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When you change channels on your television set, an RLC circuit 

is used to select the required frequency. To watch only one 

channel, the circuit must respond only to a narrow frequency 

range (or frequency band) centred around the desired one.  

Many combinations of resistors, capacitors and inductors can 

achieve this. We will consider a RLC voltage divider circuit shown 

in figure 1. The circuit shown in figure 1 can also be used as a 

narrow band pass filter or an oscillator circuit. 

 

Fig. 1.  RLC resonance circuit: a parallel combination of 

an inductor L and a capacitor C used in voltage divider 

circuit.  
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The sinusoidal input voltage is 

  e
j t

IN
V

   

The impedances of the circuits components are 

 
1 1

Z R  series resistance 

 
2 OUT

Z R  output or load resistance 

 
3

j
Z

C


  capacitor 

 
4 L

Z R j L   inductor 

   

We simplify the circuit by combining circuit elements that are in 

series and parallel. 

 5

2 3 4

1

1 1 1
Z

Z Z Z



 

            parallel combination 

 
6 1 5

Z Z Z             series combination: total impedance 

 

The current through each component and the potential 

difference across each component is computed from 

 
V

I V I Z
Z

   

 in the following sequence of calculations 
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1

6

1 1 1

1

2 3 4

2 3 4

IN

OUT IN

OUT OUT OUT

V
I

Z

V I Z

V V V

V V V
I I I

Z Z Z





 

  

 

 

Computing all the numerical values is easy using the complex 

number commands in Matlab. Complex circuits can be analysed 

and in more in-depth graphically than the traditional algebraic 

approach.   

 

The code below shows the main calculations that needed for the 

simulations. 

  



5 
 

   f = linspace(fMin,fMax, N);  

   w = (2*pi).*f; 

    

% impedances 

   Z1 = RS;                     % series 

resistance 

   Z2 = ROUT;                   % output or load 

resistance 

   Z3 = -1i ./ (w .*C);         % capacitive 

impedance 

   Z4 = RL + 1i .* w .* L;      % inductive 

impedance 

                                    (resistance + 

reactance) 

  

   Z5 = 1./ (1./Z2 + 1./Z3 + 1./Z4);    % parallel 

combination 

   Z6 = Z1 + Z5;                        % total 

circuit 

                                            

impedance 

  

% currents [A] and voltages [V] 

   I1 = V_IN ./ Z6; 

   V1 = I1 .* Z1; 

   V_OUT = V_IN - V1; 

    

   I2 = V_OUT ./ Z2; 

   I3 = V_OUT ./ Z3; 

   I4 = V_OUT ./ Z4; 

   I_sum = abs(I1 - I2 - I3 - I4); 

    

% phases 

   phi_OUT = angle(V_OUT); 

   phi_1   = angle(V1); 

    

   theta_1 = angle(I1);  

   theta_2 = angle(I2); 

   theta_3 = angle(I3); 
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   theta_4 = angle(I4); 

    

% Resonance frequencies and Bandwidth calculations 

   f0 = 1/(2*pi*sqrt(L*C)); 

   G_V = abs(V_OUT ./ V_IN);     % voltage gain    

   Vpeak = max(G_V);             % max voltage 

gain 

   VG3dB = Vpeak/sqrt(2);        % 3 dB points 

   k = find(G_V == Vpeak);       % index for peak 

voltage gain 

   f_peak = f(k);                % frequency at 

peak 

   kB = find(G_V > VG3dB);       % indices for 3dB 

peak 

   k1 = min(kB); f1 = f(k1); 

   k2 = max(kB); f2 = f(k2); 

   df = f2-f1;                   % bandwidth  

   Q = f0 / df;                  % quality factor 

    

   P_OUT = V_OUT .* I2;          % power delivered 

to load 

We will consider the following example that was done as an 

experiment and as a computer simulation. 

