DOING PHYSICS WITH MATLAB APP DESIGNER GUI SIMULATIONS

SINUSOIDAL FUNCTIONS

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

https://github.com/D-Arora/Doing-Physics-With-

Matlab/tree/master/mpScripts

https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMava jrgSvUMc89ksF9Jb

ad_002B.mlapp

You can explore the relationship between the two equations

$$y_1 = A_1 \sin\left(2\pi t / T_1\right)$$

and

$$y_2 = A_2 \sin(2\pi t / T_2 + \phi_2)$$

ad_002C.mlapp

You can explore the relationship between the two equations

 $y = A\sin(\omega t + \phi)$

and

$$y_{sc} = a\sin(\omega t) + b\cos(\omega t)$$

Part 1 ad_002B.mlapp

Graphs of sinusoidal functions can be either expressed in terms of sine functions or cosine functions. The parameters of sinusoidal functions are:

- A amplitude
- T period [s]

 ω angular frequency [rad.s-1]

$$f = \frac{1}{T} \quad \omega = 2\pi f = \frac{2\pi}{T}$$

 $(\omega t - \phi)$ phase [rad]

$$\phi$$
 initial phase angle (phase at $t = 0$) or
Phase shift [rad]

 δt time shift [s]

Consider two sinusoidal functions which have the same amplitude A and angular frequency ω but with a phase difference ϕ .

$$y_1 = A\sin(\omega t)$$

$$y_2 = A\sin(\omega t + \phi) = A\sin(\omega(t + \delta t))$$

The **phase shift** ϕ can be used to describe the relationship between these two sine functions using the terms "**leading**" and "**lagging**". Because of the phase difference, the functions reach their maximum at different times. We will take the sine function y_1 as a reference and ask whether the sine function y_2 is lagging or leading the reference sine function y_1 .

$$\delta t, \phi > 0$$

max (y_2) occurs before max (y_1) then y_2 leads y_1

 $\delta t, \phi < 0$

 $\max(y_2)$ occurs after $\max(y_1)$ then $y_2 \operatorname{lags} y_1$

 $\delta t, \phi = 0$

the two maxima occur at the same time,

then y_1 and y_2 are said to be **in-phase**

The time interval between the first two maxima is called the time shift δt . If the function y_2 reaches its maximum first then the time shift is known as a **time lead**, if the y_2 maximum occurs after the maximum of y_1 , then time shift is known as the time **lead**.

Increasing the value of ϕ or δt shifts the sine function y_2 to the left (lower values of t) and decreasing the values of ϕ or δt , shifts the curve to the right (higher values of t)

From the two expressions for y_2 , the relationship between the initial phase angle ϕ and the time shift δt is

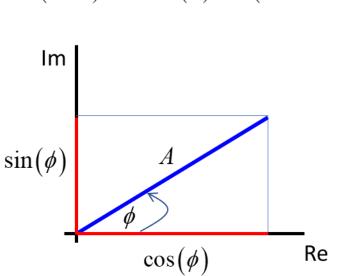
$$\frac{\phi}{2\pi} = \frac{\delta t}{T}$$

since $\omega t + \phi = \omega (t + \delta t) \Rightarrow \phi = (2\pi / T) \delta t$

A sinusoidal signal can be represented by a vector in the complex plane called a **phasor**. A phasor is simply a shorthand way of representing a signal that is sinusoidal in time. The complex representation of a sinusoidal function is

$$Y = A \exp(j\omega t + \phi) = A(\cos(\omega t + \phi) + j\sin(\omega t + \phi))$$
$$\sin(\omega t + \phi) = \operatorname{Im}(Y) \qquad \cos(\omega t + \phi) = \operatorname{Re}(Y)$$

The **phasor diagram** is constructed like drawing a vector and its components: the length of the phasor is the amplitude of the signal; the real part (X component) and imaginary part (Y component. Figure 1 shows a phasor diagram at the instant when t = 0.



 $Y(t=0) = A\exp(\phi) = A(\cos\phi + j\sin\phi)$

Fig. 1 Phasor diagram of a sinusoidal function at time t = 0.

As time advances, the phasor rotates in an anticlockwise direction with the angle of the phasor being $(\omega t + \phi)$. The speed at which the phasor rotates is equal to the angular frequency (angular speed rad.s⁻¹) ω .

