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cemDiff02.m        Matlab function   gradient    

 gradient function   f(x,y)     f  

 contourf plot of the function f(x,y) 

 quiver plot of the vector field f  

 

cemDiff03.m        Matlab function   divergence    

 divergence of a vector field     ( )x y
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  surf plot  of ( )x y
V V V  

  contourf and quiver plots of V  and ( )x y
V V V  

cemDiff04.m            Matlab functions   divergence   curl 

 divergence of a vector field     ( )x y z
V V V V       

 curl of a vector field     ( )x y z
V V V V       

  quiver3 plot  of V  

  slice plot of  ( )x y z
V V V V  

     quiver3 plot of ( )x y z
V V V V  

 

cemDiff05.m            Matlab function  del2 

 Laplacian 2
f of the a scalar function  f(x,y)       surf plots   

 Laplacian 2
V  of the vector function ( )x y z

V V V V      slice & quiver3 plots 

 

mqm002.m 

 First and second derivatives performed as a matrix operation. 
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Topics 

• First derivative of a one variable function 

• Second derivative of a one variable function 

• Gradient of a scalar field and vector field 

• Divergence of a vector field 

• Curl of a vector field 

• Laplacian of a scalar field and a vector field 
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FIRST DERIVATIVE OF A ONE VARIABLE FUNCTION 

 

Consider the one variable function ( ) ( )y x f x . Then the first derivative of the 

function ( )y x  is  

 (1) 
( )

0

( )( )
lim
x

y x x y xdy x dy

dx dx x →

+  − 
 =  

 
 

The first derivative tells us how rapidly the function ( )y x  varies when we 

change the value of x by a tiny amount dx . 

 (2) 
dy

dy dx
dx

 
=  
 

 

If we change x  by the amount dx  then the change in y  is dy  and is 

proportional to dx  with the constant of proportionality equal to the first 

derivative /dy dx . Graphically the first derivative gives the slope or gradient of 

the tangent of the curve ( )y x  verses x .  

We can approximate the first derivative at x by the following: 

 (3a) 
( ) ( )

x

dy y x x y x

dx x

+  −



               forward approximation 

 (3b) 
( ) ( )

x

dy y x y x x

dx x

− − 



              backward approximation 

 (3c) 
( ) ( )

2x

dy y x x y x x

dx x

+  − − 



      central difference approximation 

 

Mathematically, equations 3 are only correct in the limit 0x → . In calculating 

derivatives numerically, x  has to be small enough to provide sufficient 

accuracy of the result. There is an optimal value for x , since, if x is too small 

you get round-off errors. For most applications, the central difference 

approximation is preferred over the forward or backward methods. It is more 

difficult to achieve good accuracy in numerical differentiation compared to 

numerical integration. The main reason comes from the fact that we are taking 

the ratio of two differences. 
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In general, we do not have any difficulties in differentiating the functions 

normally encountered in physics, and as a result numerical methods to 

calculate derivatives were often not employed in the past. However, with the 

increasing use of computers and their greater speed and larger memory, 

numerical approaches in solving problems have become very important.  

The Matlab mscript cemDiff01.m is used to find the derivative of the sine 

function 

 (4) ( )
2

sin 0 100y k x k x



= =    

where k  (wave number) and   (wavelength) are constants. The x values are 

given by N equally spaced grid points which are indexed from 1 to N. The 

spacing between the grid points is x . The larger the number of grid points, 

then the smaller the increment x .  

The analytical (exact) function for the derivative of the sine function given by 

equation 5 is 

 (5) cos( )
dy

k k x
dx

=  

The derivative is also estimated numerically using equations 3a, 3b and 3c. In 

calculating the derivatives using equations 3 at the end points, the forward 

approximation must be used for index 1 and the backward approximation must 

be used at index N. 

The Matlab function gradient is also used to calculate the derivative with the 

code 

  dydxM = gradient(y,dx); 

 

Figure 1 shows plots for the first derivative with the number of grid points 

being N = 101: Analytically exact result (A), Matlab gradient command (M), the 

forward (F), the backward (B) and central difference (C) approximations.  
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 Fig 1. Plots of the first derivative for N = 101.      cemDiff01.m 

All the approximation methods under estimate the value of the derivative at 

the maximum values. To compare the accuracy of the different approximation 

methods we can’t compare the values of the derivative at a maximum because 

all the methods predict the same result. So, to test the accuracy we will 

compare the ratio of the value of the dy/dx for each approximation method to 

the exact value of dy/dx at an x position when the exact value is equal to 0.5. 
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Table 1.   Summary of the ratios for comparing the accuracy of the different methods. 

