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Introduction
To understand why matter is stable, and thereby shed light on the limits of
nuclear stability, is one of the overarching aims and intellectual challenges of basic
research in nuclear physics. To relate the stability of matter to the underlying
fundamental forces and particles of nature as manifested in nuclear matter, is
central to present and planned rare isotope facilities. Important properties of
nuclear systems which can reveal information about these topics are for example
masses, and thereby binding energies, and density distributions of nuclei. These
are quantities which convey important information on the shell structure of
nuclei, with their pertinent magic numbers and shell closures or the eventual
disappearence of the latter away from the valley of stability.

Neutron-rich nuclei are particularly interesting for the above endeavour.
As a particular chain of isotopes becomes more and more neutron rich, one
reaches finally the limit of stability, the so-called dripline, where one additional
neutron makes the next isotopes unstable with respect to the previous ones.
The appearence or not of magic numbers and shell structures, the formation of
neutron skins and halos can thence be probed via investigations of quantities
like the binding energy or the charge radii and neutron rms radii of neutron-rich
nuclei. These quantities have in turn important consequences for theoretical
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Figure 1: Expected experimental information on the calcium isotopes that
can be obtained at FRIB. The limits for detailed spectroscopic information are
around A ∼ 60.

models of nuclear structure and their application in astrophysics. For example,
the neutron radius of 208Pb, recently extracted from the PREX experiment at
Jefferson Laboratory can be used to constrain the equation of state of neutron
matter. A related quantity to the neutron rms radius rrms

n = 〈r2〉1/2
n is the

neutron skin rskin = rrms
n − rrms

p , where rrms
p is the corresponding proton rms

radius. There are several properties which relate the thickness of the neutron
skin to quantities in nuclei and nuclear matter, such as the symmetry energy
at the saturation point for nuclear matter, the slope of the equation of state
for neutron matter or the low-energy electric dipole strength due to the pigmy
dipole resonance.

Having access to precise measurements of masses, radii, and electromagnetic
moments for a wide range of nuclei allows to study trends with varying neutron
excess. A quantitative description of various experimental data with quantified
uncertainty still remains a major challenge for nuclear structure theory. Global
theoretical studies of isotopic chains, such as the Ca chain shown in the figure
below here, make it possible to test systematic properties of effective interactions
between nucleons. Such calculations also provide critical tests of limitations
of many-body methods. As one approaches the particle emission thresholds,
it becomes increasingly important to describe correctly the coupling to the
continuum of decays and scattering channels. While the full treatment of
antisymmetrization and short-range correlations has become routine in first
principle approaches (to be defined later) to nuclear bound states, the many-
body problem becomes more difficult when long-range correlations and continuum
effects are considered.
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The aim of this first section is to present some of the experimental data
which can be used to extract information about correlations in nuclear systems.
In particular, we will start with a theoretical analysis of a quantity called the
separation energy for neutrons or protons. This quantity, to be discussed below,
is defined as the difference between two binding energies (masses) of neighboring
nuclei. As we will see from various figures below and exercises as well, the
separation energies display a varying behavior as function of the number of
neutrons or protons. These variations from one nucleus to another one, laid the
foundation for the introduction of so-called magic numbers and a mean-field
picture in order to describe nuclei theoretically.

With a mean- or average-field picture we mean that a given nucleon (either
a proton or a neutron) moves in an average potential field which is set up by all
other nucleons in the system. Consider for example a nucleus like 17O with nine
neutrons and eight protons. Many properties of this nucleus can be interpreted
in terms of a picture where we can view it as one neutron on top of 16O. We
infer from data and our theoretical interpretations that this additional neutron
behaves almost as an individual neutron which sees an average interaction set
up by the remaining 16 nucleons in 16O. A nucleus like 16O is an example of
what we in these lectures will denote as a good closed-shell nucleus. We will
come back to what this means later.

Since we want to develop a theory capable of interpreting data in terms of
our laws of motion and the pertinent forces, we can think of this neutron as
a particle which moves in a potential field. We can hence attempt at solving
our equations of motion (Schroedinger’s equation in our case) for this system
along the same lines as we did in atomic physics when we solved Schroedinger’s
equation for the hydrogen atom. We just need to define a model for our effective
single-particle potential.

A simple potential model which enjoys quite some popularity in nuclear
physics, is the three-dimensional harmonic oscillator. This potential model
captures some of the physics of deeply bound single-particle states but fails in
reproducing the less bound single-particle states. A parametrized, and more
realistic, potential model which is widely used in nuclear physics, is the so-called
Woods-Saxon potential. Both the harmonic oscillator and the Woods-Saxon
potential models define computational problems that can easily be solved (see
below), resulting (with the appropriate parameters) in a rather good reproduction
of experiment for nuclei which can be approximated as one nucleon on top (or
one nucleon removed) of a so-called closed-shell system.

To be able to interpret a nucleus in such a way requires at least that we are
capable of parametrizing the abovementioned interactions in order to reproduce
say the excitation spectrum of a nucleus like 17O.

With such a parametrized interaction we are able to solve Schroedinger’s
equation for the motion of one nucleon in a given field. A nucleus is however
a true and complicated many-nucleon system, with extremely many degrees
of freedom and complicated correlations, rendering the ideal solution of the
many-nucleon Schroedinger equation an impossible enterprise. It is much easier
to solve a single-particle problem with say a Woods-Saxon potential. Using such
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a potential hides however many of the complicated correlations and interactions
which we see in nuclei. Such an effective single-nucleon potential is for example
not capable of describing properties like the binding energy or the rms radius of
a given nucleus.

An improvement to these simpler single-nucleon potentials is given by the
Hartree-Fock method, where the variational principle is used to define a mean-
field which the nucleons move in. There are many different classes of mean-field
methods. An important difference between these methods and the simpler
parametrized mean-field potentials like the harmonic oscillator and the Woods-
Saxon potentials, is that the resulting equations contain information about
the nuclear forces present in our models for solving Schroedinger’s equation.
Hartree-Fock and other mean-field methods like density functional theory form
core topics in later lectures.

The aim of this section is to present some of the experimental data we will
confront theory with. In particular, we will focus on separation and shell-gap
energies and use these to build a picture of nuclei in terms of (from a philosophical
stand we would call this a reductionist approach) a single-particle picture. The
harmonic oscillator will serve as an excellent starting point in building nuclei
from the bottom and up. Here we will neglect nuclear forces, these are introduced
in the next section when we discuss the Hartree-Fock method.

The aim of these lectures is to develop our physics intuition of nuclear systems
using a theoretical approach where we describe data in terms of the motion of
individual nucleons and their mutual interactions.

