the plot we notice that the exchange term increases considerably the band
gap compared with the non-interacting gas of electrons.

We will now define a quantity called the effective mass. For |k| near kF , we
can Taylor expand the Hartree-Fock energy as

εHFk = εHFkF
+
(
∂εHFk
∂k

)
kF

(k − kF ) + . . .

If we compare the latter with the corresponding expressiyon for the non-
interacting system

ε
(0)
k = ~2k2

F

2m + ~2kF
m

(k − kF ) + . . . ,

we can define the so-called effective Hartree-Fock mass as

m∗HF ≡ ~2kF

(
∂εHFk
∂k

)−1

kF
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aragraph!paragraph>paragraph>-0.5em

d) Compute m∗HF and comment your results.
aragraph!paragraph>paragraph>-0.5em

e) Show that the level density (the number of single-electron states per unit
energy) can be written as

n(ε) = V k2

2π2

(
∂ε

∂k

)−1

Calculate n(εHFF ) and comment the results.

Exercise 2: Hartree-Fock ground state energy for the elec-
tron gas in three dimensions
We consider a system of electrons in infinite matter, the so-called electron gas.
This is a homogeneous system and the one-particle states are given by plane
wave function normalized to a volume Ω for a box with length L (the limit
L→∞ is to be taken after we have computed various expectation values)

ψkσ(r) = 1√
Ω

exp (ikr)ξσ

where k is the wave number and ξσ is a spin function for either spin up or down

ξσ=+1/2 =
(

1
0

)
ξσ=−1/2 =

(
0
1

)
.

We assume that we have periodic boundary conditions which limit the allowed
wave numbers to

ki = 2πni
L

i = x, y, z ni = 0,±1,±2, . . .

We assume first that the particles interact via a central, symmetric and transla-
tionally invariant interaction V (r12) with r12 = |r1 − r2|. The interaction is spin
independent.

The total Hamiltonian consists then of kinetic and potential energy

Ĥ = T̂ + V̂ .

The operator for the kinetic energy is given by

T̂ =
∑
kσ

~2k2

2m a†kσakσ.

aragraph!paragraph>paragraph>-0.5em

a) Find the expression for the interaction V̂ expressed with creation and
annihilation operators. The expression for the interaction has to be written in k
space, even though V depends only on the relative distance. It means that you
need to set up the Fourier transform 〈kikj |V |kmkn〉.
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Solution. A general two-body interaction element is given by (not using anti-
symmetrized matrix elements)

V̂ = 1
2
∑
pqrs

〈pqv̂|rs〉a†pa†qasar,

where v̂ is assumed to depend only on the relative distance between two inter-
acting particles, that is v̂ = v(~r1, ~r2) = v(|~r1 − ~r2|) = v(r), with r = |~r1 − ~r2|).
In our case we have, writing out explicitely the spin degrees of freedom as well

V̂ = 1
2
∑
σpσq
σrσs

∑
kpkq

krks

〈kpσp,kqσ2|v|krσ3,ksσs〉a†kpσp
a†kqσq

aksσs
akrσr

. (8)

Inserting plane waves as eigenstates we can rewrite the matrix element as

〈kpσp,kqσq|v̂|krσr,ksσs〉 = 1
Ω2 δσpσr

δσqσs

∫ ∫
exp−i(kp · rp) exp−i(kq · rq)v̂(r) exp i(kr · rp) exp i(ks · rq)drpdrq,

where we have used the orthogonality properties of the spin functions. We change
now the variables of integration by defining r = rp − rq, which gives rp = r + rq
and d3r = d3rp. The limits are not changed since they are from −∞ to ∞ for
all integrals. This results in

〈kpσp,kqσq|v̂|krσr,ksσs〉 = 1
Ω2 δσpσr

δσqσs

∫
exp i(ks − kq) · rq

∫
v(r) exp i(kr − kp) · (r + rq)drdrq

= 1
Ω2 δσpσrδσqσs

∫
v(r) exp i [(kr − kp) · r]

∫
exp i [(ks − kq + kr − kp) · rq]drqdr.

We recognize the integral over rq as a δ-function, resulting in

〈kpσp,kqσq|v̂|krσr,ksσs〉 = 1
Ωδσpσr

δσqσs
δ(kp+kq),(kr+ks)

∫
v(r) exp i [(kr − kp) · r]d3r.

For this equation to be different from zero, we must have conservation of momenta,
we need to satisfy kp + kq = kr + ks. We can use the conservation of momenta
to remove one of the summation variables in Eq. (8, resulting in

V̂ = 1
2Ω
∑
σσ′

∑
kpkqkr

[∫
v(r) exp i [(kr − kp) · r]d3r

]
a†kpσ

a†kqσ′
akp+kq−kr,σ′akrσ,

which can be rewritten as

V̂ = 1
2Ω
∑
σσ′

∑
kpq

[∫
v(r) exp−i(q · r)dr

]
a†k+q,σa

†
p−q,σ′apσ′akσ, (9)

This equation will be useful for our nuclear matter calculations as well. In the
last equation we defined the quantities p = kp + kq −kr, k = kr og q = kp−kr.
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aragraph!paragraph>paragraph>-0.5em

b) Calculate thereafter the reference energy for the infinite electron gas in
three dimensions using the above expressions for the kinetic energy and the
potential energy.

Solution. Let us now compute the expectation value of the reference energy
using the expressions for the kinetic energy operator and the interaction. We need
to compute 〈Φ0|Ĥ|Φ0〉 = 〈Φ0|T̂ |Φ0〉 + 〈Φ0|V̂ |Φ0〉, where |Φ0〉 is our reference
Slater determinant, constructed from filling all single-particle states up to the
Fermi level. Let us start with the kinetic energy first

〈Φ0|T̂ |Φ0〉 = 〈Φ0|

(∑
pσ

~2p2

2m a†pσapσ

)
|Φ0〉 =

∑
pσ

~2p2

2m 〈Φ0|a†pσapσ|Φ0〉.

From the possible contractions using Wick’s theorem, it is straightforward to
convince oneself that the expression for the kinetic energy becomes

〈Φ0|T̂ |Φ0〉 =
∑
i≤F

~2k2
i

m
= Ω

(2π)3
~2

m

∫ kF

0
k2dk.

The sum of the spin degrees of freedom results in a factor of two only if we deal
with identical spin 1/2 fermions. Changing to spherical coordinates, the integral
over the momenta k results in the final expression

〈Φ0|T̂ |Φ0〉 = Ω
(2π)3

(
4π
∫ kF

0
k4dk

)
= 4πΩ

(2π)3
1
5k

5
F = 4πΩ

5(2π)3 k
5
F = ~2Ω

10π2m
k5
F .