N x  Ratio A Ratio M Ratio F Ratio B Ratio C 
101 1.0000 1.0000 0.9836 0.5042 1.4631 0.9836 

201 0.5000 1.0000 0.9959 0.9389 1.0528 0.9958 

501 0.2000 1.0000 0.9993 0.9913 1.0074 0.9993 
 

From Table 1 it is clear that the central difference approximation method is 

better than the forward or backward method and it seems most likely that the 

Matlab gradient command uses a central difference method. 

If you want to calculate the first derivative of a single variable function, then 
the simplest way is to use the Matlab gradient function 
 
   dydxM = gradient(y,dx) 
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Symbolic differentiation in Matlab 

 

syms z t 

% First Derivatives - symbolic functions to array values 

  df_dz = diff(3*sin(2*z),z)   % w.r.t z 

             →   df_dz = 6*cos(2*z) 

  u = 1:8;            % range 

  v = subs(df_dz,u)   % symbolic  values 

             →   v = [6*cos(2), 6*cos(4), 6*cos(6), 6*cos(8), 6*cos(10), 

6*cos(12), 6*cos(14), 6*cos(16)]   

  v = double(v)       % numerical values 

             →   v =  -2.4969   -3.9219    5.7610   -0.8730   -5.0344 

                             5.0631    0.8204   -5.7460 

  df_dz = diff(sin(3*z - 5*t),z)  % w.r.t  z 

             →    3*cos(5*t - 3*z) 

  df_dt = diff(sin(3*z - 5*t),t)  % w.r.t  t 

               →    -5*cos(5*t - 3*z) 

 

  % Second Derivatives 

    df2_dz2 = diff(sin(3*z - 5*t),z,2)  % w.r.t z 

                →    9*sin(5*t - 3*z) = -9*sin(3*z  - 5*t) 

 

df2_dt2 = diff(sin(3*z - 5*t),t,2)  % w.r.t t   

                 →    25*sin(5*t - 3*z) = -25*sin(3*z – 5*t) 
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SECOND DERIVATIVE OF A ONE VARIABLE FUNCTION 

The second derivative of a function gives the rate of change of the first 

derivative or rate of change of the gradient of the function. It is easy to show 

that by using the central difference form for a derivative, the second derivative 

of ( )y x  can be expressed as 

 (6) 
2

2 2

( ) ( ) 2 ( ) ( )d y x y x x y x y x x

dx x

+  − + − 
=


 

Again, in writing the code to evaluate equation 6 you need to be careful at the 

end points (indices 1 and N). For index 1 use a forward difference 

approximation for the change in slope and for index N use a backward 

approximation.  

Code for calculating the first derivative using equation 3c; 

% Central difference approximation 
 dydxC = zeros(1,N);             
 dydxC(1) = (y(2)-y(1))/dx; 
 dydxC(N) = (y(N)-y(N-1))/dx; 
 for n = 2: N-1 
        dydxC(n) = (y(n+1)-y(n-1))/(2*dx); 
 end 

 

Code for calculating the second derivative using equation 6; 

 % Central difference approximation 
 d2ydx2C = zeros(1,N);             
      d2ydx2C(1) = (dydxC(2)-dydxC(1))/dx; 
      d2ydx2C(N) = (dydxC(N)-dydxC(N-1))/dx; 
      for n = 2: N-1 
           d2ydx2C(n) = (y(n+1)-2*y(n) + y(n-1))/(dx^2); 
      end 

 

Code using the Matlab function gradient 

 d2ydx2M = gradient(dydxM,dx); 

  

However, the easiest way to find the second derivative of a single variable 

function is to use the del2 function which corresponds to a Laplacian operator 

 del2y = 4*del2(y,dx); 

 

N.B.  For the [1D] Laplacian function you need to multiply del2 by 4.  
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Figure 2 shows the plots of the second derivative of the function 

( ) sin( )y x k x=  for the exact solution (A), using the Matlab gradient function 

(Mgrad), the central difference approximation (C) and the del2 function 

(Mdel2).  

 

 Fig.2   Second derivative 
2

2

( )d y x

dx
 of the function ( ) sin( )y x k x=  and a 

magnified view of one peak of the curve. The number of grid points is 

only N = 101.       cemDiff01.m 

 

From figure 2 the central difference approximation of equation 6 appears to be 

a more accurate estimation of the second derivative than applying the Matlab 

gradient function twice. The central difference method, equation 6 gives 

identical result as using the del2 function. 

 

The approximation for the first and second derivatives given by equations 3 

and 6 are very important in the solution of differential using the finite 

difference method. 
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DIFFERENTIATION USING MATRICES 

The process of differentiation can be considered as an operator acting upon a 

function. The operator D is represented by a square NxN matrix that acts on 

the function y given by a Nx1 column vector to give the derivative of the 

function y’ also as an Nx1 column vector.   