How our theoretical pictures and models can be used to interpret
data is in essence what these lectures is about. Our narrative will lead
us along a path where we start with single-particle models and end with different
advanced many-body methods, from the simplest possible, namely Hartree-Fock
theory, via configuration interaction theory (often denoted the shell-model in
nuclear physics) and many-body perturbation theory to advanced many-body
methods like coupled cluster theory and Green’s function theor.. The latter will
be used to understand and analyze excitation spectra and decay patterns of
nuclei, linking our theoretical understanding with interpretations of experiment.
The way we build up our theoretical descriptions and interpretations follows what
we may call a standard reductionistic approach, that is we start with what we
believe are our effective degrees of freedom (nucleons in our case) and interactions
amongst these and solve thereafter the underlying equations of motions. This
defines the nuclear many-body problem, and mean-field approaches like Hartree-
Fock theory and the nuclear shell-model represent different approaches to our
solutions of Schroedinger’s equation.

We start our tour of experimental data and our interpretations by considering
the chain of oxygen isotopes. In the exercises below you will be asked to perform
similar analyses for other chains of isotopes.

The oxygen isotopes are the heaviest isotopes for which the drip line is well
established. The drip line is defined as the point where adding one more nucleon
leads to an unbound nucleus. Below we will see that we can define the dripline
by studying the separation energy. Where the neutron (proton) separation
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energy changes sign as a function of the number of neutrons (protons) defines
the neutron (proton) drip line.

The oxygen isotopes are simple enough to be described by some few selected
single-particle degrees of freedom.

• Two out of four stable even-even isotopes exhibit a doubly magic nature,
namely 22O (Z = 8, N = 14) and 24O (Z = 8, N = 16).

• The structure of 22O and 24O is assumed to be governed by the evolution
of the 1s1/2 and 0d5/2 one-quasiparticle states.

• The isotopes 25O, 26O, 27O and 28O are outside the drip line, since the
0d3/2 orbit is not bound.

Many experiments worldwide! These isotopes have been studied in series of
recent experiments. Some of these experiments and theoretical interpretations
are discussed in the following articles:

• 24O and lighter: C. R. Hoffman et al., Phys. Lett. B 672, 17 (2009);
R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009); C. R. Hoffman et
al., Phys. Rev. C 83, 031303(R) (2011); Stanoiu et al., Phys. Rev. C 69,
034312 (2004)

• 25O: C. R. Hoffman et al., Phys. Rev. Lett. 102,152501 (2009).

• 26O: E. Lunderberg et al., Phys. Rev. Lett. 108, 142503 (2012).

• 26O: Z. Kohley et al., Study of two-neutron radioactivity in the decay of
26O, Phys. Rev. Lett., 110, 152501 (2013).

• Theory: Oxygen isotopes with three-body forces, Otsuka et al., Phys. Rev. Lett.
105, 032501 (2010). Hagen et al., Phys. Rev. Lett., 108, 242501 (2012).

Masses and Binding energies
Our first approach in analyzing data theoretically, is to see if we can use
experimental information to

• Extract information about a so-called single-particle behavior

• And interpret such a behavior in terms of the underlying forces and
microscopic physics

The next step is to see if we could use these interpretations to say something
about shell closures and magic numbers. Since we focus on single-particle
properties, a quantity we can extract from experiment is the separation energy
for protons and neutrons. Before we proceed, we need to define quantities like
masses and binding energies. Two excellent reviews on recent trends in the
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determination of nuclear masses can be found in the work of Pearson et al. and
Blaum et al.

A basic quantity which can be measured for the ground states of nuclei is
the atomic mass M(N,Z) of the neutral atom with atomic mass number A and
charge Z. The number of neutrons is N .

Atomic masses are usually tabulated in terms of the mass excess defined by

∆M(N,Z) = M(N,Z)− uA,

where u is the Atomic Mass Unit

u = M(12C)/12 = 931.49386 MeV/c2.

Here we will mainly use data from the 2003 compilation of Audi, Wapstra and
Thibault.

The nucleon masses are

mp = 938.27203(8) MeV/c2 = 1.00727646688(13)u,

and
mn = 939.56536(8) MeV/c2 = 1.0086649156(6)u.

In the 2003 mass evaluation there are 2127 nuclei measured with an accuracy
of 0.2 MeV or better, and 101 nuclei measured with an accuracy of greater than
0.2 MeV. For heavy nuclei one observes several chains of nuclei with a constant
N − Z value whose masses are obtained from the energy released in α-decay.

The nuclear binding energy is defined as the energy required to break up a
given nucleus into its constituent parts of N neutrons and Z protons. In terms
of the atomic masses M(N,Z) the binding energy is defined by

BE(N,Z) = ZMHc
2 +Nmnc

2 −M(N,Z)c2,

where MH is the mass of the hydrogen atom and mn is the mass of the neutron.
In terms of the mass excess the binding energy is given by

BE(N,Z) = Z∆Hc
2 +N∆nc

2 −∆(N,Z)c2,

where ∆Hc
2 = 7.2890 MeV and ∆nc

2 = 8.0713 MeV.
The following python program reads in the experimental data on binding

energies and, stored in the file bindingenergies.dat, plots them as function of
the mass number A. One notices clearly a saturation of the binding energy per
nucleon at A ≈ 56.

import numpy as np
from matplotlib import pyplot as plt
# Load in data file
data = np.loadtxt("datafiles/bindingenergies.dat")
# Make arrays containing x-axis and binding energies as function of A
x = data[:,2]
bexpt = data[:,3]
plt.plot(x, bexpt ,’ro’)
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plt.axis([0,270,-1, 10.0])
plt.xlabel(r’$A$’)
plt.ylabel(r’Binding energies in [MeV]’)
plt.legend((’Experiment’), loc=’upper right’)
plt.title(r’Binding energies from experiment’)
plt.savefig(’expbindingenergies.pdf’)
plt.savefig(’expbindingenergies.png’)
plt.show()

A popular and physically intuitive model which can be used to parametrize
the experimental binding energies as function of A, is the so-called the liquid
drop model. The ansatz is based on the following expression

BE(N,Z) = a1A− a2A
2/3 − a3

Z2

A1/3 − a4
(N − Z)2

A
,

where A stands for the number of nucleons and the ais are parameters which
are determined by a fit to the experimental data.

To arrive at the above expression we have assumed that we can make the
following assumptions:

• There is a volume term a1A proportional with the number of nucleons (the
energy is also an extensive quantity). When an assembly of nucleons of
the same size is packed together into the smallest volume, each interior
nucleon has a certain number of other nucleons in contact with it. This
contribution is proportional to the volume.

• There is a surface energy term a2A
2/3. The assumption here is that a

nucleon at the surface of a nucleus interacts with fewer other nucleons than
one in the interior of the nucleus and hence its binding energy is less. This
surface energy term takes that into account and is therefore negative and
is proportional to the surface area.

• There is a Coulomb energy term a3
Z2

A1/3 . The electric repulsion between
each pair of protons in a nucleus yields less binding.

• There is an asymmetry term a4
(N−Z)2

A . This term is associated with the
Pauli exclusion principle and reflectd the fact that the proton-neutron
interaction is more attractive on the average than the neutron-neutron and
proton-proton interactions.