The density of states in momentum space is given by 2Ω/(2π)3, where we
have included the degeneracy due to the spin degrees of freedom. The volume is
given by 4πk3

F /3, and the number of particles becomes

N = 2Ω
(2π)3

4
3πk

3
F = Ω

3π2 k
3
F ⇒ kF =

(
3π2N

Ω

)1/3

.

This gives us

〈Φ0|T̂ |Φ0〉 = ~2Ω
10π2m

(
3π2N

Ω

)5/3

= ~2(3π2)5/3N

10π2m
ρ2/3, (10)

We are now ready to calculate the expectation value of the potential energy

〈Φ0|V̂ |Φ0〉 = 〈Φ0|

 1
2Ω
∑
σσ′

∑
kpq

[∫
v(r) exp−i(q · r)dr

]
a†k+q,σa

†
p−q,σ′apσ′akσ

 |Φ0〉

= 1
2Ω
∑
σσ′

∑
kpq

[∫
v(r) exp−i(q · r)dr

]
〈Φ0|a†k+q,σa

†
p−q,σ′apσ′akσ|Φ0〉.
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The only contractions which result in non-zero results are those that involve states
below the Fermi level, that is k ≤ kF , p ≤ kF , |p− q| < kF and |k + q| ≤ kF .
Due to momentum conservation we must also have k + q = p, p− q = k and
σ = σ′ or k + q = k and p− q = p. Summarizing, we must have

k + q = p and σ = σ′, or q = 0.

We obtain then

〈Φ0|V̂ |Φ0〉 = 1
2Ω

∑
σσ′

∑
qp≤F

[∫
v(r)dr

]
−
∑
σ

∑
qp≤F

[∫
v(r) exp−i(q · r)dr

] .

The first term is the so-called direct term while the second term is the exchange
term. We can rewrite this equation as (and this applies to any potential which
depends only on the relative distance between particles)

〈Φ0|V̂ |Φ0〉 = 1
2Ω

(
N2
[∫

v(r)dr
]
−N

∑
q

[∫
v(r) exp−i(q · r)dr

])
, (11)

where we have used the fact that a sum like
∑
σ

∑
k equals the number of

particles. Using the fact that the density is given by ρ = N/Ω, with Ω being our
volume, we can rewrite the last equation as

〈Φ0|V̂ |Φ0〉 = 1
2

(
ρN

[∫
v(r)dr

]
− ρ

∑
q

[∫
v(r) exp−i(q · r)dr

])
.

For the electron gas the interaction part of the Hamiltonian operator is given by

ĤI = Ĥel + Ĥb + Ĥel−b,

with the electronic part

Ĥel =
N∑
i=1

p2
i

2m + e2

2
∑
i 6=j

e−µ|ri−rj |

|ri − rj |
,

where we have introduced an explicit convergence factor (the limit µ → 0 is
performed after having calculated the various integrals). Correspondingly, we
have

Ĥb = e2

2

∫ ∫
drdr′n(r)n(r′)e−µ|r−r′|

|r− r′| ,

which is the energy contribution from the positive background charge with
density n(r) = N/Ω. Finally,

Ĥel−b = −e
2

2

N∑
i=1

∫
drn(r)e−µ|r−xi|

|r− xi|
,
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is the interaction between the electrons and the positive background. We can
show that

Ĥb = e2

2
N2

Ω
4π
µ2 ,

and
Ĥel−b = −e2N

2

Ω
4π
µ2 .

For the electron gas and a Coulomb interaction, these two terms are cancelled (in
the thermodynamic limit) by the contribution from the direct term arising from
the repulsive electron-electron interaction. What remains then when computing
the reference energy is only the kinetic energy contribution and the contribution
from the exchange term. For other interactions, like nuclear forces with a short
range part and no infinite range, we need to compute both the direct term and
the exchange term.

aragraph!paragraph>paragraph>-0.5em

c) Show thereafter that the final Hamiltonian can be written as

H = H0 +HI ,

with
H0 =

∑
kσ

~2k2

2m a†kσakσ,

and
HI = e2

2Ω
∑
σ1σ2

∑
q 6=0,k,p

4π
q2 a

†
k+q,σ1

a†p−q,σ2
apσ2akσ1 .

aragraph!paragraph>paragraph>-0.5em

d) Calculate E0/N = 〈Φ0|H|Φ0〉/N for for this system to first order in the
interaction. Show that, by using

ρ = k3
F

3π2 = 3
4πr3

0
,

with ρ = N/Ω, r0 being the radius of a sphere representing the volume an
electron occupies and the Bohr radius a0 = ~2/e2m, that the energy per electron
can be written as

E0/N = e2

2a0

[
2.21
r2
s

− 0.916
rs

]
.

Here we have defined rs = r0/a0 to be a dimensionless quantity.
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aragraph!paragraph>paragraph>-0.5em

e) Plot your results. Why is this system stable? Calculate thermodynamical
quantities like the pressure, given by

P = −
(
∂E

∂Ω

)
N

,

and the bulk modulus
B = −Ω

(
∂P

∂Ω

)
N

,

and comment your results.

Preparing the ground for numerical calculations; kinetic
energy and Ewald term
The kinetic energy operator is

Ĥkin = − ~2

2m

N∑
i=1
∇2
i , (12)

where the sum is taken over all particles in the finite box. The Ewald electron-
electron interaction operator can be written as

Ĥee =
N∑
i<j

vE (ri − rj) + 1
2Nv0, (13)

where vE(r) is the effective two-body interaction and v0 is the self-interaction,
defined as v0 = limr→0 {vE(r)− 1/r}.

The negative electron charges are neutralized by a positive, homogeneous
background charge. Fraser et al. explain how the electron-background and
background-background terms, Ĥeb and Ĥbb, vanish when using Ewald’s inter-
action for the three-dimensional electron gas. Using the same arguments, one
can show that these terms are also zero in the corresponding two-dimensional
system.

Ewald correction term
In the three-dimensional electron gas, the Ewald interaction is

vE(r) =
∑
k 6=0

4π
L3k2 e

ik·re−η
2k2/4

+
∑
R

1
|r−R|erfc

(
|r−R|
η

)
− πη2

L3 , (14)

where L is the box side length, erfc(x) is the complementary error function, and
η is a free parameter that can take any value in the interval (0,∞).
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Interaction in momentum space
The translational vector

R = L (nxux + nyuy + nzuz) , (15)

where ui is the unit vector for dimension i, is defined for all integers nx, ny, and
nz. These vectors are used to obtain all image cells in the entire real space. The
parameter η decides how the Coulomb interaction is divided into a short-ranged
and long-ranged part, and does not alter the total function. However, the number
of operations needed to calculate the Ewald interaction with a desired accuracy
depends on η, and η is therefore often chosen to optimize the convergence as a
function of the simulation-cell size. In our calculations, we choose η to be an
infinitesimally small positive number, similarly as was done by Shepherd *et al.*
and Roggero *et al.*.

