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DOING PHYSICS WITH MATLAB 

 

Ian Cooper 

matlabvisualphysics@gmail.com 

 

A COMPUTATIONAL APPROACH TO  

ELECTROMAGNETIC THEORY 

 

ELECTRIC FIELD AND ELECTRIC POTENTIAL: 

POISSON’S and LAPLACE’S EQUATIONS 

 

DOWNLOAD DIRECTORIES FOR MATLAB SCRIPTS 

 

 Google drive 

 

 GitHub 

 

 

cemLaplace01.m        

 Solution of the [2D] Laplace’s equation using a relaxation 

method.  Can specify the number of iterations or set the 

tolerance by modifying the program. The Script can be used to 

investigate the convergence of the relaxation method. Graphical 

output of the potential and electric field. 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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cemLaplace02.m        

 Solution of the [2D] Laplace’s equation using a relaxation 

method with the termination of the iterative process 

determined by the tolerance set in the INPUT section of the 

code.  Graphical output of the potential and electric field. You 

may need to modify the code for the calculation and the 

graphical outputs for different boundary conditions and inputs. 

 

cemLaplace03.m        

 Solution of the [1D] Laplace’s equation using a relaxation 

method with the termination of the iterative process 

determined by the tolerance set in the INPUT section of the 

code.  A comparison can be made between the numerical 

predictions for the variation in potential with the exact analytical 

results.  

 

cemLaplace04.m        

 Solution of the [2D] Laplace’s equation using a relaxation 

method for two infinite concentric squares 
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The equations of Poisson and Laplace for 

electrostatics 

 

Maxwell’s derivation of Maxwell’s equations marked an incredible 

achievement where a set of equations can completely describe 

charges and electric current. Gauss’s law is one of these equations 

and it describes electric fields in a vacuum with charge density ρ  
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The electric field ( )E r  for a given a stationary charge distribution 
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The electric field ( )E r is a vector quantity, therefore, it is often easier 

to calculate the scalar quantity known as the electrostatic potential 

( )r  from equation 3 rather than calculate the electric field using 

equation 2. 
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The electric field is the gradient of the potential 

 

 (4) E = −  

 

The electrostatic potential   can only be evaluated analytically for 

the simplest charge configurations. In addition, in many electrostatic 

problems, conductors are involved and the charge distribution ( )r is 

not known in advance (only the total charge or potential on each 

conductor is known). 

 

A better approach to determine the electrostatic potential   is to 

start with Poisson's equation 
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and together with the applied boundary conditions it is  equivalent 

to equation 3. 

 

Very often we only want to determine the potential in a region 

where 0 = . In this region Poisson's equation reduces to Laplace's 

equation 
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Laplace’s equation in Cartesian coordinates is written as 
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This is a fundamental equation of electrostatics. It is also an 

important equation in many branches of physics such as magnetism, 

gravitation, thermal physics, fluids, and soap bubbles. 

 

Numerical solutions of Poisson’s equation and Laplace’s 

equation  

We will concentrate only on numerical solutions of Poisson’s 

equation and Laplace’s equation. As an introduction, we will only 

consider [1D] and [2D] cases. The methods discussed can easily be 

extended to [3D] situations. 

 

The central difference approximation to the second derivative of the 

function ( )y x  is 

 (8) 
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The [2D] space is divided into a grid of Nx x Ny points with grid 

spacing 
x

h x   in the X direction and y
h y   in the Y direction. 
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For computational purposes, it is best to express all quantities 

defined at the grid positions in terms of grid indices 
x

n  and 
y

n  where 

  1,2,3, ,
x x

n N=    and   1,2,3, ,
y y

n N=  

 

Using the central difference approximation of equation 8, we can 

approximate the value of the potential ( ),
x y

n n  in terms of the 

potentials at the surrounding grid points from Poisson’s equation 
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Rearranging this expression, we get 
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The potential at each point is a weighted average of the values of the 

potential at the surrounding points. So, if we start with known fixed 

values of the potential on the boundaries, we can repeatedly 

compute the interior values until we get a convergence in their 
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values. This is known as a relaxation method to solve boundary 

value problems. 

