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Laplace07.m 
The Laplace transform is used to solve the ODE for the cases where 
the System is driven via the mass. 
Laplace08.m 
The Laplace transform is used to solve the ODE for the cases where 
the System is driven via the mass by a sinusoidal driving force. 
Laplace09.m 
The Laplace transform is used to solve the ODE for the cases where 
the System is driven via the dashpot by a sinusoidal driving force. 
Laplace11.m 
The Laplace transform is used to solve the ODE for the cases where 
the System is driven via the spring by a sinusoidal driving force. 
Laplace12.m 
The Laplace transform is used to solve the ODE for the cases where 
the System is driven via the dashpot and spring by a sinusoidal  
driving force. 
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INTRODUCTION 

 

Starting from a linear ordinary differential equation in x with constant 

coefficients, the Laplace transform X produces an algebraic equation 

that can be solved for X. The solution x is then found by taking the 

inverse Laplace transform of X. The Laplace transform method is 

most compatible with initial value problems.  

 

Many physical systems can be modelled by ordinary differential 

equations (ODEs) with time independent coefficients. In this paper 

we will consider solving ODEs of the form 

 

 (1)  ( )m x b x k x f t    

 

where m, b and k are constants and x is the displacement of the system 

from its equilibrium position (x = 0). The initial conditions are 

specified by the displacement x(0) and velocity v(0). The time 

dependent function f(t) is called the input signal or forcing function or 

driving force. The solution x(t) is called the output signal. 

 

Equation (1) is used to model a mass m, spring k, and dashpot - 

damping b System as shown in figure 1 for different input signals. 
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Fig. 1.   Mass / spring / dashpot System. 

 

 

LAPLACE TRANSFORM 

 

The Laplace transform and its inverse can be used to find the solution 

of initial value problems for ordinary differential equations.  

 

Suppose that the function ( )f t  is defined for all 0t  . Then its 

Laplace transform is the function ( )F s  as given by  

 (2)   
0

( ) ( ) ( )
s t

F s f t f t e dt



  L  

where L is the symbol used for the Laplace transform operator and s 

is a complex variable such that 

 (3) s i              dimensions   , ,s      [1/time] 
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An important property of the Laplace transform is that it turns a 

derivative into an algebraic operation. For example, 

(4)        2
(0) (0) '(0)f s f f f s f s f f    L L L L

 

 

The Laplace transform of a function can be easily computed in Matlab 

(Symbolic Maths and Signal Processing toolboxes required) as shown 

by the following examples. The function f and variables t and s are all 

declared as symbolic variables 

 

 syms f t s 

 f  = 2; laplace(f,t,s)       2/s 

 f = sin(4*t);  laplace(f,t,s)       4/(s2+16) 

 f = 10*sin(4*t);  laplace(f,t,s)       40/(s2+16) 

 f = 5*cos(2*t);  laplace(f,t,s)       5s/(s2+4) 

 f = x^5;  laplace(f,t,s)       120/s6 

 f = exp(-2*t);  laplace(f,t,s)       1/(s+2) 

 f = 3*exp(4*t);  laplace(f,t,s)       3/(s-4) 
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Table 1 lists a few of the most frequently used Laplace transforms. 

 

 Table 1. Laplace transforms. 

f(t) F(s) 

a a / s 

A sin(b t) A b / (s
2
+b

2
) 

A cos(b t) A s / (s
2
+b

2
) 

x
n
 n! / s

n+1
 

Ae- a t
 A / (s+a) 

 

 

You can also do the reverse by finding the function f(t) from its 

Laplace transform F(s) using the inverse Laplace transform. For 

example 

     1
{3 / (( 1) ^ 2 6)} 6 / 2 sin 6

t
s e t


  L  

  ilaplace(3/((s-1)^2+6))    (6^(1/2)*exp(t)*sin(6^(1/2)*t))/2 
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LAPLACE TRANSFORM AND ORDINARY DIFFERENTIAL EQUATIONS 

 

Initial value ordinary differential equation problems can be solved 

using the Laplace transform method. We want to solve ODE given by 

equation (1) with the initial the conditions given by the displacement 

x(0) and velocity v(0)  v x . Our goal is to find the output signal 

( )x t for a given input signal ( )f t .We will denote the Laplace 

transform of the input as F(s) and the output as X(s). Taking the 

Laplace transform of both sides of equation (1) and using equation (4), 

we find 

 (5)     2
( ) (0) (0) (0) ( ) 0m s b s k X s m s x v b x F s        

 

This algebraic equation can be solved to find X(s). We than take the 

inverse Laplace transform of X(s) to find the output signal x(t). 

