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A COMPUTATIONAL APPROACH TO  

ELECTROMAGNETIC THEORY 

 

ELECTRIC FIELD AND ELECTRIC POTENTIAL 

INFINITE CONCENTRIC SQUARE CONDUCTORS 

COAXIAL TRANSMISSION LINE 

 

DOWNLOAD DIRECTORIES FOR MATLAB SCRIPTS 

 

 Google drive 

 

 GitHub 

 

cemLaplace04.m        

 Solution of the [2D] Laplace’s equation using a relaxation method for two infinite 

concentric squares 

 

simpson1d.m        

 Function for calculating the integral of a [1D] function from a to b. The number of 

elements for the function must be an odd number. 

 For example, to calculate the charge of the inner square 

  Q2 = -4*eps0*simpson1d(Ey2',minY2,maxY2); 

 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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Solving the [2D] Laplace’s equation to calculate the 

potential, electric field, capacitance and the charge 

distribution on the inner square for the system of two 

concentric square conductors of infinite length. Since 

the conductors are of infinite length, the potential and 

electric field are independent of the Z coordinate. 

Outer square 

( )1
10 V     5 5 5 5V x y= −   −    

Inner square   

( )2
5 V      1 1 1 1V x y= −   −     

cemLaplace04.m 

 

 

 Fig. 1.   Surf plot of the XY variation in potential in the region 

between the two concentric squares 

 

 Fig. 2.  Potential profiles in the X direction for different Y values. 
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 Fig.3   Contourf plot of the potential. 

 

 

 Fig. 4.  Surf plot of the magnitude of the electric field. There are 

large spikes in the electric field at the corners of the inner square. 
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 Fig. 5.  Contourf plot of the magnitude of the electric field. Observe 

the peaks in the electric field at the corners of the inner square. 

 

 

Fig. 6.   Quiver plot of the electric field. The electric field has no 

spatial dimensions. An arrow in the plot shows the direction of the 

electrical force that would act on a positive test charge placed at that 

point (base of arrow). The length of the arrow is proportional to the 

magnitude of the force acting on the positive test charge at that 

point. 
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 Fig. 7.  Electric field lines are added to the quiver plot shown in 

figure 6 using the streamline command. Upon examination of 

figures 6 and 7, you can conclude that electric field lines are at right 

angles to the surface of the two square conductors. The streamlines 

drawn are not perfect, for example, the streamlines extend into the 

inner square slightly and not all streamlines are perpendicular to 

the conductors, but still the plots are “pretty good”. The electric 

field inside the inner square is zero. 
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The code for producing figure 7 indicates how to use of the quiver and 

streamline commands. 

  
 figure(3) 
     set(gcf,'units','normalized','position',[0.65 0.1 0.3 0.32]); 

      
     hold on 
     sx = -5; 
     for sy = -5:5 
         h = streamline(xx,yy,Exx,Eyy,sx,sy); 
         set(h,'linewidth',1,'color',[1 0 1]); 
     end 

      
     sx = 5; 
     for sy = -5:5 
         h = streamline(xx,yy,Exx,Eyy,sx,sy); 
         set(h,'linewidth',1,'color',[1 0 1]); 
     end 

      
     sy = -5; 
     for sx = -5:5 
         h = streamline(xx,yy,Exx,Eyy,sx,sy); 
         set(h,'linewidth',1,'color',[1 0 1]); 
     end 

      
     sy = 5; 
     for sx = -5:5 
         h = streamline(xx,yy,Exx,Eyy,sx,sy); 
         set(h,'linewidth',1,'color',[1 0 1]); 
     end 

      
     index1 = 1 : 10: Nx; index2 = 1 : 10 : Ny; 
     p1 = xx(index1, index2); p2 = yy(index1, index2); 
     p3 = Exx(index1, index2); p4 = Eyy(index1, index2);  
     h = quiver(p1,p2,p3,p4); 
     set(h,'color',[0 0 1],'linewidth',2) 
     xlabel('x  [m]'); ylabel('y  [m]'); 

