
  Doing Physics with Matlab                                                                                                                               1 
 

 

 

 

 

 

DOING PHYSICS WITH MATLAB 

 

ELECTROMAGNETIC INDUCTION 

FARADAY’S LAW 

MUTUAL & SELF INDUCTANCE 

 

Ian Cooper 

School of Physics, University of Sydney 

ian.cooper@sydney.edu.au 

 

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 

 

Download and inspect the mscripts and make sure you can follow the structure 

of the programs. 

cemB01.m        

Calculations of the induced emfs and current in a square shaped coil 

due to the changing magnetic flux through the surface of the coil 

produced by a time varying current in a long straight wire. 

cemB02.m        

Calculations of the induced emfs and current in a square shaped coil 

due to the sinusoidal magnetic flux through the surface of the coil 

produced by a sinusoidal time varying current in a long straight wire. 

simpson1d.m   simpson2d.m  

 Computation of [1D] and [2D] integrals using Simpson’s rule. The 

functions to be integrated must have an ODD number of the elements. 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts
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Faraday’s law is applied to a system of a long straight wire (1) and a square 

shaped conducting coil (2).  A time dependent current 
1

I  in the wire produces 

a time varying magnetic field B surrounding it. The coil is coupled to the wire 

by the mutual inductance M of the system of wire and coil. The changing 

magnetic flux 
B
  through the coil induces emf 

1
  around the coil which 

opposes the change in magnetic flux through it. The coil has a self-inductance 

L and the current in the coil produces its own emf 
2

  to oppose the emf 
1
 . 

 

Fig. 1.   System of long straight wire conductor aligned along the Y 
axis and conducting square shaped coil aligned in the XY plane and 
centred on the X axis. The current in the wire is 

1
I  and the induced 

current in the coil is 
2

I . The side length of the square coil is 
L

s  and 

the radius of the coil wire is a. The closest side of the coil to the wire 
is the distance 

1
x  and the opposite of the side of the coil is at a 

distance 
2 1 L

x x s  . The conductivity of the of the coil is 

(resistivity  1 /  ) and the resistance of the coil is R. The magnetic 

field B  through the coil is parallel to the Z axis and the magnetic flux 

through the coil is B
 . 

  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm


  Doing Physics with Matlab                                                                                                                               3 
 

The magnitude of the magnetic field B at a distance x from the wire is 

 (1) 0 1

2

I
B

x





 
  
 

 

If the wire current 
1

I  is in the +Y direction, the magnetic field is in the –Z 

direction through the coil and in the +Z direction if the wire current 
1

I  is the –Y 

direction (right hand screw rule). 

The magnetic flux 
B
  through the square coil is 

 (2) 
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   
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Faraday’s law can we expressed as 

 (3) B
d dB

E ds E
dt dt


         

Normally we think of fields created by charges. However, when a magnetic flux 

through some surface changes with time, then there is also an electric field 

created to give an emf around the boundary of the surface.  

A steady current 
1

I  in the wire produces a constant magnetic flux 
B
 through 

the coil and the induced emf is zero. Only when the wire current 
1

I  changes 

with time that the magnetic flux 
B
  changes and a net emf created around the 

coil (the coil forms the boundary of the surface through which the magnetic 

flux changes). The induced emf drives a current 
2

I  through the conductive coil. 

The direction of the induced current 
2

I in the coil is determined by Lenz’s law. 

The induced current 
2

I  gives a magnetic flux that opposes the change in 

magnetic flux B
  produced by the wire current 

1
I . Hence, the direction of the 

induced current 
2

I   can be determined by using the right hand screw rule. In 

figure 1, if the current 
1

I  is increasing the magnetic field through the coil is 

increasing in the –Z direction. The induced current 
2

I  in the coil is in an 

anticlockwise sense which gives its magnetic field in the + Z direction (opposite 

to the B field from the wire). 
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The magnetic flux 
B
 at every point within the coil is proportional to the wire 

current 
1

I  (equation 2), therefore, we can write 

 (4) 
1B

M I   

where the constant of proportionality M is the mutual inductance of the 

system composed of the coil and long straight wire. The S.I. unit for the mutual 

inductance is the henry [H]. 

From equations 1 and 2, the mutual inductance M is 

 (5a) 
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 (5b) 
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We have three ways of computing M.  For the surface enclosed by the coil a 

[2D] grid can be created. Then M from equation 5a can be estimated by calling 

the function simpson2d.m which evaluates the integral for the grid of NxN 

points where N must be an odd number. The integral in equation 5b can be 

evaluated by dividing the area of the coil into strips parallel to the Y axis and 

using the function simpson1d.m. M can be found analytically using equation 

5c. 