 

                

1 1

2 2

3 3

1 1

' 2 2 0 ... 0 0

' 1 0 1 ... 0 0

' 0 1 0 ... 0 01

...... ...2

0 0 ... 1 0 1'

0 0 ... 0 2 2'

N N

N N

y y

y y

y y

x

y y

y y

− −

−    
    

−
    
    −

=    
    

    −
    

−       

 

 

The matrix elements can be easily deduced from the definition of the first 

derivative 

           

( 1) ( 1) (2) (1) ( ) ( 1)
(1) ( )

2

dy y y n y n y y y N y N
D D N

dx x x x x

 + − − − − −
 = = =
   

 

 

Similarly, for the second derivative can also be represented as a matrix 

operation where the elements of the matrix are determined from the equation 

for the second derivative    

2

2 2

2 2

2 2

( 1) 2 ( ) ( 1)

(3) 2 (2) (1) ( 1) 2 ( ) ( 1)
(1) ( )

d y y n y n y n

dx x

y y y y N y N y N
D D N

x x

+ − + −




− + + − + −
= =

 
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Matlab Script   mqm002.m 

 

% mqm002.m 

 

% Calculation of the 1st and 2nd derivatives using a matrix for the  

% first derivative operator and for the second derivative operator. 

 

clear 

close all 

clc 

 

% x grid 

  N = 99; 

  x = linspace(0,20,N)'; 

  dx = x(2) - x(1); 

 

% Function y / first derivative v / second derivative a 

  y = sin(x); 

  v = cos(x); 

  a = -sin(x); 

 

% First dervative opertor matrix D and first derivative (numerical) dydx 

  D = (diag(ones((N-1),1),1) - diag(ones((N-1),1),-1)); 

  D(1,1) = -2; D(1,2) = 2; 

  D(N,N) = 2; D(N,N-1) = -2; 

  dydx = D./(2*dx) * y; 
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% Second dervative opertor matrix D and second derivative (numerical) 

% d2ydx2 

  D = diag(ones((N-1),1),1) + diag(ones((N-1),1),-1) - 2.*diag(ones((N),1),0); 

  D(1,1) = 1; D(1,2) = -2; D(1,3) = 1; 

  D(N,N) = 1; D(N,N-1) = -2; D(N,N-2) = 1; 

  d2ydx2 = D./dx^2 * y; 

 

 

% GRAPHICS 

===========================================================   

figure(1) 

   set(gcf,'units','normalized'); 

   set(gcf,'Position', [0.05 0.05 0.30 0.35]) 

   set(gcf,'color','w'); 

   FS = 12; 

 

    xP = x; yP = y; 

    plot(xP,yP,'b'); 

    hold on 

    yP = v;  

    plot(xP,yP,'c','linewidth',4) 

    yP = dydx; 

    plot(xP,yP,'r','linewidth',2) 

    grid on 

    xlabel('x') 
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    ylabel('y  &  dy/dx') 

    set(gca,'fontsize',FS) 

    legend('y','dy/dx', '(dy/dx)_N','location','northoutside',...  

        'Orientation','horizontal') 

 

figure(2) 

   set(gcf,'units','normalized'); 

   set(gcf,'Position', [0.05 0.45 0.30 0.35]) 

   set(gcf,'color','w'); 

   FS = 12; 

 

    xP = x; yP = y; 

    plot(xP,yP,'b'); 

    hold on 

    yP = a;  

    plot(xP,yP,'c','linewidth',4) 

    yP = d2ydx2; 

    plot(xP,yP,'r','linewidth',2) 

    grid on 

    xlabel('x') 

    ylabel('y  &  d^2y/dx^2') 

    set(gca,'fontsize',FS) 

    legend('y','d^2y/dx^2', '(d^2y/dx^2)_N','location','northoutside',...  

        'Orientation','horizontal') 
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GRADIENT OF A SCALAR FIELD / DEL OPERATOR    

Consider a scalar field defined as by scalar function of four variables of space  

( , , )x y z  and time (t) such as temperature ( , , , )T x y z t . We can differentiate 

with respect one of the variables, keeping the other three constant. The result 

is the partial derivative. The partial derivative w.r.t x is 

   
0

( , , , ) ( , , , )
lim
x

T T x x y z t T x y z t

x x→

 +  − 
=  

  
 

If we permit all variables to vary, we get the total derivative form by the chain 

rule, for example the total derivative for time is 

 (7) 
dT T dx T dy T dz

dt x dt y dt z dt

  
= + +
  

 

Like vector quantities, the differentiation of a vector can be carried out with 

respect to one or more of the variables of the vector, for example, 

 (8) ( )ˆˆ ˆ ˆˆ ˆ yx z
x y z

VV V
i V jV kV

t t t t

V
i j k

t

  
= + + + +
   


=


 

The above derivatives have their uses, but, of greater interest is the operator 

called del  

 (9a) ˆˆ ˆ
x z z

i j k
  

  + +
  

        operator called del 

Equation 9 is the del operator in Cartesian coordinates. The gradient in 

cylindrical coordinates ( ), , z  and spherical coordinates ( ), ,r    is given by 