We could also add a so-called pairing term, which is a correction term that arises
from the tendency of proton pairs and neutron pairs to occur. An even number
of particles is more stable than an odd number. Performing a least-square fit to
data, we obtain the following numerical values for the various constants

• a1 = 15.49 MeV

• a2 = 17.23 MeV

• a3 = 0.697 MeV
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• a4 = 22.6 MeV

The python below here allows you to perform a fit of teh above parameters using
nonlinear least squares curvefitting.

The following python program reads now in the experimental data on binding
energies as well as the results from the above liquid drop model and plots these
energies as function of the mass number A. One sees that for larger values of A,
there is a better agreement with data.

import numpy as np
from matplotlib import pyplot as plt
# Load in data file
data = np.loadtxt("datafiles/bindingenergies.dat")
# Make arrays containing x-axis and binding energies as function of
x = data[:,2]
bexpt = data[:,3]
liquiddrop = data[:,4]
plt.plot(x, bexpt ,’b-o’, x, liquiddrop, ’r-o’)
plt.axis([0,270,-1, 10.0])
plt.xlabel(r’$A$’)
plt.ylabel(r’Binding energies in [MeV]’)
plt.legend((’Experiment’,’Liquid Drop’), loc=’upper right’)
plt.title(r’Binding energies from experiment and liquid drop’)
plt.savefig(’bindingenergies.pdf’)
plt.savefig(’bindingenergies.png’)
plt.show()

This python program reads now in the experimental data on binding energies
and performs a nonlinear least square fitting of the data. In the example here
we use only the parameters a1 and a2, leaving it as an exercise to the reader to
perform the fit for all four paramters. The results are plotted and compared with
the experimental values. To read more about non-linear least square methods,
see for example the text of M.J. Box, D. Davies and W.H. Swann, Non-Linear
optimisation Techniques, Oliver & Boyd, 1969.

import numpy as np
from scipy.optimize import curve_fit
from matplotlib import pyplot as plt
# Load in data file
data = np.loadtxt("datafiles/bindingenergies.dat")
# Make arrays containing A on x-axis and binding energies
A = data[:,2]
bexpt = data[:,3]
# The function we want to fit to, only two terms here
def func(A,a1, a2):

return a1*A-a2*(A**(2.0/3.0))
# function to perform nonlinear least square with guess for a1 and a2
popt, pcov = curve_fit(func, A, bexpt, p0 = (16.0, 18.0))
a1 = popt[0]
a2 = popt[1]
liquiddrop = a1*A-a2*(A**(2.0/3.0))

plt.plot(A, bexpt ,’bo’, A, liquiddrop, ’ro’)
plt.axis([0,270,-1, 10.0])
plt.xlabel(r’$A$’)
plt.ylabel(r’Binding energies in [MeV]’)
plt.legend((’Experiment’,’Liquid Drop’), loc=’upper right’)
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plt.title(r’Binding energies from experiment and liquid drop’)
plt.savefig(’bindingenergies.pdf’)
plt.savefig(’bindingenergies.png’)
plt.show()

We are now interested in interpreting experimental binding energies in terms
of a single-particle picture. In order to do so, we consider first energy conservation
for nuclear transformations that include, for example, the fusion of two nuclei a
and b into the combined system c

Na+Zaa+ Nb+Zbb→ Nc+Zcc

or the decay of nucleus c into two other nuclei a and b
Nc+Zcc→Na+Za a+Nb+Zb b

In general we have the reactions∑
i

Ni+Zii→
∑
f

Nf+Zf f

We require also that the number of protons and neutrons (the total number
of nucleons) is conserved in the initial stage and final stage, unless we have
processes which violate baryon conservation,∑

i

Ni =
∑
f

Nf and
∑
i

Zi =
∑
f

Zf .

Q-values and separation energies
The above processes can be characterized by an energy difference called the Q
value, defined as

Q =
∑
i

M(Ni, Zi)c2 −
∑
f

M(Nf , Zf )c2 =
∑
i

BE(Nf , Zf )−
∑
i

BE(Ni, Zi)

Spontaneous decay involves a single initial nuclear state and is allowed if Q > 0.
In the decay, energy is released in the form of the kinetic energy of the final
products. Reactions involving two initial nuclei are called endothermic (a net
loss of energy) if Q < 0. The reactions are exothermic (a net release of energy)
if Q > 0.

Let us study the Q values associated with the removal of one or two nucleons
from a nucleus. These are conventionally defined in terms of the one-nucleon
and two-nucleon separation energies. The neutron separation energy is defined
as

Sn = −Qn = BE(N,Z)−BE(N − 1, Z),

and the proton separation energy reads

Sp = −Qp = BE(N,Z)−BE(N,Z − 1).
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The two-neutron separation energy is defined as

S2n = −Q2n = BE(N,Z)−BE(N − 2, Z),

and the two-proton separation energy is given by

S2p = −Q2p = BE(N,Z)−BE(N,Z − 2),

Using say the neutron separation energies (alternatively the proton separation
energies)

Sn = −Qn = BE(N,Z)−BE(N − 1, Z),

we can define the so-called energy gap for neutrons (or protons) as

∆Sn = BE(N,Z)−BE(N − 1, Z)− (BE(N + 1, Z)−BE(N,Z)) ,

or
∆Sn = 2BE(N,Z)−BE(N − 1, Z)−BE(N + 1, Z).

This quantity can in turn be used to determine which nuclei are magic or not.
For protons we would have

∆Sp = 2BE(N,Z)−BE(N,Z − 1)−BE(N,Z + 1).

We leave it as an exercise to the reader to define and interpret the two-neutron
or two-proton gaps.

The following python programs can now be used to plot the separation
energies and the energy gaps for the oxygen isotopes. The following python
code reads the separation energies from file for all oxygen isotopes from A = 13
to A = 25, The data are taken from the file snox.dat. This files contains the
separation energies and the shell gap energies.

import numpy as np
from matplotlib import pyplot as plt
# Load in data file
data = np.loadtxt("datafiles/snox.dat")
# Make arrays containing x-axis and binding energies as function of
x = data[:,1]
y = data[:,2]

plt.plot(x, y,’b-+’,markersize=6)
plt.axis([4,18,-1, 25.0])
plt.xlabel(r’Number of neutrons $N$’,fontsize=20)
plt.ylabel(r’$S_n$ [MeV]’,fontsize=20)
plt.legend((’Separation energies for oxygen isotpes’), loc=’upper right’)
plt.title(r’Separation energy for the oxygen isotopes’)
plt.savefig(’snoxygen.pdf’)
plt.savefig(’snoxygen.png’)
plt.show()

Here we display the python program for plotting the corresponding results
for shell gaps for the oyxgen isotopes.
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import numpy as np
from matplotlib import pyplot as plt
# Load in data file
data = np.loadtxt("datafiles/snox.dat")
# Make arrays containing x-axis and binding energies as function of
x = data[:,1]
y = data[:,3]

plt.plot(x, y,’b-+’,markersize=6)
plt.axis([4,18,-7, 12.0])
plt.xlabel(r’Number of neutrons $N$’,fontsize=20)
plt.ylabel(r’$\Delta S_n$ [MeV]’,fontsize=20)
plt.legend((’Shell gap energies for oxygen isotpes’), loc=’upper right’)
plt.title(r’Shell gap energies for the oxygen isotopes’)
plt.savefig(’gapoxygen.pdf’)
plt.savefig(’gapoxygen.png’)
plt.show()

Since we will focus in the beginning on single-particle degrees of freedom
and mean-field approaches before we start with nuclear forces and many-body
approaches like the nuclear shell-model, there are some features to be noted

• In the discussion of the liquid drop model and binding energies, we note
that the total binding energy is not that different from the sum of the
individual neutron and proton masses.