Matlab    cemB01.m 

 Setting up the [2D] grid 

 % Grid for square coil   xG   yG 
        x = linspace(x1,x2,N); 
        y = linspace(y1,y2,N); 
       [xG, yG] = meshgrid(x,y); 
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  Computing the mutual inductance 

 % Mutual inductance for wire and square coil M: 

         three ways of calculating 
         fn = (1./xG); 
         ax = x1; bx = x2; ay = y1; by = y2; 
         integral2D = simpson2d(fn,ax,bx,ay,by);    
         M1 = (mu0 / (2*pi)) * integral2D; 

  
         fn = 1./x; 
         integral1D = simpson1d(fn,ax,bx); 
         M2 = (mu0 / (2*pi)) * (by-ay) * integral1D; 

  
         M3 = (y2 - y1)* mu0/(2*pi) * log(x2/x1); 

  
         M = M1; 

  

The three ways of computing M give the exact same result.  

 

The current 
2

I in the coil also creates a magnetic field and a magnetic flux 

through the coil. If this current changes with time, so does the magnetic flux 

and additional emf exists around the coil. This additional emf influences the 

current 
2

I . 

 emf generated by current 
1

I in the wire 

 (6) 1
1

dI
M

dt
   

 emf generated by current 
2

I in the coil 

 (7) 2
2

dI
L

dt
    

where L is the constant of proportionality called the self-inductance [henries 

H]. 

The self-inductance L for the square coil of side length sL and the coil wire has 

a circular cross-section with radius a, then 

 (8) 7
8.0 10 log 0.52401L

L

s
L s e

a

   
    

  
 

where L is in henries, sL and a are in meters. 
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So, the changing current 
1

I  in the wire gives the time varying magnetic flux 
B


through the coil that induces an electric field that produces an emf  in the coil 

which drives the coil current 
2

I .  The emf around the coil is 

 (9) 
1 2 2

0       

If the coil has a resistance R, then  
2

I R   and we can obtain a differential 

equation that can be solved to give the coil current 
2

I  

 (10) 1 2
2

dI dI
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dt dt
   

 (11) 2 1
2
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I

dt L dt L
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    
   

 

Analytical solution of equation 11 

  

 

 

2

2

2 1 1
2 1 2

2
1 2 2

2

1 2 2

2

0 0
1 2 2

1 2 2 0
2

1 2 2
2

1

1 2 2
2

1

1
log

log

exp

t I

I

e

e

dI M dI R M dI R
I k k

dt L dt L L dt L

dI
k k I

dt

dI
dt

k k I

dI
dt

k k I

t k k I
k

k k I
k t

k

k k I
k t

k

       
          
       

 







 
     
 

 
   

 


 

 

 

 (12)   1
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Finite difference solution to equation 11 

A finite difference method can be used to solve equation 11. This approach is 

better, because you can’t always find an analytical solution.  

The first derivative is approximated by the finite difference 

 
   1I n I ndI

dt t

 



    for time steps 1n   and n     

where  n = 1, 2, 3,  … , N  (N odd integer) 

 (13)           2 2 1 1 2
1 1

M R t
I n I n I n I n I n

L L

   
        

   
 

Given the initial values (n = 1) of 
1

I  and 
2

I  it is easy to find the values of 
2

I  at 

later times. 

 

Example 1                                   cemB01.m 

Wire current varies linearly with time   
1 10 10

2.0AI I t I   

 1
dI

dt
= 2.0  A.s-1   

                 constant (don’t need numerical approximation for derivative) 

Square coil 

 side length   sL = 1.0 m 

 radius   a = 1.0x10-3 m 

 copper wire  resistivity   1.68x10-8  .m       resistance   R = 0.0214  

 distance from wire  x1 = 0.10 m 

 self inductance   L = 5.1070x10-6 H 

Wire and coil 

 mutual inductance   M = 4.7958x10-7 H 
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Figure 2 show plots of the wire current 
1

I  and the induced coil current 
2

I . The 

current 
2

I  is computed by solving equation 11 and the numerical result is 

identical to the analytical solution provided the time step is smaller enough. 

The analytical solution gives a saturation value 
2sat

I  for the current 
2

I  as t   

 (14) 51 1
2

2

4.484 10 A
sat

k M dI
I

k R dt


     

 

 

 

 

 

 

 

 

 

Fig. 2.   The time variation of the wire current 
1

I  and induced coil 

current 
2

I . The saturation current for the induced coil current is 

4.484x10-5 A. 

From the solution given by equation 12, we can define a time constant   such 

that  

  

 

2 2

4

1 51
2 2

2

1 1 / /

2.388 10 s

1 0.6321 2.834 10 A
sat

k k L R

k
I e I

k

 

 

 

   

 

    

 

The value for the time constant   calculated numerically is the same as the 

analytical value for 5001 grid points and 5001 time steps ( 6
1.00 10 st


   ). 