This gives an interaction that is evaluated only in Fourier space.
When studying the two-dimensional electron gas, we use an Ewald interaction

that is quasi two-dimensional. The interaction is derived in three dimensions, with
Fourier discretization in only two dimensions. The Ewald effective interaction
has the form

vE(r) =
∑
k 6=0

π

L2k

{
e−kzerfc

(
ηk

2 −
z

η

)
+

ekzerfc
(
ηk

2 + z

η

)}
eik·rxy

+
∑
R

1
|r−R|erfc

(
|r−R|
η

)
− 2π
L2

{
zerf

(
z

η

)
+ η√

π
e−z

2/η2
}
, (16)

where the Fourier vectors k and the position vector rxy are defined in the (x, y)
plane. When applying the interaction vE(r) to two-dimensional systems, we set
z to zero.

Similarly as in the three-dimensional case, also here we choose η to approach
zero from above. The resulting Fourier-transformed interaction is

vη=0,z=0
E (r) =

∑
k 6=0

2π
L2k

eik·rxy . (17)

The self-interaction v0 is a constant that can be included in the reference energy.
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Antisymmetrized matrix elements in three dimensions
In the three-dimensional electron gas, the antisymmetrized matrix elements are

〈kpmsp
kqmsq

|ṽ|krmsr
ksmss

〉AS

= 4π
L3 δkp+kq,kr+ks

{
δmspmsr

δmsqmss

(
1− δkpkr

) 1
|kr − kp|2

−δmspmss
δmsqmsr

(
1− δkpks

) 1
|ks − kp|2

}
, (18)

where the Kronecker delta functions δkpkr and δkpks ensure that the contribution
with zero momentum transfer vanishes.

Similarly, the matrix elements for the two-dimensional electron gas are

〈kpmsp
kqmsq

|v|krmsr
ksmss

〉AS

= 2π
L2 δkp+kq,kr+ks

{
δmspmsr

δmsqmss

(
1− δkpkr

) 1
|kr − kp|

− δmspmss
δmsqmsr

(
1− δkpks

) 1
|ks − kp|

}
, (19)

where the single-particle momentum vectors kp,q,r,s are now defined in two
dimensions.

In actual calculations, the single-particle energies, defined by the operator f̂ ,
are given by

〈kp|f |kq〉 =
~2k2

p

2m δkp,kq
+
∑
ki

〈kpki|v|kqki〉AS . (20)

Periodic boundary conditions and single-particle states
When using periodic boundary conditions, the discrete-momentum single-particle
basis functions

φk(r) = eik·r/Ld/2

are associated with the single-particle energy

εnx,ny = ~2

2m

(
2π
L

)2 (
n2
x + n2

y

)
(21)

for two-dimensional sytems and

εnx,ny,nz = ~2

2m

(
2π
L

)2 (
n2
x + n2

y + n2
z

)
(22)

for three-dimensional systems.
We choose the single-particle basis such that both the occupied and unoc-

cupied single-particle spaces have a closed-shell structure. This means that all
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single-particle states corresponding to energies below a chosen cutoff are included
in the basis. We study only the unpolarized spin phase, in which all orbitals are
occupied with one spin-up and one spin-down electron.

The table illustrates how single-particle energies fill energy shells in a two-
dimensional electron box. Here nx and ny are the momentum quantum numbers,
n2
x+n2

y determines the single-particle energy level, N↑↓ represents the cumulated
number of spin-orbitals in an unpolarized spin phase, and N↑↑ stands for the
cumulated number of spin-orbitals in a spin-polarized system.

Magic numbers for the two-dimensional electron gas
n2
x + n2

y nx ny N↑↓ N↑↑
0 0 0 2 1
1 -1 0

1 0
0 -1
0 1 10 5

2 -1 -1
-1 1
1 -1
1 1 18 9

4 -2 0
2 0
0 -2
0 2 26 13

5 -2 -1
2 -1
-2 1
2 1
-1 -2
-1 2
1 -2
1 2 42 21

Hartree-Fock energies
Finally, a useful benchmark for our calculations is the expression for the reference
energy E0 per particle. Defining the T = 0 density ρ0, we can in turn determine
in three dimensions the radius r0 of a sphere representing the volume an electron
occupies (the classical electron radius) as

r0 =
(

3
4πρ

)1/3
.
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In two dimensions the corresponding quantity is

r0 =
(

1
πρ

)1/2
.

One can then express the reference energy per electron in terms of the
dimensionless quantity rs = r0/a0, where we have introduced the Bohr radius
a0 = ~2/e2m. The energy per electron computed with the reference Slater
determinant can then be written as (using hereafter only atomic units, meaning
that ~ = m = e = 1)

gE0/N = 1
2

[
2.21
r2
s

− 0.916
rs

]
,

for the three-dimensional electron gas. For the two-dimensional gas the corre-
sponding expression is (show this)

E0/N = 1
r2
s

− 8
√

2
3πrs

.a

For an infinite homogeneous system, there are some particular simplications
due to the conservation of the total momentum of the particles. By symmetry
considerations, the total momentum of the system has to be zero. Both the
kinetic energy operator and the total Hamiltonian Ĥ are assumed to be diagonal
in the total momentum K. Hence, both the reference state Φ0 and the correlated
ground state Ψ must be eigenfunctions of the operator K̂ with the corresponding
eigemnvalue K = 0. This leads to important simplications to our different
many-body methods. In coupled cluster theory for example, all terms that
involve single particle-hole excitations vanish.

Exercise 3: Magic numbers for the three-dimensional elec-
tron gas and perturbation theory to second order

aragraph!paragraph>paragraph>-0.5em

a) Set up the possible magic numbers for the electron gas in three dimensions
using periodic boundary conditions..

Hint. Follow the example for the two-dimensional electron gas and add the
third dimension via the quantum number nz.

