[DOING PHYSICS WITH MATLAB](https://d-arora.github.io/Doing-Physics-With-Matlab/) APP DESIGNER GUI SIMULATIONS

SINUSOIDAL FUNCTIONS

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

[https://github.com/D-Arora/Doing-Physics-With-](https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts)

[Matlab/tree/master/mpScripts](https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts)

[https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMava](https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb) [jrgSvUMc89ksF9Jb](https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb)

ad_002B.mlapp

You can explore the relationship between the two equations

$$
y_1 = A_1 \sin(2\pi t / T_1)
$$

and

$$
y_2 = A_2 \sin\left(2\pi t / T_2 + \phi_2\right)
$$

ad_002C.mlapp

You can explore the relationship between the two equations

 $y = A \sin(\omega t + \phi)$

and

$$
y_{SC} = a\sin(\omega t) + b\cos(\omega t)
$$

Part 1 ad_002B.mlapp

Graphs of sinusoidal functions can be either expressed in terms of sine functions or cosine functions. The parameters of sinusoidal functions are:

- *A* amplitude
- *T* period [s]

$$
f \qquad \text{frequency [Hz]}
$$

 ω angular frequency [rad.s-1]

$$
f = \frac{1}{T} \quad \omega = 2\pi f = \frac{2\pi}{T}
$$

 $(\omega t - \phi)$ phase [rad]

$$
\phi
$$
 initial phase angle (phase at $t = 0$) or
Phase shift [rad]

 δt time shift [s]

Consider two sinusoidal functions which have the same amplitude A and angular frequency ω but with a phase difference ϕ .

$$
y_1 = A\sin(\omega t)
$$

$$
y_2 = A\sin(\omega t + \phi) = A\sin(\omega(t + \delta t))
$$

The **phase shift** ϕ can be used to describe the relationship between these two sine functions using the terms "**leading**" and "**lagging**". Because of the phase difference, the functions reach their maximum at different times. We will take the sine function *y*¹ as a reference and ask whether the sine function *y*² is lagging or leading the reference sine function *y*1.

$$
\delta t, \phi > 0
$$

max (y_2) occurs **before** max (y_1) then y_2 leads y_1

 $\delta t, \phi < 0$

 $\max\left(\,y_{\text{2}}\,\right)$ occurs $\mathsf{after} \, \max\left(\,y_{\text{1}}\right)$ then y_{2} lags y_{1}

 $\delta t, \phi = 0$

the two maxima occur at the same time,

then y_1 and y_2 are said to be **in-phase**

The time interval between the first two maxima is called the **time shift** δt . If the function y_2 reaches its maximum first then the time shift is known as a **time lead**, if the y_2 maximum occurs after the maximum of *y*1, then time shift is known as the time **lead**.

Increasing the value of ϕ or δt shifts the sine function y_2 to the left (lower values of *t*) and decreasing the values of ϕ or δt , shifts the curve to the right (higher values of *t*)

From the two expressions for y_2 , the relationship between the initial phase angle ϕ and the time shift δt is

$$
\frac{\phi}{2\pi} = \frac{\delta t}{T}
$$

since $\omega t + \phi = \omega(t + \delta t) \Rightarrow \phi = (2\pi / T) \delta t$

A sinusoidal signal can be represented by a vector in the complex plane called a **phasor**. A phasor is simply a shorthand way of representing a signal that is sinusoidal in time. The complex representation of a sinusoidal function is

$$
Y = A \exp(j \omega t + \phi) = A(\cos(\omega t + \phi) + j \sin(\omega t + \phi))
$$

sin(\omega t + \phi) = Im(Y) \cos(\omega t + \phi) = Re(Y)

The **phasor diagram** is constructed like drawing a vector and its components: the length of the phasor is the amplitude of the signal; the real part (X component) and imaginary part (Y component. Figure 1 shows a phasor diagram at the instant when $t = 0$.

 $Y(t=0) = A \exp(\phi) = A(\cos\phi + j\sin\phi)$

Fig. 1 Phasor diagram of a sinusoidal function at time *t* = 0.

As time advances, the phasor rotates in an anticlockwise direction with the angle of the phasor being $(\omega t + \phi)$. The speed at which the phasor rotates is equal to the angular frequency (angular speed rad.s⁻¹) ω .

Using the app **ad_002B.mlapp**, you can explore many aspects of sinusoidal functions. The GUI graphically displays the two equations

 $y_1 = A_1 \sin (2 \pi t / T_1)$

where A_1 = 6.00, T_1 = 20.0, f_1 = 0.050, ω_1 = 0.314, ϕ_1 = 0 and

$$
y_2 = A_2 \sin\left(2\pi t / T_2 - \phi_2\right)
$$

where the values of A_2, T_2, ϕ_2 are set by the three sliders. The units for the phase slider are π rad.

To make the most of the app as a learning tool it is a good idea to use the **Predict Observe Explain** (**POE**) method. Before any input values are changed using the sliders, **predict** the output response – all plots and numerical results. **Observe** the output response and compare with your predictions. **Explain** any discrepancies.

Figure 2 shows the GUI: Plots of the two functions, a summary of all numerical values and the phasor diagram (the two circles have radii equal to A_1 and A_2 . Zero phase $\phi_1=0$ corresponds to the **blue** horizontal line and the **red** radius line is for the phasor for the phase shift $\ket{\phi_2}/\pi$.

Fig. 2 GUI for **ad_002B.mlapp**.

Part 2 ad_002C.m

Consider the four sinusoidal functions

der the four sinusoidal functions
\n
$$
y = A \sin(\omega t + \phi)
$$
\n
$$
y_s = a \sin(\omega t) \quad y_c = b \cos(\omega t)
$$
\n
$$
y_{sc} = y_s + y_c = a \sin(\omega t) + b \cos(\omega t)
$$

You can use the app ad 002C.m to investigate these four sinusoidal functions. There are four input sliders:

A ϕ *a b*

The period of each sinusoidal function is fixed

 $T = 40.00$ $f = 0.0250$ $\omega = 0.1571$

The GUI is shown in figure 3.

Implement the **POE** strategy before changing any input values.

You can now play a game.

Select the values of (A, ϕ)

Then find the values of the coefficients (a,b)

such that

$$
y = y_{SC} = y_S + y_C
$$

Asin($\omega t + \phi$) = $a \sin(\omega t) + b \cos(\omega t)$

Then set the values of (a,b) and find the values for (A,ϕ)

Fig. 3 GUI for **ad_002C.mlapp**

For more details of simple harmonic motion and the sine function click the documentation link

[Documentation](https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/wav_shm_sine.pdf)

An excellent web site on phasor diagrams can be viewed at

[Link](https://lpsa.swarthmore.edu/BackGround/phasor/phasor.html)