The final steady state value 
2sat

I  does not depend upon the self-inductance L, 

but the time the current takes to the reach steady state does. 
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The self-inductance tends to inhibit changes in the coil current 
2

I , and the 

larger the value of L, the longer the system takes to reach steady-state. 

 

The induced emf   in the coil is due to two components: the mutual 

inductance of the wire and coil 
1
 and the self-inductance of the coil 

2
 as 

described by equations 6, 7, and 9. Figure 3 shows a plot of the emf induced in 

the coil. 

  

 

Fig. 3.   net emf 

induced in the coil and 

its components 
1
  and 

2
 .  

   7

1
9.591 10 V

sat
 

   

   
2

0 V
sat

   

 

 

 

Can we find the electric field induced by the time varying magnetic flux? 

You may think that equation 3 can be used to find the value of E  

 (3) 

B
d

E ds
dt

dB
E

dt


    

   


 

but this can only be done for very symmetrical cases such as when there is 

circular symmetry. Consider an irregular shape closed loop. An emf is induced 

in the loop due to an induced electric field whose direction and magnitude at 

points around the loop vary quite differently. Faraday’s law does not allow us 

to find anything more than the average magnitude of the electric field, the 

direction and magnitude depend on the path chosen. The induced emf around 
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a closed path has meaning whether or not a conductor lies on the path. The 

electric field is not directly related to the value of B at points on the path 

taken, it only depends on the rate of change of the magnetic flux within the 

area enclosed by the loop. 

We can find an average value for the electric field avgL
E the current around the 

closed coil from the line integral form of Faraday’s law 

 (15) 

4

4

B
avgL L avgL

avgL

L

d
E ds E ds s E

dt

E
s






     



 
 

The numerical value of avgL
E  for the parameters of Example 1 when a steady 

state situation has been reached is 

  7 -1 7
2.398 10 V.m 1.0 m 9.592 10 V

avgL L sat
E s  

         

We can also find the value of the average electric field avgJ
E  from equation 16 

 (16) J E  

where the electric field E drives the current density J  through a material with 

conductivity  .  

 

7 -1 5 32
22

8

2.398 10 V.m 4.708 10 1.000 10

1
for copper 1.68 10 Ω.m

sat
avgJ sat

I
E I A a m

a






  



      

  
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Changing input parameters 

5

4

4

2 1.021 10 H

( ) 2.388 10 s

(2 ) 4.775 10 s

L L

L

L











  

 

  

 

The only change is that it takes 

longer to reach the steady state 

situation 

 

 

4

4

2 0.043

( ) 2.388 10 s

(2 ) 1.194 10 s

R R

R

R









  

 

  

 

5

2

5

2

( ) 4.484 10 A

(2 ) 2.242 10 A

sat

sat

I R

I R





 

  
 

No change in emfs 

 

 

1 1
/ 2 0.05 mx x   

7

1

7

1

( ) 4.796 10 H

( / 2) 6.089 10 H

M x

M x





 

  
 

5

2 1

5

2 1

7

1

7

1

( ) 4.484 10 A

( / 2) 5.693 10 A

( ) 9.591 10 V

( / 2) 12.18 10 A

sat

sat

sat

sat

I x

I x

emf x

emf x









 

  

 

  

 

No change in time constant   

 

Reducing the area of the coil, reduces the magnetic flux and hence reduces the 

magnitude of the current induced in the coil. 
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Example 2:  Sinusoidal variation in magnetic flux      cemB02.m 

The induced current 
2

I  in the square shaped coil is produced by a time varying 

sinusoidal current 
1

I  in the long straight wire. You can vary the frequency f of 

the sinusoidal current 
1

I  in the wire to investigate how the induced current 
2

I

depends upon the frequency f of the changing magnetic flux through the coil. 

 

 

 

 wire I1: frequency   f =  50.0  Hz 

 coil: max current I2  =  63.22  mA 

 

 

 

 

 

 

 

 coil: max emf   =  1.35  mV 

 coil: max emf1  =  1.36  mV 

 coil: max emf2  =  0.10  mV 
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 wire I1: frequency   f =  200.0  Hz 

    coil: max current I2  =  243.00  mA 

 

 

 

coil: max emf   =  5.19  mV 

coil: max emf1  =  5.42  mV 

coil: max emf2  =  1.56  mV  
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 wire I1: frequency   f =  1000.0  Hz 

 coil: max current I2  =  703.84  mA 

 

 

 coil: max emf   =  15.01  mV     coil: max emf1  =  27.12  mV 

 coil: max emf2  =  22.58  mV 

 

As expected, the greater the frequency (the greater the rate of change in the 

magnetic flux and the larger the induced currents in the copper coil. 
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