Using the app **ad_002B.mlapp**, you can explore many aspects of sinusoidal functions. The GUI graphically displays the two equations

 $y_1 = A_1 \sin\left(2\pi t / T_1\right)$

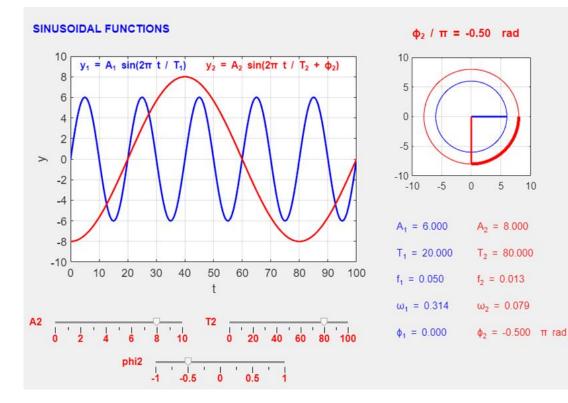
where A_1 = 6.00, T_1 = 20.0, f_1 = 0.050, ω_1 = 0.314, ϕ_1 = 0 and

$$y_2 = A_2 \sin(2\pi t / T_2 - \phi_2)$$

where the values of A_2 , T_2 , ϕ_2 are set by the three sliders. The units for the phase slider are π rad.

To make the most of the app as a learning tool it is a good idea to use the **Predict Observe Explain** (**POE**) method. Before any input values are changed using the sliders, **predict** the output response – all plots and numerical results. **Observe** the output response and compare with your predictions. **Explain** any discrepancies.

Figure 2 shows the GUI: Plots of the two functions, a summary of all numerical values and the phasor diagram (the two circles have radii equal to A_1 and A_2 . Zero phase $\phi_1 = 0$ corresponds to the **blue** horizontal line and the **red** radius line is for the phasor for the phase shift ϕ_2 / π .



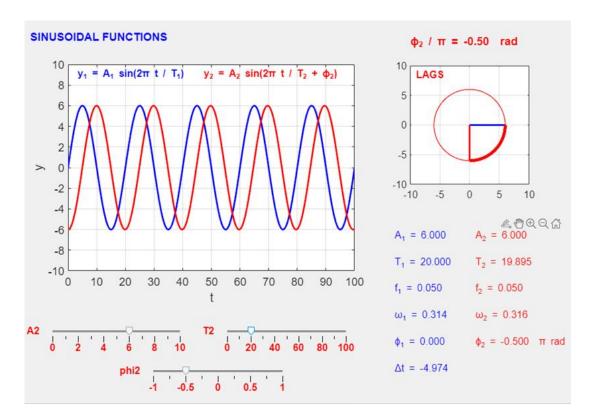


Fig. 2 GUI for ad_002B.mlapp.

Part 2 ad_002C.m

Consider the four sinusoidal functions

$$y = A\sin(\omega t + \phi)$$

$$y_{s} = a\sin(\omega t) \quad y_{c} = b\cos(\omega t)$$

$$y_{sc} = y_{s} + y_{c} = a\sin(\omega t) + b\cos(\omega t)$$

You can use the app ad_002C.m to investigate these four sinusoidal functions. There are four input sliders:

 $A \phi a b$

The period of each sinusoidal function is fixed

T = 40.00 f = 0.0250 $\omega = 0.1571$

The GUI is shown in figure 3.

Implement the **POE** strategy before changing any input values.

You can now play a game.

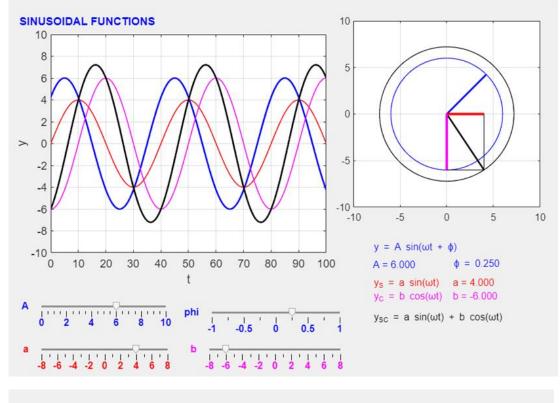
Select the values of (A, ϕ)

Then find the values of the coefficients (a, b)

such that

 $y = y_{SC} = y_S + y_C$ $A\sin(\omega t + \phi) = a\sin(\omega t) + b\cos(\omega t)$

Then set the values of ig(a,big) and find the values for $ig(A,\phiig)$



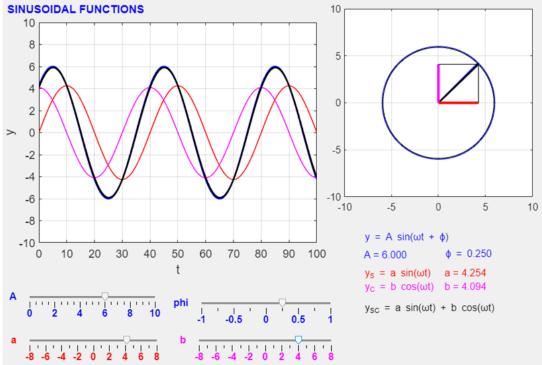


Fig. 3 GUI for ad_002C.mlapp

For more details of simple harmonic motion and the sine function click the documentation link

Documentation

An excellent web site on phasor diagrams can be viewed at

<u>Link</u>