 (9b) 
1 ˆˆˆ

f f f
f

x z
k

  
 

  
 = + +

  
             cylindrical coordinates 

 (9c) 
1 1

sin
ˆ ˆˆ

f f f
f

r r r
r

  
 

  
 = + +

  
     spherical coordinates 

The gradient of a scalar function f is the vector function 

 (10) ˆˆ ˆf f f
f

x z z
i j k
  

 = + +
  

        gradient 

The gradient of the scalar function f  is the vector whose magnitude at any 

point is the maximum space rate of change of the function and the direction of 

the vector points in the direction of the maximum increase in the function f. 
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The mscript cemDiff02.m can be used to give [3D] plots for a scalar function of 

the form ( , )f x y  and to calculate and display the gradient f . As an example, 

we will take the function 
2 2

( , )
x y

f x y xe
− −

= .  Figure 3 shows plots of the scalar 

field for ( , )f x y  and the vector field for f as a set of arrows. At the position 

of each arrow, the magnitude of the vector field is proportional to the length 

of the arrow and direction of the field by the direction of the arrow. The 

direction of the arrow points in the direction of the maximum increase in slope 

of the scalar field at that point. Comparing the upper and lower plots, you can 

see that the arrows always points “uphill”. The arrows are also perpendicular 

to the contour lines. 

 

 

Fig. 3.    [3D] plots of the function 
2 2

( , )
x y

f x y xe
− −

= using the surf 

function and the contourf function. The vector field f  is given by 

the arrows using the quiver function.            cemDiff02.m 
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Example    D.J Griffiths Introduction to Electrodynamics (Problem 1.12) 

The height of a certain hill [m] is given by 

 ( )2 2
10 2 3 4 18 28 12h x y x y x y= − − − + +  

where +x [km] is the distance to the east and +y [km] is the distance to the 

north of a reference point and h is the height with respect to the reference 

point. 

(A) What is the location of the top of the hill? 

(B) How high is the hill with respect to the reference point? 

(C) How steep is the slope of the hill [m/km] at the position 30 km south and 

20 km east of the reference location? In what direction is the slope 

steepest at this position? How high is the hill at this location? 

We will use Matlab to find the answers to this question. 

For the Matlab mscript we will use unrealistic numbers of 100 km x 100 km for 

the region surrounding the hill and reference point to better understand the 

properties of the gradient operator. 

 

Using Matlab we can explore the answers to this problem in much more detail 

that the traditional pen and paper method. We can write a Matlab mscript to 

compute the height function h and its gradient h . We can plot the results to 

better visualise the problem and to gain a better understanding of the gradient 

operator. To answer the questions, we need to use Matlab logical functions to 

get the numerical results. 
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Matlab tutorial      

You have to be careful interpreting logical functions when using the [2D] arrays 

used for plotting. Before we answer the question above, we will consider a 

short tutorial on arrays and logical functions. 

Consider the function ( , )z x y x y= + . The x and y values are given by the 5 

element arrays  

 [10 20 30 40 50]x =           [11 12 13 15 20]y =  

We want to find the value of z when x = 20 and y = 15 from the [2D] array for z. 

Matlab Command Window – finding the index of an array 

 x = [10 20 30 40 50]         y = [11 12 13 15 20] 

     nx = min(find(x>=20))      →      nx = 2   

 ny = min(find(y>=14))        →       ny = 4 

 [xx yy] = meshgrid(x,y) 

  zz = xx + yy     → 

 

xx = 
    10    20    30    40    50 
    10    20    30    40    50 
    10    20    30    40    50 
    10    20    30    40    50 
    10    20    30    40    50 

yy = 
    11    11    11    11    11 
    12    12    12    12    12 
    13    13    13    13    13 
    15    15    15    15    15 
    20    20    20    20    20 

zz = 
    21    31    41    51    61 
    22    32    42    52    62 
    23    33    43    53    63 
    25    35    45    55    65 
    30    40    50    60    70 

 

The x values are the columns of xx and the rows of yy give the y values. 

We can now find the value of zz when x = 20 and y = 15. The required element 

of the array zz has the column index is nx = 2 and the row index is ny = 4  

 zz(4,2)   →   35                     (x+y = 20+15 = 35) 

 

N.B.   the x index gives column number and the y index gives the row number 

 

 
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The Matlab mscript cemDiff02.m is used for the plots and to find the 

numerical answers for the HILL problem. 

For the plots we need to form a [2D] grid using the meshgrid function 

 [xx, yy] = meshgrid(x,y); 
 

where x and y are the grid point along the X axis and Y axis respectively. The x 

and y variables both go from - 50 km to +50 km.  

xx is the [2D] array for the x positions and yy is the [2D] array for the y 

positions of the grid. 

 xx → columns      yy → rows 

The function for the height is 

f = 10 .* (2.*xx.*yy - 3.*xx.^2 -4.*yy.^2 - 18.*xx + 28.*yy +12);  

 

and the gradient of the function is 

 [delx, dely] = gradient(f,dx,dy); 

 

where delx and dely are the x and y components of the vector for the gradient 

of the function f. 