Solution. Using the same approach as made with the two-dimensional electron
gas with the single-particle kinetic energy defined as

~2

2m

(
k2
nx

+ k2
ny
k2
nz

)
,

and
kni = 2πni

L
ni = 0,±1,±2, . . . ,

18



we can set up a similar table and obtain (assuming identical particles one and
including spin up and spin down solutions) for energies less than or equal to
n2
x + n2

y + n2
z ≤ 3

n2
x + n2

y + n2
z nx ny nz N↑↓

0 0 0 0 2
1 -1 0 0
1 1 0 0
1 0 -1 0
1 0 1 0
1 0 0 -1
1 0 0 1 14
2 -1 -1 0
2 -1 1 0
2 1 -1 0
2 1 1 0
2 -1 0 -1
2 -1 0 1
2 1 0 -1
2 1 0 1
2 0 -1 -1
2 0 -1 1
2 0 1 -1
2 0 1 1 38
3 -1 -1 -1
3 -1 -1 1
3 -1 1 -1
3 -1 1 1
3 1 -1 -1
3 1 -1 1
3 1 1 -1
3 1 1 1 54

Continuing in this way we get for n2
x + n2

y + n2
z = 4 a total of 22 additional

states, resulting in 76 as a new magic number. For the lowest six energy values
the degeneracy in energy gives us 2, 14, 38, 54, 76 and 114 as magic numbers.
These numbers will then define our Fermi level when we compute the energy in a
Cartesian basis. When performing calculations based on many-body perturbation
theory, Coupled cluster theory or other many-body methods, we need then to
add states above the Fermi level in order to sum over single-particle states which
are not occupied.

If we wish to study infinite nuclear matter with both protons and neutrons,
the above magic numbers become 4, 28, 76, 108, 132, 228, . . . .

aragraph!paragraph>paragraph>-0.5em

b) Every number of particles for filled shells defines also the number of
particles to be used in a given calculation. Use the number of particles to define
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the density of the system

ρ = g
k3
F

6π2 ,

where you need to define kF and the degeneracy g, which is two for one type of
spin-1/2 particles and four for symmetric nuclear matter.

aragraph!paragraph>paragraph>-0.5em

c) Use the density to find the length L of the box used with periodic boundary
contributions, that is use the relation

V = L3 = A

ρ
.

You can use L to define the spacing to set up the spacing between varipus
k-values, that is

∆k = 2π
L
.

Here, A can be the number of nucleons. If we deal with the electron gas only,
this needs to be replaced by the number of electrons N .

aragraph!paragraph>paragraph>-0.5em

d) Calculate thereafter the Hartree-Fock total energy for the electron gas
or infinite nuclear matter using the Minnesota interaction discussed during the
lectures. Compare the results with the exact Hartree-Fock results for the electron
gas as a function of the number of particles.

aragraph!paragraph>paragraph>-0.5em

e) Compute now the contribution to the correlation energy for the electron gas
at the level of second-order perturbation theory using a given number of electrons
N and a given (defined by you) number of single-particle states above the Fermi
level. The following Python code shows an implementation for the electron gas in
three dimensions for second perturbation theory using the Coulomb interaction.
Here we have hard-coded a case which computes the energy for N = 14 and a
total of 5 major shells.

Solution.
from numpy import *

class electronbasis():
def __init__(self, N, rs, Nparticles):

############################################################
##
## Initialize basis:
## N = number of shells
## rs = parameter for volume
## Nparticles = Number of holes (conflicting naming, sorry)
##
###########################################################

self.rs = rs
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self.states = []
self.nstates = 0
self.nparticles = Nparticles
self.nshells = N - 1
self.Nm = N + 1

self.k_step = 2*(self.Nm + 1)
Nm = N
n = 0 #current shell
ene_integer = 0
while n <= self.nshells:

is_shell = False
for x in range(-Nm, Nm+1):

for y in range(-Nm, Nm+1):
for z in range(-Nm,Nm+1):

e = x*x + y*y + z*z
if e == ene_integer:

is_shell = True
self.nstates += 2
self.states.append([e, x,y,z,1])
self.states.append([e, x,y,z, -1])

if is_shell:
n += 1

ene_integer += 1
self.L3 = (4*pi*self.nparticles*self.rs**3)/3.0
self.L2 = self.L3**(2/3.0)
self.L = pow(self.L3, 1/3.0)

for i in range(self.nstates):
self.states[i][0] *= 2*(pi**2)/self.L**2 #Multiplying in the missing factors in the single particle energy

self.states = array(self.states) #converting to array to utilize vectorized calculations

def hfenergy(self, nParticles):
#Calculate the HF-energy (reference energy) for nParticles particles
e0 = 0.0
if nParticles<=self.nstates:

for i in range(nParticles):
e0 += self.h(i,i)
for j in range(nParticles):

if j != i:
e0 += .5*self.v(i,j,i,j)

else:
#Safety for cases where nParticles exceeds size of basis
print "Not enough basis states."

return e0

def h(self, p,q):
#Return single particle energy
return self.states[p,0]*(p==q)

def v(self,p,q,r,s):
#Two body interaction for electron gas
val = 0
terms = 0.0
term1 = 0.0
term2 = 0.0
kdpl = self.kdplus(p,q,r,s)
if kdpl != 0:
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val = 1.0/self.L3
if self.kdspin(p,r)*self.kdspin(q,s)==1:

if self.kdwave(p,r) != 1.0:
term1 = self.L2/(pi*self.absdiff2(r,p))

if self.kdspin(p,s)*self.kdspin(q,r)==1:
if self.kdwave(p,s) != 1.0:

term2 = self.L2/(pi*self.absdiff2(s,p))
return val*(term1-term2)

#The following is a series of kroenecker deltas used in the two-body interactions.
#Just ignore these lines unless you suspect an error here
def kdi(self,a,b):

#Kroenecker delta integer
return 1.0*(a==b)

def kda(self,a,b):
#Kroenecker delta array
d = 1.0
#print a,b,
for i in range(len(a)):

d*=(a[i]==b[i])
return d

def kdfullplus(self,p,q,r,s):
#Kroenecker delta wavenumber p+q,r+s
return self.kda(self.states[p][1:5]+self.states[q][1:5],self.states[r][1:5]+self.states[s][1:5])

def kdplus(self,p,q,r,s):
#Kroenecker delta wavenumber p+q,r+s
return self.kda(self.states[p][1:4]+self.states[q][1:4],self.states[r][1:4]+self.states[s][1:4])

def kdspin(self,p,q):
#Kroenecker delta spin
return self.kdi(self.states[p][4], self.states[q][4])

def kdwave(self,p,q):
#Kroenecker delta wavenumber
return self.kda(self.states[p][1:4],self.states[q][1:4])

def absdiff2(self,p,q):
val = 0.0
for i in range(1,4):

val += (self.states[p][i]-self.states[q][i])*(self.states[p][i]-self.states[q][i])
return val