Values for circuit parameters: 

 amplitude of input emf  10.0V
in

V   

 series resistance 4
1.00 10

S
R     

 capacitance 9
10.4 10 F (10 nF)C


   

 inductance 3
10.3 10 H (10 mH)L


     

 inductance resistance estimated from simulation 

 output (load) resistance 6
1.00 10

OUT
R       (output to CRO) 
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Simulation  0
L

R             script   CRLCp1.m 

%   INPUTS   default values [ ] 

% series resistance Z1 [1e4 ohms]     

   RS = 1e4; 

% OUTPUT (LOAD) resistance Z2 [1e6 ohms] 

   ROUT = 1e6; 

% inductance and inductor resistance Z4 

[10.3e-3 H  0 ohms] 

   L = 10.3e-3; 

   RL = 0; 

% capacitance Z2 [10.4e-9 F] 

   C = 10.4e-9; 

% input voltage emf [10 V] 

   V_IN = 10; 

% frequency range [1000 to 30e3 Hz   5000]    

   fMin = 1000; fMax = 30e3; 

   N = 5000; 

 

 

Figure 2 shows the plots of the absolute values for the 

impedance of the capacitor  3
Z , inductor  4

Z  and output 

impedance for the parallel combination  5
Z .  
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At low frequencies, the inductor acts like a “short circuit” 

 4

4
0 0 0

L

out

Z Z j L

f Z Z

 

    
 

 

At high frequencies, the capacitor acts like a “short circuit” 

 3

3
0 0 0

C

out

j
Z Z

C

f Z Z




 

    

 

 

At resonance     L C
Z Z  

 
1

L
C




  

 resonance frequency   0 0

1 1

2
f

LC LC



   

 

The output impedance 
5out

Z Z  has a sharp peak at the 

resonance frequency 
0

f .  
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Fig. 2.   The magnitude of the impedances for the 

capacitor, inductor and parallel combination as 

functions of frequency of the source. A sharp peak 

occurs at the resonance frequency for the impedance of 

the parallel combination.  
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Since the total circuit impedance has a maximum value at the 

resonance, the current from the source must be a minimum at 

the resonance frequency (figure 3). At resonance, the source 

voltage and the source current are in-phase with each other and 

the current through the series resistance is the same as the 

current through the output resistance. 

 

Fig. 3.   The source current has a minimum at the 

resonance frequency. At resonance, the source voltage 

and source current are in-phase with each other. 
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The output voltage from the parallel combination is 

 OUTj t

OUT OUT
v V e

 
  

We define the voltage gain 
V

G  of the circuit as 

  OUT
V

IN

V
G

V
  

The  
V

G  is a complex quantity which is specified by its magnitude 

and phase. Figure 4, shows the magnitude of the voltage gain 
V

G  

and its phase 
OUT
 . The voltage gain 

V
G  has a peak at the 

resonance frequency and the output voltage 
OUT

v  is in phase with 

the source voltage   since 0
OUT
  .

 

Fig. 4.   The voltage gain 
V

G of the parallel voltage 

divider resonance circuit. 



12 
 

 

For the case when 0
L

R   , the resonance frequency of the 

circuit is 

 0

1

2
f

LC
  

The quality factor Q is a measure of the width of the voltage 

gain plot. The power drops by half (-3 dB) at the half power 

frequencies 
1

f  and 
2

f  where 1 / 2
V

G  . These two frequencies 

determine the bandwidth f of the voltage gain peak 

 
2 1

f f f    

It can be shown that the quality factor Q is  

 0
f

Q
f




 

The higher the Q value of a resonance circuit, the narrow the 

bandwidth and hence the better the selectivity of the tuning. 

 

Figure 5 shows the voltage gain plot indicating the resonance 

frequency, half power frequencies and the bandwidth.   
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Fig. 5.   The voltage gain plot indicating the resonance 

frequency, half power frequencies and the bandwidth.  