 

Figure 4a is a [3D] plot of the hill ( , )h x y  and figure 4b shows a [2D] contour 

plot of the hill and the arrows show the gradient h . The vector h  points in 

the direction of the arrow and has a magnitude that is proportional to the 

length of the arrow. At each location of an arrow, the arrow points in the 

direction of the maximum increase in the value of h. This is why all the arrows 

point up the hill towards its apex and are directed at right angles to the 

contour lines.  
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 Fig. 4a.  [3D] plot of the hill ( , )h x y .  The plot was generated using the surf 

function  surf(xx,yy,f); shading interp;         
 

 

 Fig. 4b.   Contour plot of the hill using the contourf function 
         contourf(xx, yy, f, 16); 
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The arrows representing the gradient are plotted using the quiver function 
 
   d = 1:10:N; 
  p1 = xx(d,d); p2 = yy(d,d); p3 = delx(d,d); 

      p4 = dely(d,d); 

   h = quiver(p1, p2, p3, p4);         cemDiff01.m 

 

(A)   The height of the hill occurs when 0h =  or when h is a maximum. 

The ( , )x y  coordinates of the top of the hill can be found from the Matlab 

Command Window 

 [a b] = find(f == max(max(f)))   →   a = 54   b = 49 

 xx(54,49)   →   x = -2 

 yy(54,49)   →   y = 3 

where a is the row index and b the column index for the [2D] arrays. So, the 

top of the hill is located -2 km to the west and 3 km to the north of the 

reference location. 

(B)   The height of the hill is found from its ( , )x y  location 

  f(54,49)   →   f = 720 

The height of the hill is 720 m. 

(C)  We need to find the gradient and the height at the location where 20x = +  

and 30y = − . To do this we need to find the array elements for the height and 

gradient.   Let ˆˆ
x y

h G G i G k = = +  

Matlab Command Window 

 nx = min(find(x>=20))       →     nx = 71 

 ny = min(find(y>=-30))     →     ny = 21 

 x(nx)     →     x = 20 

 y(nx)     →     y = -30 

 xx(ny,nx)     →     xx = 20 

 xy(ny,nx)     →     yy = -30 

 f(ny,nx)     →     h = -71880 
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 delx(ny,nx)     →     Gx = -1980 

 dely(ny,nx)     →     Gy = 3080 

 G = sqrt(Gx^2+Gy^2)     →     G = 36615 

 A = atand(abs(Gy/Gx))     →     A = 57.3 

The location 30 km south and 20 km east of the reference location: 

 Height of hill = 71880 m  lower than the reference point. 

 The slope of the hill = 36615  m/km 

 The direction of steepest ascent = 57.3o  N of W 
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DIVERGENCE  V  

The quantity V  is known as the divergence. The divergence of a vector field 

is a scalar field (divergence of a scalar quantity has no meaning). The vector 

field is specified by a vector V  and the scalar field specified by its divergence 

V .  

Equation (9a) gives the equation for the operator del Cartesian components.  

 (9a) ˆˆ ˆ
x z z

i j k
  

  + +
  

        operator called del 

The divergence is the dot product of the del operator and a vector V  

  ˆˆ ˆ
x y z

V i V jV kV= + +  

 (11a) yx z
VV V

V
x y z

 
 = + +

  
                         Cartesian coordinates 

 (11b) 
( )1 1x z

V V V
V

z

 


   

  
 = + +

  
        cylindrical coordinates 

 (11c) 
( ) ( )

2

2

sin1 1 1

sin sin

r
r V VV

V
r r r r



   

 
 = + +

  
 

                                                                                            spherical coordinates 

 

The divergence tells us how the vector V  field spreads out (diverges) at the 

point in question. You can think of a positive divergence as a source (tap) and a 

negative divergence as a sink (drain). Consider the two-dimensional example of 

water flowing. The vector field given by V  gives the magnitude and direction 

of the water flow at each point in the field.  For example, at a point on the 

water surface you scatter a handful of saw dust, if the saw dust spreads out 

then the divergence is positive, if the saw dust collects together, then the 

divergence is negative.  

 

When 0V =  everywhere, the vector field V  is called solenoidal. 



Topics                                                                                                                                                               25 
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THE CURL OF A VECTOR FUNCTION     V  

The curl of a vector field is written as V . The curl is a vector that results 

from the del operator acting upon a vector like the cross product of two 

vectors 

  ˆˆ ˆ
x y z

V i V jV kV= + +  

 (12a) 

ˆˆ ˆ

/ / /

x y z

i j k

V x x x

V V V

 =          Cartesian coordinates 

Where the curl is nonzero, the vector field of the curl has a sort of rotational 

symmetry. A nonzero curl results from vector field points in one direction and 

increases in another direction. If the vector field points in a given direction and 

increases in that the direction then the curl is zero. Hence, the curl is related to 

how the vector field changes as you move across the field. 