One may thus infer that intrinsic properties of nucleons in a nucleus are close to
those of free nucleons.

• In the discussion of the neutron separation energies for the oxygen isotopes,
we note a clear staggering effect between odd and even isotopes with the
even ones being more bound (larger separation energies). We will later
link this to strong pairing correlations in nuclei.

• The neutron separation energy becomes negative at 25O, making this
nucleus unstable with respect to the emission of one neutron. A nucleus
like 24O is thus the last stable oxygen isotopes which has been observed.
"Oxygen-26":"ournals.aps.org/prl/abstract/10.1103/PhysRevLett.108.142503"
. has been found to be unbound with respect to 24O.

• We note also that there are large shell-gaps for some nuclei, meaning that
more energy is needed to remove one nucleon. These gaps are used to
define so-called magic numbers. For the oxygen isotopes we see a clear
gap for 16O. We will interpret this gap as one of several experimental
properties that define so-called magic numbers. In our discussion below
we will make a first interpretation using single-particle states from the
harmonic oscillator and the Woods-Saxon potential.

In the exercises below you will be asked to perform a similar analysis for other
chains of isotopes and interpret the results.
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Radii
The root-mean-square (rms) charge radius has been measured for the ground
states of many nuclei. For a spherical charge density, ρ(r), the mean-square
radius is defined by

〈r2〉 =
∫
drρ(r)r2∫
drρ(r)

,

and the rms radius is the square root of this quantity denoted by

R =
√
〈r2〉.

Radii for most stable nuclei have been deduced from electron scattering form
factors and/or from the x-ray transition energies of muonic atoms. The relative
radii for a series of isotopes can be extracted from the isotope shifts of atomic
x-ray transitions. The rms radius for the nuclear point-proton density, Rp is
obtained from the rms charge radius by:

Rp =
√
R2

ch −R2
corr,

where
R2

corr = R2
op + (N/Z)R2

on +R2
rel,

where
Rop = 0.875(7)fm.

is the rms radius of the proton, R2
on = 0.116(2) fm2 is the mean-square radius

of the neutron and R2
rel = 0.033 fm2 is the relativistic Darwin-Foldy correction.

There are also smaller nucleus-dependent relativistic spin-orbit and mesonic-
exchange corrections that should be included.

Definitions
We will now introduce the potential models we have discussex above, namely
the harmonic oscillator and the Woods-Saxon potentials. In order to proceed,
we need some definitions.

We define an operator as Ô throughout. Unless otherwise specified the total
number of nucleons is always A and d is the dimension of the system. In nuclear
physics we normally define the total number of particles to be A = N +Z, where
N is total number of neutrons and Z the total number of protons. In case of
other baryons such as isobars ∆ or various hyperons such as Λ or Σ, one needs
to add their definitions. When we refer to a single neutron we will use the label
n and when we refer to a single proton we will use the label p. Unless otherwise
specified, we will simply call these particles for nucleons.

The quantum numbers of a single-particle state in coordinate space are
defined by the variables

x = (r, σ),
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where
r ∈ Rd,

with d = 1, 2, 3 represents the spatial coordinates and σ is the eigenspin of the
particle. For fermions with eigenspin 1/2 this means that

x ∈ Rd ⊕ (1
2),

and the integral ∫
dx =

∑
σ

∫
ddr =

∑
σ

∫
dr,

and ∫
dAx =

∫
dx1

∫
dx2 . . .

∫
dxA.

Since we are dealing with protons and neutrons we need to add isospin as a new
degree of freedom.

Including isospin τ we have

x = (r, σ, τ),

where
r ∈ R3,

For nucleons, which are fermions with eigenspin 1/2 and isospin 1/2 this means
that

x ∈ Rd ⊕ (1
2)⊕ (1

2),

and the integral ∫
dx =

∑
στ

∫
dr,

and ∫
dAx =

∫
dx1

∫
dx2 . . .

∫
dxA.

We will use the standard nuclear physics definition of isospin, resulting in
τz = −1/2 for protons and τz = 1/2 for neutrons.

The quantum mechanical wave function of a given state with quantum
numbers λ (encompassing all quantum numbers needed to specify the system),
ignoring time, is

Ψλ = Ψλ(x1, x2, . . . , xA),

with xi = (ri, σi, τi) and the projections of σi and τi take the values {−1/2,+1/2}.
We will hereafter always refer to Ψλ as the exact wave function, and if the ground
state is not degenerate we label it as

Ψ0 = Ψ0(x1, x2, . . . , xA).
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Since the solution Ψλ seldomly can be found in closed form, approximations
are sought. In this text we define an approximative wave function or an ansatz
to the exact wave function as

Φλ = Φλ(x1, x2, . . . , xA),

with

Φ0 = Φ0(x1, x2, . . . , xA),

being the ansatz for the ground state.
The wave function Ψλ is sought in the Hilbert space of either symmetric or

anti-symmetric N -body functions, namely

Ψλ ∈ HA := H1 ⊕H1 ⊕ · · · ⊕ H1,

where the single-particle Hilbert space Ĥ1 is the space of square integrable
functions over ∈ Rd ⊕ (σ)⊕ (τ) resulting in

H1 := L2(Rd ⊕ (σ)⊕ (τ)).

Our Hamiltonian is invariant under the permutation (interchange) of two
particles. Since we deal with fermions however, the total wave function is
antisymmetric. Let P̂ be an operator which interchanges two particles. Due to
the symmetries we have ascribed to our Hamiltonian, this operator commutes
with the total Hamiltonian,

[Ĥ, P̂ ] = 0,

meaning that Ψλ(x1, x2, . . . , xA) is an eigenfunction of P̂ as well, that is

P̂ijΨλ(x1, x2, . . . , xi, . . . , xj , . . . , xA) = βΨλ(x1, x2, . . . , xj , . . . , xi, . . . , xA),

where β is the eigenvalue of P̂ . We have introduced the suffix ij in order to
indicate that we permute particles i and j. The Pauli principle tells us that the
total wave function for a system of fermions has to be antisymmetric, resulting
in the eigenvalue β = −1.

The Schrodinger equation reads

Ĥ(x1, x2, . . . , xA)Ψλ(x1, x2, . . . , xA) = EλΨλ(x1, x2, . . . , xA), (1)

where the vector xi represents the coordinates (spatial, spin and isospin) of
particle i, λ stands for all the quantum numbers needed to classify a given
A-particle state and Ψλ is the pertaining eigenfunction. Throughout these notes,
Ψ refers to the exact eigenfunction, unless otherwise stated.