 

A summary of the calculations is displayed in the Command 

Window 

 Resonance frequency 
0

15377 Hzf   

Peak frequency 15375 Hz
peak

f   

 Half power frequencies 
1 2

14627 Hz 16164 Hzf f   

 Quality factor 10Q   
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%  OUTPUTS IN COMMAND WINDOW 

  fprintf('theoretical resonance frequency 

f0 = %3.0f Hz \n',f0); 

  fprintf('peak frequency f_peak = %3.0f Hz 

\n',f_peak); 

  fprintf('half power frequencies f1 = %3.0f 

Hz  %3.0f  Hz \n',f1,f2); 

  fprintf('bandwidth   df = %3.0f Hz \n',df); 

  fprintf('quality factor  Q  =  %3.2f  

\n',Q); 

  fprintf('current at junction I_sum  

=  %3.2f mA  \n',max(1e3*I_sum)) 

 

 

Figure 6 shows the magnitudes of the currents through the 

capacitor and inductor branches of the parallel combination and 

the corresponding phases.  

 

For frequencies less than the resonance frequency, current 

through the inductive branch is greater than through the 

capacitive branch. At resonance, the two currents are equal. 

Above the resonance frequency, there is more current in the 

capacitive branch than the inductive branch.  
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The two currents are always   rad out of phase. The capacitive 

current leads by / 2 rad  while the inductive current lags by 

/ 2 rad , compared with the reference angle of the source emf. 

 

At resonance,  / 2 rad / 2 rad
C L
        and the two currents 

have the same magnitudes. Therefore, the effects of the 

capacitance and inductance cancel each other, resulting in a pure 

resistive impedance with the source voltage and current in phase. 
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 Fig. 6.   Magnitudes and phases for the inductor current and 

inductor current.  
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Kirchhoff’s current law states that the sum of the currents at a 

junction add to zero. For ac circuits, it is not so straight forward 

to sum the currents because you must account for the phases of 

each current. At the junction of the series resistance and the 

parallel combination, the simulation gives the result 

 

 
1 2 3 4

0I I I I I                    need to account for phase   

   script: I_sum = abs(I1 - I2 - I3 - I4); 

 

   output: current at junction I_sum  =  0.00 

mA   

 

Maximum power  P vi  is delivered from the source to the load 

only at the resonance frequency as shown in figure 7. 
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Fig. 7.   Power delivered from source to load. 

 

We can also look at the behaviour of the circuit in the time 

domain and gain a better understanding of how complex 

numbers give us information about magnitudes and phases.  The 

time domain equation for the currents and voltages are 

  

 

 

 

 

 

 

1

1

2

3

4

1 1

1 1

2 2

3 3

4 4

e

OUT

j t

IN

j t

j t

OUT OUT

j t

S

j t

OUT

j t

C

j t

L

V

v V e

v V e

i i I e

i i I e

i i I e

i i I e



 

 

 

 

 

 





















 

 

 

 
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Each of the above relationship are plotted at a selected 

frequency which is set within the script. The graphs below are for 

the resonance frequency and the half-power frequencies. 

% TIME DOMAIN    select source frequency  

     fs = f_peak; kk = k; 

   % fs = f1; kk = k1; 

   % fs = f2; kk = k2; 

    

   Ns = 500; 

   ws = 2*pi*fs; 

   Ts = 1/fs; 

   tMin = 0; 

   tMax = 3*Ts; 

   t = linspace(tMin,tMax,Ns); 

    

   emf = real(V_IN .* exp(1j*ws*t)); 

   v_OUT = real(abs(V_OUT(kk)) .* 

exp(1j*(ws*t + phi_OUT(kk)))); 

   v1 = real(abs(V1(kk)) .* exp(1j*(ws*t + 

phi_1(kk)))); 

    

   i1 = real(abs(I1(kk)) .* exp(1j*(ws*t + 

theta_1(kk)))); 

   i2 = real(abs(I2(kk)) .* exp(1j*(ws*t + 

theta_2(kk)))); 

   i3 = real(abs(I3(kk)) .* exp(1j*(ws*t + 

theta_3(kk)))); 

   i4 = real(abs(I4(kk)) .* exp(1j*(ws*t + 

theta_4(kk)))); 
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Fig. 8.   The voltages at the resonance frequency. The source 

voltage and output voltage are in-phase. The output voltage is 

almost equal in magnitude to the source emf. 