 

When using the relaxation method, we mostly specified the 

boundary conditions and set all values of the potential to zero (or 

best guess value) at each interior grid. We then repeatedly update all 

interior values of the potential by the average of the latest 

neighbouring grid point values.  We also have to test the 

convergence for the values for the potential. There are many ways in 

which this can be done. In the Scripts for solving Poisson’s equation 

or Laplace’s equation, we will test the convergence by continuing the 

iterative process while the difference in the sums of the square of 

the potential at each grid point for the current and previous 

iterations is greater than specified tolerance. 
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Section of the Script for the [1D] Laplace’s equation showing the 

iterative process 

     tol = 10; 

% dSum Difference in sum of squares  /  n  number of 

iterations 

    dSum = 100; n = 0; 

      while dSum > tol 

         sum1 =  sum(sum(V.^2)); 

         for nx = 2: Nx-1 

            V(nx) = 0.5*(V(nx+1) + V(nx-1)); 

          end 

             sum2 =  sum(sum(V.^2)); 

          dSum = abs(sum2 - sum1); 

           n = n+1; 

       end 

 

 

From now on the electrostatic potential is given by the letter V 

rather than the Greek letter  .  
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Example 1           cemLaplace03.m 

Solve the [1D] Laplace’s equation for the potential ( )V x  with the 

boundary conditions  

 0 m 100 Vx V= =      and     5.0 m 0 Vx V= =   

 

and calculate the electric field in this region 

 

 

 

Download the mscript cemLaplace03.m. Review the code so that you 

understand each line and how Laplace’s equation was solved using 

the relaxation method. 

 

The potential is given by 

 
( 1) ( 1)

( )
2

x x
x

V n V n
V n

+ + −
=  

where   2,3,4, , 1 (1) 100 ( ) 0
x x x

n N V V N= − = =  

 

The exact solution of Laplace’s equation with the given boundary 

conditions is 

 ( ) 20 100V x x= − +   

The Script cemLaplace03.m is used to solve this problem. The exact 

solution can be compared with the solution using the relaxation 

method as shown in figure 1. Figure 1 clearly shows that the smaller 
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the value of the tolerance, the better the agreement between the 

exact solution and the solution using the relaxation method. For a 

tolerance of tol = 1, the difference between the exact solution and 

approximate solution is about 0.1%. You always need to be careful in 

using approximation methods to ensure that the computed values 

are accurate. You always should check that you have used a smaller 

enough grid spacing and/or used a smaller enough tolerance.  

 

Fig. 1.  Plot showing the exact solution (red) and solutions 

using the relaxation method (blue) with tolerances of 100, 

75, 50, 10 and 1.  The number of iterations for each 

tolerance are 0, 1415, 1934, 3692 and 6049 respectively. The 

initial values assigned to the potentials at each grid point is 

shown when tol = 100 (number of iterations = 0). There is 

very good agreement between the exact solution and the 

relaxation method solution when the tol is less than 1. 

Number of grid points is Nx = 101.  The computation time is 

less than 1 second. cemLaplace03.m 
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The potential at any interior point is a weighted average of the 

potential at surrounding points. As a consequence, there can be no 

interior minima or maxima: the extreme values of the potential must 

occur only at the boundaries. In this [1D] example, the value at an 

interior grid point is the average of the two values of the potential at 

the two adjacent grid points, therefore, its value can’t be greater 

than or less than the value at either adjacent grid point. This fact is 

true for the [2D] and [3D] solutions of Laplace’s equation.  

 

The electric field is given by E V= − . The electric field is uniform and 

points in the +X direction and its exact value is 20 V.m-1. The 

numerical estimate of the electric field is calculated from the 

potential using the function gradient 

 E = -gradient(V,hx); 

 

Figure 2 shows the potential and electric field calculated by the 

relaxation method to solve Laplace’s equation. 
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Fig.2.  The potential and electric field calculated by solving 

Laplace’s equation by the relaxation method.                     

cemLaplace03.m 

 

 

The solution to Laplace’s equation in a volume is uniquely 

determined if the potential V is specified on the boundary surface S 

of the volume.  
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Example 2         cemLaplace02.m 

There are two parallel semi-infinite metal plates in the XZ plane. One 

plate is located at 1y = −  m and extends from 0x =  m  to 4x =  m and 

the other plate is located at  1y = +  m and extends from 0x =  m to 

4x =  m.  At 0x =  m, an insulated strip connects the two semi-infinite 

plates and is held at a constant potential 100 V. Find the potential 

and the electric field in the region bounded by the plates. 