 

We can also find dependence of both the velocity v and acceleration a 

of the mass by from the Laplace transform of the output signal X(s) 

 Velocity v and its Laplace transform V(s) 

1
( ) ( ) (0) { ( )} ( )V s s X s x V s v t


  L  

 Acceleration a and its Laplace transform A(s) 

2 1
( ) ( ) (0) (0) { ( )} ( )A s s X s s x v A s a t


   L   
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A1   System driven through via the mass       Laplace07.m 

Four plots are used to display the output in a Figure Window: (1) 

displacement x vs time t; velocity v vs t; acceleration a vs t; phase plot 

v vs t; function f vs t. The labelling shows the System parameters m, b 

and k; the natural frequency of oscillation /N k m  and the natural 

period of oscillation 2 /N NT    and the period estT estimated from 

the x vs t graph using the Matlab function findpeaks. The symbolic 

results are displayed in the Command Window, for example, 

 

Sol_x = s/(s^2 + 4)      

sol_x = cos(2*t)    cos(2 t) 

Sol_v = s^2/(s^2 + 4) - 1 

sol_v =-2*sin(2*t)   -sin(2 t) 2 

Sol_a = s^3/(s^2 + 4) - s 

sol_a = -4*cos(2*t)     -cos(2 t) 4 
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A1.1   Simple harmonic motion 

  

 

 2
/ ( )4xSol s s          cos 2x t  

 2 2
/ ( )4vSol s s          2sin 2v t   

 
3 2

/ ( )4aSol s s          4cos 2a t 
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Poles of the Laplace transform Solx  

2
demoniator 4 0

2 0 2

xSol s

s i i   

  

     
 

Hence, the natural frequency of oscillation is 2   and the solution 

of the displacement is of the form 

 

  1 2 3

2 3

exp( ) cos( ) sin(

cos(2 ) sin(2 ) (0) 1 (0) 0

cos(2 )

x c t c t c t

x c t c t x v

x t

   

   



 

 

A1.2   Damped harmonic motion 
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      2
5 1 / 5 20xSol s s s     

   exp /10 cos( 399 /10) 399 sin( 399 /10) / 399x t t t    

    2
5 1 / 5 20vSol s s s s     

  40 399 exp /10 sin( 399 /10) / 399v t t    

    2 2
5 1 / 5 20aSol s s s s     

  4exp /10 cos( 399 /10) 399 sin( 399 /10) / 399a t t t   

 

Poles of the Laplace transform Solx  

The solution of the displacement is of the form 

   1 2 3exp( ) cos( ) sin(x c t c t c t     

2
demoniator 4 0

0.1000 1.9975

2 0.1000 1.9975 399 /10

xSol s

s i

s i i   

  

  

       
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A1.3   Exponential impulsive force  

exp( ) 0m x b x k x t      

 

 

Sol_x = 1/(s^3 + s^2 + 4*s + 4) 

sol_x = exp(-t)/5 - cos(2*t)/5 + sin(2*t)/10 

Sol_v = s/(s^3 + s^2 + 4*s + 4) 

sol_v = cos(2*t)/5 - exp(-t)/5 + (2*sin(2*t))/5 

Sol_a = s^2/(s^3 + s^2 + 4*s + 4) 

sol_a = (4*cos(2*t))/5 + exp(-t)/5 - (2*sin(2*t))/5 
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Poles of the Laplace transform Solx  

       3 2
4 4 0 0 2 ,0 2 , 1 0s s s s i i i           

The roots of the polynomial are computed using the Command 

Window 

>> p = [1 1 4 4]       p = 1     1     4     4 

>> roots(p) 

   0.0000 + 2.0000i 

   0.0000 - 2.0000i 

  -1.0000 + 0.0000i 

 

After the initial disturbance the System oscillates at its natural 

frequency indefinitely since the damping is zero. 

 

A2   System driven through via the mass by sinusoidal functions 

 Laplace08.m

We next consider the system driven via the mass by a sinusoidal 

driving force. This example allows you to study the phenomena of 

resonance. The ODE to be solved is 

 cosm x b x k x A t    

given the initial displacement and velocity of the mass. The ODE 

equation can be also expressed as 

 expm z b z k z A t  
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where the output z is assumed to be a sinusoidal function of the form 

 
exp( )z G i t  

where G is the complex function 

   expG G i t    

 

After a bit of algebra, you can derive the following relationships: 

 
  

 

2

2
2 2 2

A k m b i
G

k m b

 

 

 


 

 

 

 

 
2

2 2 2

A
G

k m b 


 

 

 

Resonance frequency      2 2
max / / 2RG k m b m      

Natural frequency            /N k m   

Phase                                
1

2
tan

b

k m




  
   

 
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A2.1 System driven at its natural frequency of vibration with no 

damping. 