We write the Hamilton operator, or Hamiltonian, in a generic way

Ĥ = T̂ + V̂
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where T̂ represents the kinetic energy of the system

T̂ =
A∑
i=1

p2
i

2mi
=

A∑
i=1

(
− ~2

2mi
∇i

2
)

=
A∑
i=1

t(xi)

while the operator V̂ for the potential energy is given by

V̂ =
A∑
i=1

ûext(xi) +
A∑

ji=1
v(xi, xj) +

A∑
ijk=1

v(xi, xj , xk) + . . . (2)

Hereafter we use natural units, viz. ~ = c = e = 1, with e the elementary charge
and c the speed of light. This means that momenta and masses have dimension
energy.

The potential energy part includes also an external potential ûext(xi).
In a non-relativistic approach to atomic physics, this external potential is

given by the attraction an electron feels from the atomic nucleus. The latter being
much heavier than the involved electrons, is often used to define a natural center
of mass. In nuclear physics there is no such external potential. It is the nuclear
force which results in binding in nuclear systems. In a non-relativistic framework,
the nuclear force contains two-body, three-body and more complicated degrees
of freedom. The potential energy reads then

V̂ =
A∑
ij

v(xi, xj) +
A∑
ijk

v(xi, xj , xk) + . . .

Three-body and more complicated forces arise since we are dealing with protons
and neutrons as effective degrees of freedom. We will come back to this topic
later. Furthermore, in large parts of these lectures we will assume that the
potential energy can be approximated by a two-body interaction only. Our
Hamiltonian reads then

Ĥ =
A∑
i=1

p2
i

2mi
+

A∑
ij

v(xi, xj). (3)

A modified Hamiltonian
It is however, from a computational point of view, convenient to introduce
an external potential ûext(xi) by adding and substracting it to the original
Hamiltonian. This means that our Hamiltonian can be rewritten as

Ĥ = Ĥ0 + ĤI =
A∑
i=1

ĥ0(xi) +
A∑

i<j=1
v̂(xij)−

A∑
i=1

ûext(xi),

with
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Ĥ0 =
A∑
i=1

ĥ0(xi) =
A∑
i=1

(
t̂(xi) + ûext(xi)

)
.

The interaction (or potential energy term) reads now

ĤI =
A∑

i<j=1
v̂(xij)−

A∑
i=1

ûext(xi).

In nuclear physics the one-body part uext(xi) is often approximated by a
harmonic oscillator potential or a Woods-Saxon potential. However, this is not
fully correct, because as we have discussed, nuclei are self-bound systems and
there is no external confining potential. As we will see later, the Ĥ0 part of the
hamiltonian cannot be used to compute the binding energy of a nucleus since it
is not based on a model for the nuclear forces. That is, the binding energy is not
the sum of the individual single-particle energies.

Why do we introduce the Hamiltonian in the form

Ĥ = Ĥ0 + ĤI?

There are many reasons for this. Let us look at some of them, using the harmonic
oscillator in three dimensions as our starting point. For the harmonic oscillator
we know that

ĥ0(xi)ψα(xi) = εαψα(xi),
where the eigenvalues are εα and the eigenfunctions are ψα(xi). The sub-

script α represents quantum numbers like the orbital angular momentum lα, its
projection mlα and the principal quantum number nα = 0, 1, 2, . . . .

The eigenvalues are

εα = ~ω
(

2nα + lα + 3
2

)
.

The following mathematical properties of the harmonic oscillator are handy.

• First of all we have a complete basis of orthogonal eigenvectors. These
have well-know expressions and can be easily be encoded.

• With a complete basis ψα(xi), we can construct a new basis φτ (xi) by
expanding in terms of a harmonic oscillator basis, that is

φτ (xi) =
∑
α

Cταψα(xi),

where Cτα represents the overlap between the two basis sets.

• As we will see later, the harmonic oscillator basis allows us to compute in
an expedient way matrix elements of the interactions between two nucleons.
Using the above expansion we can in turn represent nuclear forces in terms
of new basis, for example the Woods-Saxon basis to be discussed later
here.
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Figure 2: Single-particle spectrum and quantum numbers for a harmonic
oscillator potential and a Woods-Saxon potential with and without a spin-orbit
force.

The harmonic oscillator (a shifted one by a negative constant) provides also a
very good approximation to most bound single-particle states. Furthermore, it
serves as a starting point in building up our picture of nuclei, in particular how
we define magic numbers and systems with one nucleon added to (or removed
from) a closed-shell core nucleus. The figure here shows the various harmonic
oscillator states, with those obtained with a Woods-Saxon potential as well,
including a spin-orbit splitting (to be discussed below).

In nuclear physics the one-body part uext(xi) is often approximated by a
harmonic oscillator potential. However, as we also noted with the Woods-Saxon
potential there is no external confining potential in nuclei.

What many people do then, is to add and subtract a harmonic oscillator
potential, with

ûext(xi) = ûho(xi) = 1
2mω

2r2
i ,

where ω is the oscillator frequency. This leads to

Ĥ = Ĥ0 + ĤI =
A∑
i=1

ĥ0(xi) +
A∑

i<j=1
v̂(xij)−

A∑
i=1

ûho(xi),
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with

H0 =
A∑
i=1

ĥ0(xi) =
A∑
i=1

(
t̂(xi) + ûho(xi)

)
.

Many practitioners use this as the standard Hamiltonian when doing nuclear
structure calculations. This is ok if the number of nucleons is large, but still
with this Hamiltonian, we do not obey translational invariance. How can we
cure this?

In setting up a translationally invariant Hamiltonian the following expressions
are helpful. The center-of-mass (CoM) momentum is

P =
A∑
i=1

pi,

and we have that
A∑
i=1

p2
i = 1

A

P 2 +
∑
i<j

(pi − pj)2


meaning that [

A∑
i=1

p2
i

2m −
P 2

2mA

]
= 1

2mA
∑
i<j

(pi − pj)2.

In a similar fashion we can define the CoM coordinate

R = 1
A

A∑
i=1

ri,

which yields
A∑
i=1

r2
i = 1

A

A2R2 +
∑
i<j

(ri − rj)2

 .
If we then introduce the harmonic oscillator one-body Hamiltonian

H0 =
A∑
i=1

(
p2
i

2m + 1
2mω

2r2
i

)
,

with ω the oscillator frequency, we can rewrite the latter as

HHO = P 2

2mA + mAω2R2

2 + 1
2mA

∑
i<j

(pi − pj)2 + mω2

2A
∑
i<j

(ri − rj)2.

Alternatively, we could write it as

HHO = HCoM + 1
2mA

∑
i<j

(pi − pj)2 + mω2

2A
∑
i<j

(ri − rj)2,
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The center-of-mass term is defined as

HCoM = P 2

2mA + mAω2R2

2 .