 

The configuration is independent of z, so this reduces to a [2D] 

problem. We can find the potential in the interior region by solving 

Laplace’s equation.  The region of interest is divided into a 

rectangular grid of x y
N N  grid points. The potential at all grid points 

is set to 0. Then the boundary condition, 100 VV =  is applied to all 

grid points with 0y = . Then the iterative process updates the 

potential at all interior grid points until the values of the potential 

satisfy the tolerance condition. Download and inspect the mscript 

cemLaplace02.m. Make sure you understand each line of the code 

and how the Laplace’s equation is solved using the relaxation 

method. 

 

Figures 3 gives a plot of the potential and shows that the potential V 

has no local maximum or minima; all extremes are on the boundary. 

The solution of Laplace’s equation is the most featureless function 
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possible, consistent with the boundary conditions: no hills, no 

valleys, just the smoothest surface. Figure 4 shows the variation in 

potential V as a function of x for different values of y. For each y 

value, the potential monotonically decreases from its maximum 

value at the boundary 0x =  to zero at 4x =  m. Figure 3 to 6 were 

produced using the mscript cemLaplace02.m 

 

 

 

 Fig. 3.   The potential V in the region between the plates. 
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Fig. 4.   The profiles of the potential V as functions of x for 

different y values. 

 

The electric field E  is found by finding the gradient of the potential V 

  E V= −  

The Matlab code for the computing the components and magnitude 

of the electric field is 

 % electric field   

      [Exx, Eyy] = gradient(V,hx,hy); 

       Exx = -Exx;  Eyy = -Eyy;  

       E = sqrt(Exx.^2 + Eyy.^2); 
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Figure 5 shows a [3D] plot of the magnitude of the electric field E  as 

a function of positions x and y.  The electric field rapidly approaches 

zero from the two corner positions. The direction of the electric field 

is shown in the quiver plot in figure 6. Since the electric field drop to 

zero from its extreme values very rapidly away from the corner 

positions, it is necessary to use the zoom function in the Figure 

Window to clearly see the direction of the electric field. 

 

  

 Fig. 5.   Magnitude of the electric field. 
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Fig. 6. The quiver command and streamline command are 

used to display the electric field. The zoom tool is used to 

show the direction of the electric field in a small region 

centred upon x = 0.50 m and y = 0.85 m). 
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Activity     cemLaplace01.m 

Use the mscript cemLaplace01.m to investigate the relaxation 

method to solve Laplace’s equation in more detail. Determine the 

potential ( , )V x y  inside a rectangle of dimensions 2.0 m x 1.0 m. Set 

all the boundaries to 10.0 V and all interior grid points to 0 V. Before 

you do the computation, guess the exact forms of the potential and 

the electric field.  Use the values 7
x

N = and 7
y

N = for the number of 

grid points.  You can view the number of iterations and the potential 

in the Command Window after running the program. How many 

iterations are required to achieve an accuracy of better than 1%? 

How does the number of iterations change if the number of grid 

points 
x

N  and 
x

N  are increased?  

 

 Table 1. The potential after 5 iterations 

  

 

  

10.0 10.0 10.0 10.0 10.0 10.0 10.0

10.0 8.5 7.8 7.6 7.8 8.7 10.0

10.0 7.6 6.5 6.2 6.6 8.0 10.0

10.0 7.6 6.4 6.0 6.5 8.1 10.0

10.0 8.2 7.2 7.0 7.4 8.6 10.0

10.0 9.1 8.6 8.5 8.7 9.3 10.0

10.0 10.0 10.0 10.0 10.0 10.0 10.0
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Example 3        cemLaplace02.m 

 

 

 

 

 

 
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Example 4        cemLaplace02.m 

 

 

 

 

 

 
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Example 5        cemLaplace02.m  

 

Consider a [2D] charge free 

region of space with linearly 

increasing potentials on its 

boundaries 

 

You need to modify the mscript for these boundary conditions and 

uncomment the code in the SETUP section which defines the linearly 

increasing potentials 

 

% linearly increasing potentials on boundaries 

%        m1 = 20/maxY; m2 = 20/maxX; m3 = 

30/maxY; m4 = 10/maxX; 

%        b1 = 0;       b2 = 20;      b3 = 10;   

b4 = 0; 

%         

%        V(:,1)   = m1 .* y + b1; 

%        V(:,end) = m3 .* y + b3; 

%        V(end,:)  = m2 .* x + b2; 

%        V(1,:) = m4 .* x + b4; 

 

 
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