 

The System vibrates at the driving frequency. When the System is 

driven at its natural frequency, then the oscillations continually grow 

with time  x t . 

Sol_x = s/(s^2 + 4)^2 

                      2 0 2s i s i           

sol_x = (t*sin(2*t))/4 

Sol_v = s^2/(s^2 + 4)^2     sol_v = sin(2*t)/4 + (t*cos(2*t))/2 

Sol_a = s^3/(s^2 + 4)^2     sol_a = cos(2*t) - t*sin(2*t) 
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The oscillations of the input and output are in phase. 
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A2.2 System driven at its natural frequency of vibration with 

damping. 

 

Sol_x = s/((s^2 + 4)*(s^2 + s/2 + 4)) 

       

 In the Command Window 

>> p=[1 0.5 4]           p = 1.0000    0.5000    4.0000 

           >> roots(p)            ans =  -0.2500 + 1.9843i      -0.2500 - 1.9843i 

2 0.25 1.9843s i s i           

sol_x = sin(2*t) - (8*7^(1/2)*exp(-t/4)*sin((3*7^(1/2)*t)/4))/21 

 

The System’s resonance frequency is 3 7 / 4 1.9843R   . 
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Since the System is driven at a frequency very close to its resonance 

frequency, large amplitude oscillations result with the output leading 

the input by 90
o
. 
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When the System is driven at a frequency which is away from the 

resonance frequency, the System will vibrate at the driving frequency 

with small amplitude oscillations after the initial transient oscillations 

die away exponentially. 

 

 

Sol_x = s/((s^2 + 9)*(s^2 + s/2 + 4)) 

sol_x = (6*sin(3*t))/109 - (20*cos(3*t))/109 + 

             (20*exp(-t/4)*(cos((3*7^(1/2)*t)/4) –  

             (13*7^(1/2)*sin((3*7^(1/2)*t)/4))/105))/109 
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B   System driven through the dashpot      Laplace09.m 

 

To illustrate the Laplace transform method to solve ODEs, we will 

consider the example of the mass / spring / dashpot System excited by 

a sinusoidal displacement of the piston in the dashpot. The ODE for 

this system is 

     cos sinm x b x k x b y y A t y A t         

 

The output and input functions can be expressed in exponential form 

as  

  
i t i t i i i t

y Ae x Ge G g e x g e e
     

     

where G is the transfer function. By substitution, we can find the 

expressions for the transfer function G, its magnitude g and argument 

 . 

 (8) 

 
 

 

 

 

 

2 2 2

22 2 2 2

2
4 4 2 2 2

2
2 2 2

2

1

2 2
tan

b b k m ib i
G

k m b i b k m

b b k m
g G

b k m

b k m

b

  

   

  

 

 






 
 

   

 
 

 

 
  
 
 

 

  



21 
 

The maximum gain is g = 1 when /N k m   . N  is the natural 

frequency of the System. At the natural frequency of excitation, the 

input and output oscillations are in phase  0  . For the System 

driven through the damper, the natural frequency N  and maximum 

gain are both independent upon the damping parameter b. If N   

then the phase lag is negative  0  and the response runs behind the 

input (lags). If N   then the phase lag is positive  0  and the 

response runs ahead of the input (leads). 
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B.1   Example   N   

 

  

Sol_x = (s - 4/(5*(s^2 + 1)) + 1)/(s^2 + (4*s)/5 + 4) 

sol_x = (16*cos(t))/241 - (60*sin(t))/241 +  

             (225*exp(-(2*t)/5)*(cos((4*6^(1/2)*t)/5) +  

             (991*6^(1/2)*sin((4*6^(1/2)*t)/5))/5400))/241 

 

The Laplace transform X(s) gives us information directly about the 

nature of the oscillation when it has the largest magnitude and this 

occurs when each denominator approaches zero 
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The first term 

 2
1 0 1 0 1s i s s i            

describes the sinusoidal oscillations with frequency 1   

 

For the second term, we can find the values of s from the poles of the 

solution for x in the Command Window 

>> p = [1 0.8 4]       p =     1.0000    0.8000    4.0000 

>>   roots(p)              ans =   -0.4000 + 1.9596i    -0.4000 - 1.9596i 

>>   4*sqrt(6)/5         ans =    1.9596 

 

This terms describes the decaying oscillations with a frequency of  

 4 6 / 5 1.9596    

and decay constant 2 / 5 0.4           

 

Initially there are transient oscillation which quickly decay 

exponentially, leaving the mass oscillating at the same frequency as 

the input signal  . 
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The Bode and Nyguist plots for the response of the System 

as functions of the driving frequency  . 
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The Bode plot gives graphs of the frequency response of a system, 

one displaying the magnitude of the response and other graph, the 

phase lag of the output signal to the input signal. Once the transient 

oscillations have died away, the output signal oscillates at the driving 

frequency .  