 

 

Fig. 9.   The currents through the capacitor and inductor cancel at 

resonance. The currents through the capacitor and the inductor 
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are  rad out-of-phase and have equal amplitudes. The 

impedance of the circuit is purely resistive at the resonance 

frequency. The output current varies sinusoidally but has a very 

small amplitude. 

 

Fig. 10.   The voltages at the half-power frequency
1

f . The source 

voltage and output voltage are out-of-phase. At each instant  

1 OUT
emf v v  . 
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Fig. 11.   The currents at the half-power frequency
1

f . The 

currents through the capacitor and the inductor are  rad out-of-

phase. The amplitude of the inductor current is greater than the 

amplitude of the capacitor current. The output current varies 

sinusoidally but has a very small amplitude. At each instant 

S OUT C L
i i i i    
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Fig. 12.   The voltages at the half-power frequency
2

f . The source 

voltage and output voltage are out-of-phase. At each instant 

1 OUT
emf v v  . 
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Fig. 13.   The currents at the half-power frequency
2

f . The 

currents through the capacitor and the inductor are  rad out-of-

phase. The amplitude of the inductor current is less than the 

amplitude of the capacitor current. The output current varies 

sinusoidally but has a very small amplitude. At each instant 

S OUT C L
i i i i    
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The above simulation has for a large impedance load connected 

to the output of the circuit 6
1.00 10

OUT
R    . We can examine 

the effect when a much smaller load resistance is connected to 

the circuit while keeping all other parameters unchanged. 

 4
1.00 10

OUT
R     

 

Fig. 14.  The voltage gain is much reduced and the bandwidth 

increased giving a smaller quality factor Q. The larger bandwidth 

and smaller Q means that the selectivity is of the resonance 

circuit is reduced. 
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Fig. 15.   Left  4

1.00 10
OUT

R        Right  6
1.00 10

OUT
R     

Since the output resistance is reduced, a much greater output 

current results and more power is delivered from the source to 

the load as shown in figure 16.  With 6
1.00 10

OUT
R     the 

maximum power at resonance is 0.1 mW, whereas when 
4

1.00 10
OUT

R    ,  the maximum power at resonance 2.5 mW. 

 

Fig. 16.   The power delivered to the load is increased as 

the output resistance is decreased. 
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Modelling Experimental Data 

Data was measured for the circuit shown in figure 1.  An audio 

oscillator was used for the source and the output was connected 

to digital storage oscilloscope (DSO). The component values used 

were (nominal values shown in brackets): 

 series resistance 4
1.00 10

S
R     

 capacitance 9
10.4 10 F (10 nF)C


   

 inductance 3
10.3 10 H (10 mH)L


     

 assume DSO resistance 6
1.00 10

OUT
R       (output to CRO) 

 

The measurements are given in the script CRLCp2.m 

Figure 17 shows a plot of the experimental data. 

 

Fig. 17.  Plot of the experimental measurements. 
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We can use our simulation CRLCp2.m  to fit theoretical curves to 

the measurements and estimate the resistance of the inductor as 

shown in figures 18 and 19.  The value of the inductive resistance  

L
R  is changed to obtain the best fit between the model and the 

measurements.  

 

 Fig. 18.   The fit of the model to the measurements with 

0
L

R   . 

 0
15377 Hz 15379 Hz 1539 Hz 9.99

peak
f f f Q      
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Fig. 19.   The fit of the model to the measurements with 

20.0
L

R   . 

 0
15377 Hz 15389 Hz 1843 Hz 8.34

peak
f f f Q      

The model with 20.0
L

R    gives an excellent fit to the 

measurements. The DC resistance measurement of the coil 

resistance measured with a multimeter was 12.5  . 

The resonance frequency is slightly higher than predicted from 

the relationship 

 0

1

2
f

LC
  

The bandwidth is increased and the Q of the resonance circuit is 

lower. 
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If you consider the simplicity of the code in the Matlab script to 

model resonance circuits, this computational approach has many 

advantages compared with the traditional algebraic approach. 