V  is a measure of how much the vector field V  “curls around” the point in 

question. 

 

The divergence provides information about the change in the 

vector field as you move along the field, whereas, the curl does the 

same across the field. 

 

When 0V =  everywhere the vector field is called irrotational. 

 

It is meaningless to talk about the curl of a scalar quantity. 
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Matlab           cemDiff03.m and cemDiff04.m 

 divV = divergence(xx,yy,zz,Vx,Vy,Vz) 

 curlV = curl(xx,yy,zz,Vx,Vy,Vz) 

 

Download the files  cemDiff03.m and cemDiff04.m and examine the code so 

that you understand each step in calculating the divergence and curl and how 

to visualising the vector, divergence and curl fields.  The div and curl are 

calculated at all the points given by the arrays xx, yy and zz for the vector V  

which has components ( ), ,
x y z

V V V . 

 

The range for the [3D] fields is specified by the limits for the x, y and z values 

 

%INPUTS   

=========================================================== 
% Number of grid points (integer) 
  N = 101; 
% Range for X and Y values  [minX maxX minY maxY minZ maxZ] 
  XY = [-1 1 -1 1 -1 1]; 

  

The [3D] grid is formed using the meshgrid function 

  minX  = XY(1);  maxX = XY(2); 
  minY  = XY(3);  maxY = XY(4); 
  minZ  = XY(5);  maxZ = XY(6); 
  x = linspace(minX, maxX,N); 
  y = linspace(minY, maxY,N); 
  z = linspace(minZ, maxZ,N); 
  [xx, yy, zz] = meshgrid(x,y,z); 

 

For the vector field     2ˆ ˆˆ ˆ ˆ ˆ 0
x y z

V i V jV kV i x y j y k= + + = + +  

 Vxx = xx .* yy;  Vyy = yy.^2;  Vzz = 0 .* Vxx;  

The divergence and curl of the vector field V  
  
    divV = divergence(xx, yy, zz, Vxx, Vyy, Vzz); 

  
[curlVxx, curlVyy, curlVzz] = curl(xx, yy, zz, Vxx, Vyy, Vzz); 
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The x, y, and z values for the field must have the same number of elements and 

must be monotonic, but do not need to be uniformly spaced.  

 

  

The mscript  cemDiff03.m  is used to calculate the divergence for [2D] vector 

fields.  In running this Script you only need to enter the number of grid points, 

the range for the x and y values and define the vector function. The default 

vector field is defined by the sinusoidal functions 

 

 
2 2

cos cos
x y

x y

x y
V V

 

 

  
= =     

   

 

where 50
x

 =  and 40
y

 = . The range for the x and y values is from -50 to +50. 

Figure 5 shows the vector field as a set of blue arrows. The length of an arrow 

at a point is proportional to the strength of the vector field at that point and 

the arrow points in the direction of the vector field. The background shading 

shows the scalar field for the divergence. A [3D] plot of the scalar field for the 

divergence is shown in figure 6. 

The arrows are produced using the quiver function 

   p1 = xx(d,d); p2 = yy(d,d); p3 = Vxx(d,d); p4 = Vyy(d,d); 
   h = quiver(p1, p2, p3, p4); 
   set(h,'color',[0 0 1],'linewidth', 2); 

 

and the shading using the pcolor function 

   pcolor(xx,yy,div); 
   shading interp 
   colorbar 

  

The [3D] plot of figure 6 was produced using the surf function 

   surf(xx,yy,div); 
   shading interp; 
   colormap(summer) 

  



Topics                                                                                                                                                               29 
 

By examination of figures 5 and 6 it clearly demonstrates the physical 

significance of the divergence of a vector field: when the arrows are 

converging than the divergence is a negative and when the arrows diverge, the 

divergence is positive.  

 

You can examine numerical values in figures 5 and 6 using the data cursor tool. 

Numerical results can be found in the Command Window, for example, 

   x(20)   →    -31     y(20)   →   -31 

  div(20,20)   →   -0.2403     Vxx(20,20) = -0.7290     Vyy(20,20) →   0.1564 

 

You could also modify the program to include logical function to compute the 

vector field and divergence at any point in the fields.  
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Fig. 5.  The blue arrows show the vector field and the background 
shading the scalar field for the divergence. A converging vector field 
gives a negative divergence and a diverging vector field has a positive 
divergence.   cemDiff03.m 

 

Fig. 6. A [3D] plot of the scalar field for the divergence.  cemDiff03.m 
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 It is easy to modify the mscript cemDiff03.m to investigate the divergence of 

other [2D] vector fields. 