The translationally invariant one- and two-body Hamiltonian reads for an
A-nucleon system,

Ĥ =
[
A∑
i=1

p2
i

2m −
P 2

2mA

]
+

A∑
i<j

Vij ,

where Vij is the nucleon-nucleon interaction. Adding zero as here

A∑
i=1

1
2mω

2r2
i −

mω2

2A

R2 +
∑
i<j

(ri − rj)2

 = 0.

we can then rewrite the Hamiltonian as

Ĥ =
A∑
i=1

[
p2
i

2m + 1
2mω

2r2
i

]
+

A∑
i<j

[
Vij −

mω2

2A (ri − rj)2
]
−HCoM.

The Woods-Saxon potential is a mean field potential for the nucleons (protons
and neutrons) inside an atomic nucleus. It represent an average potential that a
given nucleon feels from the forces applied on each nucleon. The parametrization
is

ûext(r) = − V0

1 + exp (r −R)/a ,

with V0 ≈ 50 MeV representing the potential well depth, a ≈ 0.5 fm length
representing the "surface thickness" of the nucleus and R = r0A

1/3, with r0 = 1.25
fm and A the number of nucleons. The value for r0 can be extracted from a fit
to data, see for example M. Kirson.

The following python code produces a plot of the Woods-Saxon potential
with the above parameters.

import numpy as np
from matplotlib import pyplot as plt
from matplotlib import rc, rcParams
import matplotlib.units as units
import matplotlib.ticker as ticker
rc(’text’,usetex=True)
rc(’font’,**{’family’:’serif’,’serif’:[’Woods-Saxon potential’]})
font = {’family’ : ’serif’,

’color’ : ’darkred’,
’weight’ : ’normal’,
’size’ : 16,
}

v0 = 50
A = 100
a = 0.5
r0 = 1.25
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R = r0*A**(0.3333)
x = np.linspace(0.0, 10.0)
y = -v0/(1+np.exp((x-R)/a))

plt.plot(x, y, ’b-’)
plt.title(r’{\bf Woods-Saxon potential}’, fontsize=20)
plt.text(3, -40, r’Parameters: $A=20$, $V_0=50$ [MeV]’, fontdict=font)
plt.text(3, -44, r’$a=0.5$ [fm], $r_0=1.25$ [fm]’, fontdict=font)
plt.xlabel(r’$r$ [fm]’,fontsize=20)
plt.ylabel(r’$V(r)$ [MeV]’,fontsize=20)

# Tweak spacing to prevent clipping of ylabel
plt.subplots_adjust(left=0.15)
plt.savefig(’woodsaxon.pdf’, format=’pdf’)

From the plot we notice that the potential

• rapidly approaches zero as r goes to infinity, reflecting the short-distance
nature of the strong nuclear force.

• For large A, it is approximately flat in the center.

• Nucleons near the surface of the nucleus experience a large force towards
the center.

We have introduced a single-particle Hamiltonian

H0 =
A∑
i=1

ĥ0(xi) =
A∑
i=1

(
t̂(xi) + ûext(xi)

)
,

with an external and central symmetric potential uext(xi), which is often approx-
imated by a harmonic oscillator potential or a Woods-Saxon potential. Being
central symmetric leads to a degeneracy in energy which is not observed exper-
imentally. We see this from for example our discussion of separation energies
and magic numbers. There are, in addition to the assumed magic numbers from
a harmonic oscillator basis of 2, 8, 20, 40, 70 . . . magic numbers like 28, 50, 82
and 126.

To produce these additional numbers, we need to add a phenomenological
spin-orbit force which lifts the degeneracy, that is

ĥ(xi) = t̂(xi) + ûext(xi) + ξ(r)ls = ĥ0(xi) + ξ(r)ls.

We have introduced a modified single-particle Hamiltonian

ĥ(xi) = t̂(xi) + ûext(xi) + ξ(r)ls = ĥ0(xi) + ξ(r)ls.

We can calculate the expectation value of the latter using the fact that

ξ(r)ls = 1
2ξ(r)

(
j2 − l2 − s2) .

For a single-particle state with quantum numbers nlj (we suppress s and mj),
with s = 1/2, we obtain the single-particle energies

εnlj = ε
(0)
nlj + ∆εnlj ,
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with ε(0)
nlj being the single-particle energy obtained with ĥ0(x) and

∆εnlj = C

2

(
j(j + 1)− l(l + 1)− 3

4

)
.

The spin-orbit force gives thus an additional contribution to the energy

∆εnlj = C

2

(
j(j + 1)− l(l + 1)− 3

4

)
,

which lifts the degeneracy we have seen before in the harmonic oscillator or
Woods-Saxon potentials. The value C is the radial integral involving ξ(r).
Depending on the value of j = l ± 1/2, we obtain

∆εnlj=l−1/2 = C

2 l,

or
∆εnlj=l+1/2 = −C2 (l + 1),

clearly lifting the degeneracy. Note well that till now we have simply postulated
the spin-orbit force in ad hoc way. Later, we will see how this term arises from
the two-nucleon force in a natural way.

With the spin-orbit force, we can modify our Woods-Saxon potential to

ûext(r) = − V0

1 + exp (r −R)/a + Vso(r)ls,

with
Vso(r) = Vso

1
r

dfso(r)
dr

,

where we have
fso(r) = 1

1 + exp (r −Rso)/aso
.

We can also add, in case of proton, a Coulomb potential. The Woods-Saxon
potential has been widely used in parametrizations of effective single-particle
potentials. However, as was the case with the harmonic oscillator, none
of these potentials are linked directly to the nuclear forces. Our next
step is to build a mean field based on the nucleon-nucleon interaction. This will
lead us to our first and simplest many-body theory, Hartree-Fock theory.

The Woods-Saxon potential does allow for closed-form or analytical solutions
of the eigenvalue problem

ĥ0(xi)ψα(xi) = εαψα(xi).

For the harmonic oscillator in three dimensions we have closed-form expressions
for the energies and analytical solutions for the eigenstates, with the latter given
by either Hermite polynomials (cartesian coordinates) or Laguerre polynomials
(spherical coordinates).

To solve the above equation is however rather straightforward numerically.
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Numerical solution of the single-particle Schroedinger
equation
We will illustrate the numerical solution of Schroedinger’s equation by solving it
for the harmonic oscillator in three dimensions. It is straightforward to change
the harmonic oscillator potential with a Woods-Saxon potential, or any other
type of potentials.

We are interested in the solution of the radial part of Schroedinger’s equation
for one nucleon. The angular momentum part is given by the so-called Spherical
harmonics.

The radial equation reads

− ~2

2m

(
1
r2

d

dr
r2 d

dr
− l(l + 1)

r2

)
R(r) + V (r)R(r) = ER(r).

In our case V (r) is the harmonic oscillator potential (1/2)kr2 with k = mω2 and
E is the energy of the harmonic oscillator in three dimensions. The oscillator
frequency is ω and the energies are

Enl = ~ω
(

2n+ l + 3
2

)
,

with n = 0, 1, 2, . . . and l = 0, 1, 2, . . . .
Since we have made a transformation to spherical coordinates it means that

r ∈ [0,∞). The quantum number l is the orbital momentum of the nucleon.
Then we substitute R(r) = (1/r)u(r) and obtain

− ~2

2m
d2

dr2u(r) +
(
V (r) + l(l + 1)

r2
~2

2m

)
u(r) = Eu(r).