def MBPT2(bs):
#2. order MBPT Energy
Nh = bs.nparticles
Np = bs.nstates-bs.nparticles #Note the conflicting notation here. bs.nparticles is number of hole states
vhhpp = zeros((Nh**2, Np**2))
vpphh = zeros((Np**2, Nh**2))
#manual MBPT(2) energy (Should be -0.525588309385 for 66 states, shells = 5, in this code)
psum2 = 0
for i in range(Nh):

for j in range(Nh):
for a in range(Np):

for b in range(Np):
#val1 = bs.v(i,j,a+Nh,b+Nh)
#val2 = bs.v(a+Nh,b+Nh,i,j)
#if val1!=val2:
# print val1, val2
vhhpp[i + j*Nh, a+b*Np] = bs.v(i,j,a+Nh,b+Nh)
vpphh[a+b*Np,i + j*Nh] = bs.v(a+Nh,b+Nh,i,j)/(bs.states[i,0] + bs.states[j,0] - bs.states[a + Nh, 0] - bs.states[b+Nh,0])

psum = .25*sum(dot(vhhpp,vpphh).diagonal())
return psum
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def MBPT2_fast(bs):
#2. order MBPT Energy
Nh = bs.nparticles
Np = bs.nstates-bs.nparticles #Note the conflicting notation here. bs.nparticles is number of hole states
vhhpp = zeros((Nh**2, Np**2))
vpphh = zeros((Np**2, Nh**2))
#manual MBPT(2) energy (Should be -0.525588309385 for 66 states, shells = 5, in this code)
psum2 = 0
for i in range(Nh):

for j in range(i):
for a in range(Np):

for b in range(a):
val = bs.v(i,j,a+Nh,b+Nh)
eps = val/(bs.states[i,0] + bs.states[j,0] - bs.states[a + Nh, 0] - bs.states[b+Nh,0])
vhhpp[i + j*Nh, a+b*Np] = val
vhhpp[j + i*Nh, a+b*Np] = -val
vhhpp[i + j*Nh, b+a*Np] = -val
vhhpp[j + i*Nh, b+a*Np] = val

vpphh[a+b*Np,i + j*Nh] = eps
vpphh[a+b*Np,j + i*Nh] = -eps
vpphh[b+a*Np,i + j*Nh] = -eps
vpphh[b+a*Np,j + i*Nh] = eps

psum = .25*sum(dot(vhhpp,vpphh).diagonal())
return psum

#user input here
number_of_shells = 5
number_of_holes = 14 #(particles)

#initialize basis
bs = electronbasis(number_of_shells,1.0,number_of_holes) #shells, r_s = 1.0, holes

#Print some info to screen
print "Number of shells:", number_of_shells
print "Number of states:", bs.nstates
print "Number of holes :", bs.nparticles
print "Reference Energy:", bs.hfenergy(number_of_holes), "hartrees "
print " :", 2*bs.hfenergy(number_of_holes), "rydbergs "

print "Ref.E. per hole :", bs.hfenergy(number_of_holes)/number_of_holes, "hartrees "
print " :", 2*bs.hfenergy(number_of_holes)/number_of_holes, "rydbergs "

#calculate MBPT2 energy
print "MBPT2 energy :", MBPT2_fast(bs), " hartrees"

As we will see later, for the infinite electron gas, second-order perturbation
theory diverges in the thermodynamical limit, a feature which can easily be
noted if one lets the number of single-particle states above the Fermi level to
increase. The resulting expression in a Cartesian basis will not converge.
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Infinite nuclear matter and neutron star matter
Studies of dense baryonic matter are of central importance to our basic un-
derstanding of the stability of nuclear matter, spanning from matter at high
densities and temperatures to matter as found within dense astronomical objects
like neutron stars.

Neutron star matter at densities of 0.1 fm−3 and greater, is often assumed to
be made of mainly neutrons, protons, electrons and muons in beta equilibrium.
However, other baryons like various hyperons may exist, as well as possible
mesonic condensates and transitions to quark degrees of freedom at higher
densities. Here we focus on specific definitions of various phases and focus on
distinct phases of matter such as pure baryonic matter and/or quark matter. The
composition of matter is then determined by the requirements of chemical and
electrical equilibrium. Furthermore, we will also consider matter at temperatures
much lower than the typical Fermi energies. The equilibrium conditions are
governed by the weak processes (normally referred to as the processes for β-
equilibrium)

b1 → b2 + l + ν̄l b2 + l→ b1 + νl, (23)
where b1 and b2 refer to e.g. the baryons being a neutron and a proton, re-
spectively, l is either an electron or a muon and ν̄l and νl their respective
anti-neutrinos and neutrinos. Muons typically appear at a density close to
nuclear matter saturation density, the latter being

n0 ≈ 0.16± 0.02 fm−3,

with a corresponding binding energy E0 for symmetric nuclear matter (SNM) at
saturation density of

E0 = B/A = −15.6± 0.2 MeV.

In this work the energy per baryon E will always be in units of MeV, while the
energy density ε will be in units of MeVfm−3 and the number density1 n in units
of fm−3. The pressure P is defined through the relation

P = n2 ∂E
∂n

= n
∂ε

∂n
− ε, (24)

with dimension MeVfm−3. Similarly, the chemical potential for particle species i
is given by

µi =
(
∂ε

∂ni

)
, (25)

with dimension MeV. In calculations of properties of neutron star matter in
β-equilibrium, we will need to calculate the energy per baryon E for e.g. several
proton fractions xp, which corresponds to the ratio of protons as compared to
the total nucleon number (Z/A), defined as

xp = np
n
, (26)

1We will often loosely just use density in our discussions.
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where n = np + nn, the total baryonic density if neutrons and protons are the
only baryons present. In that case, the total Fermi momentum kF and the Fermi
momenta kFp, kFn for protons and neutrons are related to the total nucleon
density n by

n = 2
3π2 k

3
F

=xpn+ (1− xp)n

= 1
3π2 k

3
Fp + 1

3π2 k
3
Fn. (27)

The energy per baryon will thus be labelled as E(n, xp). E(n, 0) will then refer
to the energy per baryon for pure neutron matter (PNM) while E(n, 1

2 ) is the
corresponding value for SNM. Furthermore, in this work, subscripts n, p, e, µ will
always refer to neutrons, protons, electrons and muons, respectively.