 

A Nyquist plot is a parametric plot of the frequency response where 

the imaginary part of the transfer function G is plotted against the real 

part. In our example, as the frequency increases from zero, a circular 

contour with the centre at (0.5,0) is swept out in a clockwise sense. 

The green dot is for the initial point where 0  .  to The red dot on 

the contour gives the real and imaginary parts at the driving frequency. 

The length of the line from zero to this point is the magnitude of the 

transfer function G and the angle   gives the phase shift between the 

output and the input.    
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B.2   Example   N   

 

 

Sol_x =  (s - 16/(5*(s^2 + 4)) + 1)/(s^2 + (4*s)/5 + 4) 

sol_x = cos(2*t) + (6^(1/2)*exp(-(2*t)/5)*sin((4*6^(1/2)*t)/5))/24 

The transient effects die away exponentially and then the System 

vibrates with maximum amplitude at its natural frequency. 
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The solutions for the velocity and acceleration are: 

Sol_v = (s*(s - 16/(5*(s^2 + 4)) + 1))/(s^2 + (4*s)/5 + 4) – 1 

sol_v = (exp(-(2*t)/5)*(cos((4*6^(1/2)*t)/5) –  

             (6^(1/2)*sin((4*6^(1/2)*t)/5))/12))/5 - 2*sin(2*t) 

Sol_a = (s^2*(s - 16/(5*(s^2 + 4)) + 1))/(s^2 + (4*s)/5 + 4) - s - 1/5 

sol_a = - 4*cos(2*t) - (4*exp(-(2*t)/5)*(cos((4*6^(1/2)*t)/5) +  

               (23*6^(1/2)*sin((4*6^(1/2)*t)/5))/24))/25 

 

The Bode and Nyquist plots are: 
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When the System is driven via the dashpot at resonance, then the 

amplitude of the oscillation is a maximum and the System vibrates in 

phase with the input signal. 

 

C   System driven through the spring               Laplace11.m

 

The equation of motion for the System driven by a sinusoidal input 

signal via the spring is 

  cosm x b x k x k y y A t     

Assume exponential input and output function of the form 

 Input       
i t

y Ae


  

 Output     
i t i i t i

x Ge g e Ae G g e
    

    

where G is the transfer function. 

After a bit of algebra you can derive the following 

 

 

2 2

2
2 2 2

k mk bk i
G

k m b

 

 

 


 
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The gain function G approaches a maximum when the denominator D 

approaches a minimum   

      2 2
/ 2 2 2 0dD d m k m b       

 

Hence, the resonant frequency is 

 2 2
/ / 2R k m b m     

The phase lag is 

 
1

2

/
tan

/

b m

k m






  
   

 
 

 

If there is zero damping b = 0, then the System will oscillate in phase 

with maximum amplitude when excited at the natural frequency. 
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R C.1   Example     

 

Sol_x = -(s/2 - (4*s)/(s^2 + 1) + 1/2)/(s^2 + s + 4) 

sol_x = (6*cos(t))/5 + (2*sin(t))/5 - (17*exp(-t/2)*(cos((15^(1/2)*t)/2) 

             + (5*15^(1/2)*sin((15^(1/2)*t)/2))/51))/10 
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R C.2   Example     

 

Sol_x = -(s/2 - (4*s)/(s^2 + 4) + 1/2)/(s^2 + s + 4) 

sol_x = 2*sin(2*t) - (exp(-t/2)*(cos((15^(1/2)*t)/2) +  

             (17*15^(1/2)*sin((15^(1/2)*t)/2))/15))/2  
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D   System driven through the spring and dashpot      Laplace12.m

The equation of motion for the System driven by a sinusoidal input 

signal via the  and  is dashpot spring

    cos sinm x b x k x b y k y y A t y A t          

 

Assuming the input and output can be expressed as exponential 

functions 

 2i t i t i t
y Ae y A ie y A e

        

 i
G g e x G y


   

 
2

k b i
G

m k b i



 



  
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R D.1     Example    
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