The boundary conditions are u(0) = 0 and u(∞) = 0.
We introduce a dimensionless variable ρ = (1/α)r where α is a constant with

dimension length and get

− ~2

2mα2
d2

dρ2u(ρ) +
(
V (ρ) + l(l + 1)

ρ2
~2

2mα2

)
u(ρ) = Eu(ρ).

Let us specialize to l = 0. Inserting V (ρ) = (1/2)kα2ρ2 we end up with

− ~2

2mα2
d2

dρ2u(ρ) + k

2α
2ρ2u(ρ) = Eu(ρ).

We multiply thereafter with 2mα2/~2 on both sides and obtain

− d2

dρ2u(ρ) + mk

~2 α
4ρ2u(ρ) = 2mα2

~2 Eu(ρ).

We have thus

− d2

dρ2u(ρ) + mk

~2 α
4ρ2u(ρ) = 2mα2

~2 Eu(ρ).
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The constant α can now be fixed so that

mk

~2 α
4 = 1,

or

α =
(

~2

mk

)1/4

.

Defining

λ = 2mα2

~2 E,

we can rewrite Schroedinger’s equation as

− d2

dρ2u(ρ) + ρ2u(ρ) = λu(ρ).

This is the first equation to solve numerically. In three dimensions the eigenvalues
for l = 0 are λ0 = 3, λ1 = 7, λ2 = 11, . . . .

We use the standard expression for the second derivative of a function u

u′′ = u(ρ+ h)− 2u(ρ) + u(ρ− h)
h2 +O(h2), (4)

where h is our step. Next we define minimum and maximum values for the
variable ρ, ρmin = 0 and ρmax, respectively. You need to check your results for
the energies against different values ρmax, since we cannot set ρmax =∞.

With a given number of steps, nstep, we then define the step h as

h = ρmax − ρmin

nstep
.

Define an arbitrary value of ρ as

ρi = ρmin + ih i = 0, 1, 2, . . . , nstep

we can rewrite the Schroedinger equation for ρi as

−u(ρi + h)− 2u(ρi) + u(ρi − h)
h2 + ρ2

iu(ρi) = λu(ρi),

or in a more compact way

−ui+1 − 2ui + ui−1

h2 + ρ2
iui = −ui+1 − 2ui + ui−1

h2 + Viui = λui,

where Vi = ρ2
i is the harmonic oscillator potential.

Define first the diagonal matrix element

di = 2
h2 + Vi,
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and the non-diagonal matrix element

ei = − 1
h2 .

In this case the non-diagonal matrix elements are given by a mere constant. All
non-diagonal matrix elements are equal.

With these definitions the Schroedinger equation takes the following form

diui + ei−1ui−1 + ei+1ui+1 = λui,

where ui is unknown. We can write the latter equation as a matrix eigenvalue
problem

d1 e1 0 0 . . . 0 0
e1 d2 e2 0 . . . 0 0
0 e2 d3 e3 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . dnstep−2 enstep−1
0 . . . . . . . . . . . . enstep−1 dnstep−1




u1
u2
. . .
. . .
. . .

unstep−1

 = λ


u1
u2
. . .
. . .
. . .

unstep−1


(5)

or if we wish to be more detailed, we can write the tridiagonal matrix as

2
h2 + V1 − 1

h2 0 0 . . . 0 0
− 1
h2

2
h2 + V2 − 1

h2 0 . . . 0 0
0 − 1

h2
2
h2 + V3 − 1

h2 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . . . . . . . 2

h2 + Vnstep−2 − 1
h2

0 . . . . . . . . . . . . − 1
h2

2
h2 + Vnstep−1


(6)

Recall that the solutions are known via the boundary conditions at i = nstep
and at the other end point, that is for ρ0. The solution is zero in both cases.

The following python program is an example of how one can obtain the
eigenvalues for a single-nucleon moving in a harmonic oscillator potential. It
is rather easy to change the onebody-potential with ones like a Woods-Saxon
potential.

• The c++ and Fortran versions of this program can be found here.

• The c++ program uses the c++ library armadillo.

• To install armadillo see the guidelines.

• For mac users I recommend using *brew*.

• If you use ipython notebook, you can run c++ programs following the
instructions here

The code sets up the Hamiltonian matrix by defining the the minimun and
maximum values of r with a maximum value of integration points. These are
set in the initialization function. It plots the eigenfunctions of the three lowest
eigenstates.
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#Program which solves the one-particle Schrodinger equation
#for a potential specified in function
#potential(). This example is for the harmonic oscillator in 3d

from matplotlib import pyplot as plt
import numpy as np
#Function for initialization of parameters
def initialize():

RMin = 0.0
RMax = 10.0
lOrbital = 0
Dim = 400
return RMin, RMax, lOrbital, Dim

# Here we set up the harmonic oscillator potential
def potential(r):

return r*r

#Get the boundary, orbital momentum and number of integration points
RMin, RMax, lOrbital, Dim = initialize()

#Initialize constants
Step = RMax/(Dim+1)
DiagConst = 2.0 / (Step*Step)
NondiagConst = -1.0 / (Step*Step)
OrbitalFactor = lOrbital * (lOrbital + 1.0)

#Calculate array of potential values
v = np.zeros(Dim)
r = np.linspace(RMin,RMax,Dim)
for i in xrange(Dim):

r[i] = RMin + (i+1) * Step;
v[i] = potential(r[i]) + OrbitalFactor/(r[i]*r[i]);

#Setting up tridiagonal matrix and find eigenvectors and eigenvalues
Hamiltonian = np.zeros((Dim,Dim))
Hamiltonian[0,0] = DiagConst + v[0];
Hamiltonian[0,1] = NondiagConst;
for i in xrange(1,Dim-1):

Hamiltonian[i,i-1] = NondiagConst;
Hamiltonian[i,i] = DiagConst + v[i];
Hamiltonian[i,i+1] = NondiagConst;

Hamiltonian[Dim-1,Dim-2] = NondiagConst;
Hamiltonian[Dim-1,Dim-1] = DiagConst + v[Dim-1];
# diagonalize and obtain eigenvalues, not necessarily sorted
EigValues, EigVectors = np.linalg.eig(Hamiltonian)
# sort eigenvectors and eigenvalues
permute = EigValues.argsort()
EigValues = EigValues[permute]
EigVectors = EigVectors[:,permute]
# now plot the results for the three lowest lying eigenstates
for i in xrange(3):

print EigValues[i]
FirstEigvector = EigVectors[:,0]
SecondEigvector = EigVectors[:,1]
ThirdEigvector = EigVectors[:,2]
plt.plot(r, FirstEigvector**2 ,’b-’,r, SecondEigvector**2 ,’g-’,r, ThirdEigvector**2 ,’r-’)
plt.axis([0,4.6,0.0, 0.025])
plt.xlabel(r’$r$’)
plt.ylabel(r’Radial probability $r^2|R(r)|^2$’)
plt.title(r’Radial probability distributions for three lowest-lying states’)
plt.savefig(’eigenvector.pdf’)
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plt.savefig(’eigenvector.png’)
plt.show()

Exercise 1: Masses and binding energies
The data on binding energies can be found in the file bedata.dat at the github
address of the Nuclear Structure course at MSU, PHY981

aragraph!paragraph>paragraph>-0.5em

a) Write a small program which reads in the proton and neutron numbers
and the binding energies and make a plot of all neutron separation energies
for the chain of oxygen (O), calcium (Ca), nickel (Ni), tin (Sn) and lead (Pb)
isotopes, that is you need to plot

Sn = BE(N,Z)−BE(N − 1, Z).