Since the mean free path of a neutrino in a neutron star is bigger than the
typical radius of such a star (∼ 10 km), we will throughout assume that neutrinos
escape freely from the neutron star, see for example the work of Prakash et al. for
a discussion on trapped neutrinos. Eq. (23) yields then the following conditions
for matter in β equilibrium with for example nucleonic degrees freedom only

µn = µp + µe, (28)

and
np = ne, (29)

where µi and ni refer to the chemical potential and number density in fm−3 of
particle species i. If muons are present as well, we need to modify the equation
for charge conservation, Eq. (29), to read

np = ne + nµ,

and require that µe = µµ. With more particles present, the equations read∑
i

(
n+
bi

+ n+
li

)
=
∑
i

(
n−bi

+ n−li
)
, (30)

and
µn = biµi + qiµl, (31)

where bi is the baryon number, qi the lepton charge and the superscripts (±)
on number densities n represent particles with positive or negative charge. To
give an example, it is possible to have baryonic matter with hyperons like Λ
and Σ−,0,+ and isobars ∆−,0,+,++ as well in addition to the nucleonic degrees of
freedom. In this case the chemical equilibrium condition of Eq. (31 ) becomes,
excluding muons,

µΣ− = µ∆− = µn + µe,

µΛ = µΣ0 = µ∆0 = µn,

µΣ+ = µ∆+ = µp = µn − µe,
µ∆++ = µn − 2µe. (32)
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A transition from hadronic to quark matter is expected at high densities. The
high-density quark matter phase in the interior of neutron stars is also described
by requiring the system to be locally neutral

(2/3)nu − (1/3)nd − (1/3)ns − ne = 0, (33)

where nu,d,s,e are the densities of the u, d and s quarks and of the electrons
(eventually muons as well), respectively. Morover, the system must be in β-
equilibrium, i.e. the chemical potentials have to satisfy the following equations:

µd = µu + µe, (34)

and
µs = µu + µe. (35)

Equations (33)-(35) have to be solved self-consistently together with the field
equations for quarks at a fixed density n = nu + nd + ns.

An important ingredient in the discussion of the EoS and the criteria for
matter in β-equilibrium is the so-called symmetry energy S(n), defined as the
difference in energy for symmetric nuclear matter and pure neutron matter

S(n) = E(n, xp = 0)− E(n, xp = 1/2). (36)

If we expand the energy per baryon in the case of nucleonic degrees of freedom
only in the proton concentration xp about the value of the energy for SNM
(xp = 1

2 ), we obtain,

E(n, xp) = E(n, xp = 1
2) + 1

2
d2E
dx2

p

(n) (xp − 1/2)2 + . . . , (37)

where the term d2E/dx2
p is to be associated with the symmetry energy S(n) in

the empirical mass formula. If we assume that higher order derivatives in the
above expansion are small (we will see examples of this in the next subsection),
then through the conditions for β-equilbrium of Eqs. (28) and (29) and Eq. (25)
we can define the proton fraction by the symmetry energy as

~c
(
3π2nxp

)1/3 = 4S(n) (1− 2xp) , (38)

where the electron chemical potential is given by µe = ~ckF , i.e. ultrarelativistic
electrons are assumed. Thus, the symmetry energy is of paramount importance
for studies of neutron star matter in β-equilibrium. One can extract information
about the value of the symmetry energy at saturation density n0 from systematic
studies of the masses of atomic nuclei. However, these results are limited to
densities around n0 and for proton fractions close to 1

2 . Typical values for S(n) at
n0 are in the range 27− 38 MeV. For densities greater than n0 it is more difficult
to get a reliable information on the symmetry energy, and thereby the related
proton fraction. We will shed more light on this topic in the next subsection.
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Finally, another property of interest in the discussion of the various equations
of state is the incompressibility modulus K at non-zero pressure

K = 9∂P
∂n

. (39)

The sound speed vs depends as well on the density of the nuclear medium
through the relation(vs

c

)2
= dP

dε
= dP

dn

dn

dε
=
(

K

9(mnc2 + E + P/n)

)
. (40)

It is important to keep track of the dependence on density of vs since a super-
luminal behavior can occur at higher densities for most non-relativistic EoS.
Superluminal behavior would not occur with a fully relativistic theory, and it
is necessary to gauge the magnitude of the effect it introduces at the higher
densities. This will be discussed at the end of this section. The adiabatic constant
Γ can also be extracted from the EoS by

Γ = n

P

∂P

∂n
. (41)

Brueckner-Hartree-Fock theory
The Brueckner G-matrix has historically been an important ingredient in many-
body calculations of nuclear systems. In this section, we will briefly survey the
philosophy behind the G-matrix.

Historically, the G-matrix was developed in microscopic nuclear matter
calculations using realistic nucleon-nucleon (NN) interactions. It is an ingenuous
as well as an interesting method to overcome the difficulties caused by the
strong, short-range repulsive core contained in all modern models for the NN
interaction. The G-matrix method was originally developed by Brueckner, and
further developed by Goldstone and Bethe, Brandow and Petschek. In the
literature it is generally referred to as the Brueckner theory or the Brueckner-
Bethe-Goldstone theory.

Suppose we want to calculate the nuclear matter ground-state energy E0
using the non-relativistic Schrödinger equation

HΨ0(A) = E0(A)Ψ0(A), (42)

with H = T +V where A denotes the number of particles, T is the kinetic energy
and V is the nucleon-nucleon (NN) potential. Models for the NN interaction
are discussed in the chapter on nuclear forces. The corresponding unperturbed
problem is

H0ψ0(A) = W0(A)ψ0(A). (43)
Here H0 is just kinetic energy T and ψ0 is a Slater determinant representing the
Fermi sea, where all orbits through the Fermi momentum kF are filled. We write

E0 = W0 + ∆E0, (44)
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Figure 1: Diagrams which enter the definition of the ground-state shift energy
∆E0. Diagram (i) is first order in the interaction v̂, while diagrams (ii) and (iii)
are examples of contributions to second and third order, respectively.

where ∆E0 is the ground-state energy shift or correlation energy as it was defined
in many-body perturbation theory. If we know how to calculate ∆E0, then
we know E0, since W0 is easily obtained. In the limit A → ∞, the quantities
E0 and ∆E0 themselves are not well defined, but the ratios E0/A and ∆E0/A
are. The nuclear-matter binding energy per nucleon is commonly denoted by
BE/A, which is just −E0/A. In passing, we note that the empirical value for
symmetric nuclear matter (proton number Z=neutron number N) is ≈ 16 MeV.
There exists a formal theory for the calculation of ∆E0. According to the well-
known Goldstone linked-diagram theory, the energy shift ∆E0 is given exactly
by the diagrammatic expansion shown in Fig. 1. This theory, is a linked-cluster
perturbation expansion for the ground state energy of a many-body system, and
applies equally well to both nuclear matter and closed-shell nuclei such as the
doubly magic nucleus 40Ca. We will not discuss the Goldstone expansion, but
rather discuss briefly how it is used in calculations.