 

The mscript  cemDiff04.m  is used to calculate the divergence and curl for [3D] 

vector fields.  In running this Script you only need to enter the number of grid 

points, the range for the x, y and z values and define the vector function.  

 

 It is more difficult to visualise the fields in [3D] compared to [2D] fields. Figure 

7 shows the [3D] plot for the vector field 2 ˆˆ ˆ 0V i x y j y k= + +  using the 

quiver3 function 

    dx = 1:10:N; dy  = dx;   dz = dx; 
    p1 = xx(dx,dy,dz); p2 = yy(dx,dy,dz); p3 = zz(dx,dy,dz);  

p4 = Vxx(dx,dy,dz); p5 = Vyy(dx,dy,dz); 

p6 = Vzz(dx,dy,dz);  
    h = quiver3(p1, p2, p3, p4, p5, p6); 
    set(h,'color',[0 0 1],'linewidth', 2); 

 

The index variables dx, dy and dz specify the array elements that are plotted as 

arrows for the quiver3 plot. Eleven XY planes are shown in the Z direction. To 

view only single XY plane set the value dz to an integer corresponding to the 

index of the required z value as shown in figure 8. 
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 Fig.7.   [3D] plot of the vector field in eleven XY planes using the 

quiver3 function.                                    cemDiff04.m 

 

Figure 8 displays the vector function in the XY plane z = -1 (z-index dz = 1), the 

divergence and the curl of the vector field 

 2 ˆˆ ˆ 0V i x y j y k= + +  

 divergence      3V y =   

 curl                    ˆV x k = −  

 

The divergence is independent of the x and z values. The value of the 

divergence is proportional to the value of y. When y < 0 then the vector field 

converges and when y > 0, the vector field divergences. The curl is 

independent of the y and z values. The curl is directed in the positive Z 

direction when x >  0 and directed in the – Z direction for x < 0 (right hand 

screw rule in an XY plane: x > 0 arrows (fingers) curl anticlockwise and thumb 

points in +Z direction and for x < 0, arrows (fingers) curl clockwise and the 

thumb points in the – Z direction. Upon careful examination of the plots in 

figure 8, you can verify the behaviour of the vector, divergence and curl fields. 
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Numerical values can be obtained using the Data Cursor in the Figure Windows 

or by typing commands in the Command Window.  

You need to be careful about in the interpretation and indexing (n1,n2,n3) of 

the [3D] arrays in Matlab, for example, 

   xx(9,40,70) → -0.2200   xx(10,40,70)  →  -0.2200   xx(9,40,71) → -0.2200 

  xx(9, 41, 70) →  -0.2000           x(40) → -0.2200 

      the index n2 changes the value of x and not the index n1 

  

 yy(9,40,70) → -0.8400     yy(10,40,70)  →  -0.8200    y(9) = -0.8400 

      the index n1 changes the value of y and not the index n2 

 

 zz(9,40,70) → 0.3800     zz(10,40,71)  →  0.4000   z(70) = 0.3800 

      the index n3 changes the value of z 

 

 Vxx(9,40,70) → 0.1848        ( 0.2200)( 0.8400) 0.1848
x

V x y= = − − =   

 Vyy(9,40,70) → 0.7056        2 2
( 0.8400) 0.7056

y
V y= = − =        

 Vzz(9,40,70) → 0                   0
y

V =    

 divV(9,40,70) →  -2.5200     3 (3)( 0.8400) 2.5200V y = = − = −   

 curlxx(9,40,70 →  0                

 curlyy(9,40,70) → 0                 

 curlzz(9,40,70) → 0.2200     ˆ ˆ0.2200V x k k = − = +   
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Fig. 8.   Divergence and curl of the vector field 2 ˆˆ ˆ 0V i x y j y k= + + .   
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It is a simple matter to change the function for the vector field and to explore 

its divergence and curl. For example, ( ) ( ) ˆˆ ˆsin cos 0V i R j R k = − + +     

   rr = sqrt(xx.^2 + yy.^2); 
   tt = atan2(yy,xx); 
   Vxx = -rr.*sin(tt); 
   Vyy = rr.*cos(tt); 

   Vzz = 0.*zz.^2; 

 

 

 

 

 

 Fig.9.  A vector field and its curl. Right hand screw rule gives the 

direction of the curl.                                    cemDiff04.m 
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We will now consider the slice function in more detail for viewing the 

divergence of the vector field  ( ) ( ) ( )2 2 ˆˆ ˆ 2 2V i y j x y z k y z= + + +   

 

        slice(xx,xx,zz,divV,[x_ slices], [y_ slices], [z_ slices])  

 

The slice function gives a [3D] coloured plot of the function div in the 

perpendicular planes specified by the arrays [x_ slices], [y_ slices], [z_ slices]. 