Comment your results.
aragraph!paragraph>paragraph>-0.5em

b) In the same figures, you should also include the liquid drop model results
of Eq. (2.17) of Alex Brown’s text, namely

BE(N,Z) = α1A− α2A
2/3 − α3

Z2

A1/3 − α4
(N − Z)2

A
,

with α1 = 15.49 MeV, α2 = 17.23 MeV, α3 = 0.697 MeV and α4 = 22.6 MeV.
Again, comment your results.

aragraph!paragraph>paragraph>-0.5em

c) Make also a plot of the binding energies as function of A using the data
in the file on binding energies and the above liquid drop model. Make a figure
similar to figure 2.5 of Alex Brown where you set the various parameters αi = 0.
Comment your results.

aragraph!paragraph>paragraph>-0.5em

d) Use the liquid drop model to find the neutron drip lines for Z values
up to 120. Analyze then the fluorine isotopes and find, where available the
corresponding experimental data, and compare the liquid drop model predicition
with experiment. Comment your results. A program example in C++ and the
input data file bedata.dat can be found found at the github repository for the
course

Exercise 2: Eigenvalues and eigenvectors for various single-
particle potentials
The program for finding the eigenvalues of the harmonic oscillator are in the
github folder.

You can use this program to solve the exercises below, or write your own
using your preferred programming language, be it python, fortran or c++ or
other languages. Here I will mainly provide fortran, python and c++.
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aragraph!paragraph>paragraph>-0.5em

a) Compute the eigenvalues of the five lowest states with a given orbital
momentum and oscillator frequency ω. Study these results as functions of the
the maximum value of r and the number of integration points n, starting with
rmax = 10. Compare the computed ones with the exact values and comment
your results.

aragraph!paragraph>paragraph>-0.5em

b) Plot thereafter the eigenfunctions as functions of r for the lowest-lying
state with a given orbital momentum l.

aragraph!paragraph>paragraph>-0.5em

c) Replace thereafter the harmonic oscillator potential with a Woods-Saxon
potential using the parameters discussed above. Compute the lowest five eigenval-
ues and plot the eigenfunction of the lowest-lying state. How does this compare
with the harmonic oscillator? Comment your results and possible implications
for nuclear physics studies.

Exercise 3: Operators and Slater determinants
Consider the Slater determinant

ΦASλ (x1x2 . . . xN ;α1α2 . . . αN ) = 1√
N !

∑
p

(−)pP
N∏
i=1

ψαi(xi).

where P is an operator which permutes the coordinates of two particles. We
have assumed here that the number of particles is the same as the number of
available single-particle states, represented by the greek letters α1α2 . . . αN .

aragraph!paragraph>paragraph>-0.5em

a) Write out ΦAS for N = 3.
aragraph!paragraph>paragraph>-0.5em

b) Show that∫
dx1dx2 . . . dxN

∣∣ΦASλ (x1x2 . . . xN ;α1α2 . . . αN )
∣∣2 = 1.

aragraph!paragraph>paragraph>-0.5em

c) Define a general onebody operator F̂ =
∑N
i f̂(xi) and a general twobody

operator Ĝ =
∑N
i>j ĝ(xi, xj) with g being invariant under the interchange of the

coordinates of particles i and j. Calculate the matrix elements for a two-particle
Slater determinant

〈ΦASα1α2
|F̂ |ΦASα1α2

〉,

and
〈ΦASα1α2

|Ĝ|ΦASα1α2
〉.
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Explain the short-hand notation for the Slater determinant. Which properties
do you expect these operators to have in addition to an eventual permutation
symmetry?

Exercise 4: First simple shell-model calculation
We will now consider a simple three-level problem, depicted in the figure below.
This is our first and very simple model of a possible many-nucleon (or just
fermion) problem and the shell-model. The single-particle states are labelled
by the quantum number p and can accomodate up to two single particles, viz.,
every single-particle state is doubly degenerate (you could think of this as one
state having spin up and the other spin down). We let the spacing between
the doubly degenerate single-particle states be constant, with value d. The first
state has energy d. There are only three available single-particle states, p = 1,
p = 2 and p = 3, as illustrated in the figure.

aragraph!paragraph>paragraph>-0.5em

a) How many two-particle Slater determinants can we construct in this space?
We limit ourselves to a system with only the two lowest single-particle orbits

and two particles, p = 1 and p = 2. We assume that we can write the Hamiltonian
as

Ĥ = Ĥ0 + ĤI ,

and that the onebody part of the Hamiltonian with single-particle operator ĥ0
has the property

ĥ0ψpσ = p× dψpσ,

where we have added a spin quantum number σ. We assume also that the
only two-particle states that can exist are those where two particles are in the
same state p, as shown by the two possibilities to the left in the figure. The
two-particle matrix elements of ĤI have all a constant value, −g.

aragraph!paragraph>paragraph>-0.5em

b) Show then that the Hamiltonian matrix can be written as(
2d− g −g
−g 4d− g

)
,

aragraph!paragraph>paragraph>-0.5em

c) Find the eigenvalues and eigenvectors. What is mixing of the state with
two particles in p = 2 to the wave function with two-particles in p = 1? Discuss
your results in terms of a linear combination of Slater determinants.

aragraph!paragraph>paragraph>-0.5em

d) Add the possibility that the two particles can be in the state with p = 3 as
well and find the Hamiltonian matrix, the eigenvalues and the eigenvectors. We
still insist that we only have two-particle states composed of two particles being
in the same level p. You can diagonalize numerically your 3× 3 matrix. This
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Figure 3: Schematic plot of the possible single-particle levels with double
degeneracy. The filled circles indicate occupied particle states. The spacing
between each level p is constant in this picture. We show some possible two-
particle states.

simple model catches several birds with a stone. It demonstrates how we can
build linear combinations of Slater determinants and interpret these as different
admixtures to a given state. It represents also the way we are going to interpret
these contributions. The two-particle states above p = 1 will be interpreted
as excitations from the ground state configuration, p = 1 here. The reliability
of this ansatz for the ground state, with two particles in p = 1, depends on
the strength of the interaction g and the single-particle spacing d. Finally, this
model is a simple schematic ansatz for studies of pairing correlations and thereby
superfluidity/superconductivity in fermionic systems.
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