Using the standard diagram rules (see the discussion on coupled-cluster
theory and many-body perturbation theory), the various diagrams contained in
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the above figure can be readily calculated (in an uncoupled scheme)

(i) = (−)nh+nl

2nep

∑
ij≤kF

〈ij|v̂|ij〉AS , (45)

with nh = nl = 2 and nep = 1. As discussed in connection with the diagram
rules in the many-body perturbation theory chapter, nh denotes the number
of hole lines, nl the number of closed fermion loops and nep is the number of
so-called equivalent pairs. The factor 1/2nep is needed since we want to count a
pair of particles only once. We will carry this factor 1/2 with us in the equations
below. The subscript AS denotes the antisymmetrized and normalized matrix
element

〈ij|v̂|ij〉AS = 〈ij|v̂|ij〉 − 〈ji|v̂|ij〉. (46)

Similarly, diagrams (ii) and (iii) read

(ii) = (−)2+2

22

∑
ij≤kF

∑
ab>kF

〈ij|v̂|ab〉AS〈ab|v̂|ij〉AS
εi + εj − εa − εb

, (47)

and

(iii) = (−)2+2

23

∑
ki,kj≤kF

∑
abcdkF

〈ij|v̂|ab〉AS〈ab|v̂|cd〉AS〈cd|v̂|ij〉AS
(εi + εj − εa − εb)(εi + εj − εc − εd)

. (48)

In the above, ε denotes the sp energies defined by H0. The steps leading to the
above expressions for the various diagrams are rather straightforward. Though, if
we wish to compute the matrix elements for the interaction v, a serious problem
arises. Typically, the matrix elements will contain a term (see the next section for
the formal details) V (|r|), which represents the interaction potential V between
two nucleons, where r is the internucleon distance. All modern models for V have
a strong short-range repulsive core. Hence, matrix elements involving V (|r|), will
result in large (or infinitely large for a potential with a hard core) and repulsive
contributions to the ground-state energy. Thus, the diagrammatic expansion for
the ground-state energy in terms of the potential V (|r|) becomes meaningless.

One possible solution to this problem is provided by the well-known Brueckner
theory or the Brueckner G-matrix, or just the G-matrix. In fact, the G-matrix
is an almost indispensable tool in almost every microscopic nuclear structure
calculation. Its main idea may be paraphrased as follows. Suppose we want
to calculate the function f(x) = x/(1 + x). If x is small, we may expand the
function f(x) as a power series x+ x2 + x3 + . . . and it may be adequate to just
calculate the first few terms. In other words, f(x) may be calculated using a
low-order perturbation method. But if x is large (or infinitely large), the above
power series is obviously meaningless. However, the exact function x/(1 + x) is
still well defined in the limit of x becoming very large.

These arguments suggest that one should sum up the diagrams (i), (ii), (iii)
in fig. 1 and the similar ones to all orders, instead of computing them one by
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one. Denoting this all-order sum as 1/2G̃ijij , where we have introduced the
shorthand notation G̃ijij = 〈kikj |G̃|kikj〉AS (and similarly for ṽ), we have that

1
2 G̃ijij =1

2 v̂ijij +
∑
ab>kF

1
2 v̂ijab

1
εi + εj − εa − εb

×

[
1
2 v̂abij +

∑
cd>kF

1
2 v̂abcd

1
εi + εj − εc − εd

1
2Vcdij + . . .

]
. (49)

The factor 1/2 is the same as that discussed above, namely we want to count a
pair of particles only once. The quantity inside the brackets is just 1/2G̃mnij
and the above equation can be rewritten as an integral equation

G̃ijij = Ṽijij +
∑
ab>F

1
2 v̂ijab

1
εi + εj − εa − εb

G̃abij . (50)

Note that G̃ is the antisymmetrized G-matrix since the potential ṽ is also
antisymmetrized. This means that G̃ obeys

G̃ijij = −G̃jiij = −G̃ijji. (51)

The G̃-matrix is defined as

G̃ijij = Gijij −Gjiij , (52)

and the equation for G is

Gijij = Vijij +
∑
ab>kF

Vijab
1

εi + εj − εa − εb
Gabij , (53)

which is the familiar G-matrix equation. The above matrix is specifically designed
to treat a class of diagrams contained in ∆E0, of which typical contributions
were shown in fig. 1. In fact the sum of the diagrams in fig. 1 is equal to
1/2(Gijij −Gjiij).

Let us now define a more general G-matrix as

Gijij = Vijij +
∑
mn>0

Vijmn
Q(mn)

ω − εm − εn
Gmnij , (54)

which is an extension of Eq. (53). Note that Eq. (53) has εi + εj in the energy
denominator, whereas in the latter equation we have a general energy variable
ω in the denominator. Furthermore, in Eq. (53) we have a restricted sum over
mn, while in Eq. (54) we sum over all ab and we have introduced a weighting
factor Q(ab). In Eq. (54) Q(ab) corresponds to the choice

Q(a, b) =
{

1, min(a, b) > kF
0, else. , (55)
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where Q(ab) is usually referred to as the G-matrix Pauli exclusion operator.
The role of Q is to enforce a selection of the intermediate states allowed in
the G-matrix equation. The above Q requires that the intermediate particles a
and b must be both above the Fermi surface defined by F . We may enforce a
different requirement by using a summation over intermediate states different
from that in Eq. (54). An example is the Pauli operator for the model-space
Brueckner-Hartree-Fock method discussed below.

Before ending this section, let us rewrite the G-matrix equation in a more com-
pact form. The sp energies ε and wave functions are defined by the unperturbed
hamiltonian H0 as

H0|ψaψb = (εa + εb)|ψaψb. (56)

The G-matrix equation can then be rewritten in the following compact form

G(ω) = V + V
Q̂

ω −H0
G(ω), (57)

with Q̂ =
∑
ab |ψaψb〈〈ψaψb|. In terms of diagrams, G corresponds to an all-order

sum of the "ladder-type" interactions between two particles with the intermediate
states restricted by Q.

The G-matrix equation has a very simple form. But its calculation is rather
complicated, particularly for finite nuclear systems such as the nucleus 18O.
There are a number of complexities. To mention a few, the Pauli operator Q
may not commute with the unperturbed hamiltonian H0 and we have to make
the replacement

Q

ω −H0
→ Q

1
ω −QH0Q

Q.