  

 

 

 Fig. 10.  Vector field and its curl in the XY plane for z = +0.5.   cemDiff04.m 
 

 
 
 
Fig. 11.   [3D] plot of the scalar field 
for the divergence with slices at 
       x = 0, y = 0 and z = -1. 
        

h = 

slice(xx,yy,zz,divV,0,0,-1); 

 

                                   cemDiff04.m 

 



Topics                                                                                                                                                               37 
 

 

 

 Fig. 11.   [3D] plot of the scalar field for the divergence with slices at  

x = 0, y = 0 and z = +0.5. 

 h = slice(xx,yy,zz,divV,0,0,0.5);         cemDiff04.m 
 
 
  

 

The divergence is related to how the vector field changes as you move in the 

direction of the field.  For example, if the vector field points in the x direction 

and increases in the x direction then the divergence is positive, whereas, if the 

field points in the x direction and increases in the y direction the divergence 

would be zero.  
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LAPLACIAN OPERATOR       2
  

 
 

 (9a) ˆˆ ˆ
x z z

i j k
  

  + +
  

        operator called del  

 
 

The gradient of a scalar function f  is a vector function f . 

We can take the divergence of the gradient which gives the scalar function 

called the Laplacian of f 

 

 (13) ( )
2 2 2

2

2 2 2

f f f
f f

x y z

  
  =  = + +

  
            operator called del2 

                                 

The curl of a gradient is always zero 

 (14) ( ) ( ) 0f f  =  =  

 

The divergence of a curl is always zero 

 (15) ( ) 0V  =   

 

The Laplacian of a vector can be expressed as 

 (16) ( ) ( )2
V V V =   −   

where  ( ) ( ) ( )2 2 2 2ˆˆ ˆ
x y z

V i V j V k V =  +  +   
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The Script  cemDiff05.m  can be used to find and the plot the Laplacian of 

either a [2D] scalar field ( )2
,f x y  or the Laplacian of a [3D] vector field 

( )2

x y z
V V V V . You should download the Script and make sure you 

understand and can interpret the code.  

 

cemDiff05.m          sections of the code 

% INPUTS 
% Number of grid points (integer)    N = 101 default value 
           N = 101; 
% Range for X, Y and Z values  [minX maxX minY maxY minZ maxZ] 
           XY = [-50 50 -50 50 -50 50 ]; 
         % XY = [-1 1 -1 1 -1 1]; 
  % flag = 1 for scalar field f or 

 % flag = 2 for vector field V(Vx Vy Vz) 

   
 % Define scalar field f 
          wLx = 50; wLy = 40; 
          kx = 2*pi/wLx; ky = 2*pi/wLy; 
          f = sin(kx.*xx) .* cos(ky.*yy); 

 

 % Laplacian 
          del2f = del2(f,hx,hy)*4; 
 

 

 % Define vector field V 
          Vxx = xx.^2; 
          Vyy = 3 .* xx .* zz.^2; 
          Vzz = -2 .* xx .* zz; 

 
% Calculate Laplacian: X Y Z components / magnitude of vector     
          del2Vx = del2(Vxx,hx,hy,hz)*6; 
          del2Vy = del2(Vyy,hx,hy,hz)*6; 
          del2Vz = del2(Vzz,hx,hy,hz)*6; 
          del2Vmag = sqrt(del2Vx.^2 + del2Vy.^2 + del2Vz.^2); 

 

To calculate the Laplacian in Matlab you use the function del2 

[2D]        del2f = del2(f,hx,hy)*4; 
 

[3D]       del2Vx = del2(Vxx,hx,hy,hz)*6; 
 

where f is the [2D] array for the scalar function; Vxx is the [3D] array for the X 

component of the vector; and hx, hy and hz are the grid spacing in the X, Y, Z 
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directions respectively. NOTE: for [2D] del2 must be multiplied by 4 and for 

[3D] del2 is multiplied by 6. 

 

Figure 12 shows plots of a scalar function ( ),f x y  and the Laplacian of the 

function ( )2
,f x y  using the mscript  cemDiff05.m 

 ( )
2 2

, sin cos
x y

x y
f x y

 

 

  
=     

   

 

 ( )2 2 2
, ( , )

x y
f x y k k f x y = −  

 

 

 Fig. 12.  Surf plots of the function ( ),f x y  and the Laplacian of the 

function  ( )2
,f x y .                       cemDiff05.m 

 

Figure 13 shows the plots for the Laplacian of the vector function V  with 

components 

 2 2
3 2

x y z
V x V x z V x y= = = −  

The Laplacian is given by 

 2 2 2 2ˆˆ ˆ2 6 0 4 36V i x j k V x = + +  = +   
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Fig. 13.   Laplacian of the vector function V  with components 
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       2 2
3 2

x y z
V x V x z V x y= = = −          cemDiff05.m  