The determination of the starting energy ω is also another problem.
In a medium such as nuclear matter we must account for the fact that certain

states are not available as intermediate states in the calculation of the G-matrix.
Following the discussion above this is achieved by introducing the medium
dependent Pauli operator Q. Further, the energy ω of the incoming particles,
given by a pure kinetic term in a scattering problem between two unbound
particles (for example two colliding protons), must be modified so as to allow
for medium corrections. How to evaluate the Pauli operator for nuclear matter
is, however, not straightforward. Before discussing how to evaluate the Pauli
operator for nuclear matter, we note that the G-matrix is conventionally given
in terms of partial waves and the coordinates of the relative and center-of-mass
motion. If we assume that the G-matrix is diagonal in α (α is a shorthand
notation for J , S, L and T ), we write the equation for the G-matrix as a
coupled-channels equation in the relative and center-of-mass system

Gαll′(kk′Kω) = V αll′(kk′) +
∑
l′′

∫
d3q

(2π)3V
α
ll′′(kq)

Q(q,K)
ω −H0

Gαl′′l′(qk′Kω). (58)

This equation is similar in structure to the scattering equations discussed in con-
nection with nuclear forces (see the chapter on models for nuclear forces), except
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that we now have introduced the Pauli operator Q and a medium dependent
two-particle energy ω. The notations in this equation follow those of the chapter
on nuclear forces where we discuss the solution of the scattering matrix T . The
numerical details on how to solve the above G-matrix equation through matrix
inversion techniques are discussed below Note however that the G-matrix may
not be diagonal in α. This is due to the fact that the Pauli operator Q is not
diagonal in the above representation in the relative and center-of-mass system.
The Pauli operator depends on the angle between the relative momentum and the
center of mass momentum. This angle dependence causes Q to couple states with
different relative angular momentua J , rendering a partial wave decomposition
of the G-matrix equation rather difficult. The angle dependence of the Pauli
operator can be eliminated by introducing the angle-average Pauli operator,
where one replaces the exact Pauli operator Q by its average Q̄ over all angles
for fixed relative and center-of-mass momenta. The choice of Pauli operator is
decisive to the determination of the sp spectrum. Basically, to first order in the
reaction matrix G, there are three commonly used sp spectra, all defined by the
solution of the following equations

εm = ε(km) = tm + um = k2
m

2MN
+ um, (59)

and

um =
∑
h≤kF

〈mh|G(ω = εm + εh) |mh〉AS km ≤ kM , (60)

(61)
um =0, km > kM . (62)

For notational economy, we set |km| = km. Here we employ antisymmetrized
matrix elements (AS), and kM is a cutoff on the momentum. Further, tm is
the sp kinetic energy and similarly um is the sp potential. The choice of cutoff
kM is actually what determines the three commonly used sp spectra. In the
conventional BHF approach one employs kM = kF , which leads to a Pauli
operator QBHF (in the laboratory system) given by

QBHF(km, kn) =
{

1, min(km, kn) > kF
0, else. , (63)

or, since we will define an angle-average Pauli operator in the relative and
center-of-mass system, we have

Q̄BHF(k,K) =


0, k ≤

√
k2
F −K2/4

1, k ≥ kF +K/2
K2/4+k2−k2

F

kK else,
(64)

with kF the momentum at the Fermi surface.
The BHF choice sets uk = 0 for k > kF , which leads to an unphysical, large

gap at the Fermi surface, typically of the order of 50− 60 MeV. To overcome the

32



gap problem, Mahaux and collaborators introduced a continuous sp spectrum
for all values of k. The divergencies which then may occur in Eq. (58) are taken
care of by introducing a principal value integration in Eq. (58), to retain only
the real part contribution to the G-matrix.

To define the energy denominators we will also make use of the angle-average
approximation. The angle dependence is handled by the so-called effective mass
approximation. The single-particle energies in nuclear matter are assumed to
have the simple quadratic form

ε(km) = ~2k2
m

2M∗N
+ ∆, km ≤ kF

= ~2k2
m

2MN
, km > kF ,

(65)

where M∗N is the effective mass of the nucleon and MN is the bare nucleon
mass. For particle states above the Fermi sea we choose a pure kinetic energy
term, whereas for hole states, the terms M∗N and ∆, the latter being an effective
single-particle potential related to the G-matrix, are obtained through the self-
consistent Brueckner-Hartree-Fock procedure. The sp potential is obtained
through the same angle-average approximation

U(km) =
∑
lα

(2T + 1)(2J + 1)
{

8
π

∫ (kF−km)/2

0
k2dkGαll(k, K̄1) (66)

+ 1
πkm

∫ (kF +km)/2

(kF−km)/2
kdk(k2

F − (km − 2k)2)Gαll(k, K̄2)
}
,

where we have defined
K̄2

1 = 4(k2
m + k2), (67)

and
K̄2

2 = 4(k2
m + k2)− (2k + km − kF )(2k + k1 + kF ). (68)

This self-consistency scheme consists in choosing adequate initial values of the
effective mass and ∆. The obtained G-matrix is in turn used to obtain new
values for M∗N and ∆. This procedure continues until these parameters vary
little.

Exercise 4: Magic numbers for infinite matter and the Min-
nesota interaction model

aragraph!paragraph>paragraph>-0.5em

a) Set up the quantum numbers for infinite nuclear matter and neutron
matter using a given value of nmax.
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Solution. The following python code sets up the quantum numbers for both
infinite nuclear matter and neutron matter meploying a cutoff in the value of
n.

from numpy import *

nmax =2
nshell = 3*nmax*nmax
count = 1
tzmin = 1

print "Symmetric nuclear matter:"
print "a, nx, ny, nz, sz, tz, nx^2 + ny^2 + nz^2"
for n in range(nshell):

for nx in range(-nmax,nmax+1):
for ny in range(-nmax,nmax+1):

for nz in range(-nmax, nmax+1):
for sz in range(-1,1+1):

tz = 1
for tz in range(-tzmin,tzmin+1):

e = nx*nx + ny*ny + nz*nz
if e == n:

if sz != 0:
if tz != 0:

print count, " ",nx," ",ny, " ",nz," ",sz," ",tz," ",e
count += 1

nmax =1
nshell = 3*nmax*nmax
count = 1
tzmin = 1
print "------------------------------------"
print "Neutron matter:"
print "a, nx, ny, nz, sz, nx^2 + ny^2 + nz^2"
for n in range(nshell):

for nx in range(-nmax,nmax+1):
for ny in range(-nmax,nmax+1):

for nz in range(-nmax, nmax+1):
for sz in range(-1,1+1):

e = nx*nx + ny*ny + nz*nz
if e == n:

if sz != 0:
print count, " ",nx," ",ny, " ",sz," ",tz," ",e
count += 1

34


	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>
	paragraph>