      
     title('electric field','fontweight','normal'); 
     hold on 
     h = rectangle('Position',[minX2,minY2,2*maxX2,2*maxY2]'); 
     set(h,'Edgecolor',[1 0 0],'lineWidth',2); 
     h = rectangle('Position',[minX1,minY1,2*maxX1,2*maxY1]'); 
     set(h,'Edgecolor',[1 0 0],'linewidth',1); 
     axis equal 
     set(gca,'xLim',[-0.5 + minX1, 0.5 + maxX1]); 
     set(gca,'yLim',[-0.5 + minY1, 0.5 + maxY1]); 
     set(gca,'xTick',minX1:maxX1); 
     set(gca,'yTick',minY1:maxY1); 
     set(gca,'fontsize',14) 
     box on 
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We can use Gauss’s Law to determine the charge distribution on the two 

square conductors.  

 (1) 
0enclosed

A

q E dA=   

The surface integral can be approximated by a summation over small area 

elements where dA y z    and we can let 1z = . From the symmetry 

properties of a square with 4 sides and using the fact that the electric field is 

perpendicular to a conductive surface, we can conclude 

 (2) 4
enclosed x

surface

q E y=   

The capacitance C is defined as the ratio of charge Q stored on the conductors 

to the potential difference V between the conductors 

 (3)   
Q

C
V

=


 

In our concentric squares system, 

the charge on the outer square 

conductor is 
1

Q and the charge on 

the inner square conductor is 
2

Q  

where 
1 2

Q Q . However, the 

charges arrange themselves on the 

surfaces on the conductor so that a 

charge Q  exists on the inner surface 

of the larger conductor and on the 

outer surface of the smaller conductor 

 (4) 1 2

2

Q Q
Q

−
=  

The charge given by equation 4, is the charge used in equation 3 to determine 

the capacitance. 

 

From equation (2), we can estimate the variation in the charge density along 

one side of a square, as shown in figure 8 for the inner square. 
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 Fig. 8.   Variation of the charge density along one side of the inner 

square. The charges accumulate towards the corners of the square 

and this is the reason where the electric field surrounding the inner 

square is greatest at the corners.  

            Inner square ( )1 1 1 1x y−   −     

 

Matlab simulation 

The parameters to produce the above figures and the results of the 

calculations are given below 

 grid points (must be ODD numbers) 101 101
x y

N N= =  

 length of a side of outer square     
1

10 mL =  

 length of a side of inner square      
2

2 mL =  

 tolerance     0.01tol =  

 execution time     60 sect  

 charge on outer conducting square     -10 -1

1
1.8357 10 C.mQ =   

 charge on inner conducting square     -11 -1

2
8.4168 10 C.mQ = −   

 charge for capacitance     -11 -1
4.9700 10 C.mQ =   

 capacitance     -11 -1
0.9940 10 F.mCap =   
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For comparison purposes: the capacitance of two infinite concentric cylinders 

is given by 
( )

0
2

ln /
C

b a

 
=  where we will take  

1
4 2L b=  and  

2
4 2L a=  

  capacitance (cylinders)     -11 -1
3.4566 10 F.mC =    (same magnitude as Cap) 

 

If the ratio /b a  for the concentric cylinders is increased then the capacitance 

C decrease and if the ratio is decreased then the capacitance is increased. You 

can check this dependence. When the length of a side of the outer conductor is 

increased, the capacitance does decrease. Try it! Vary the dimensions of the 

squares. Also, the capacitance of the system is independent upon the potential 

difference between the conductors. Change the potentials, and confirm the 

prediction.   

 

The potential can be calculated from the electric field by evaluating the line 

integral 

 (5) 
2

1

r

r
V E dL =   

The integral can be evaluated numerically using the Simpson’s rule using the 

function simpson1d.m. 

 

Integrating along a line in the X direction the potential difference between the 

conductors was computed to be 

 
21

4.9319 VV =    the exact value is  
21

5.0000 VV =  (~ 1% difference)   
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Sections of the mscript code 

• Setting the boundary conditions 

 % indices for inner square 
       ind1 = find(x >= minX2,1); 
       ind2 = find(x >= maxX2,1); 
       iS = ind1:ind2; 

    
    % boundary values 
       V = zeros(Ny,Nx); 
       V(:,1)   = V1;   V(:,end) = V1; 
       V(1,:)   = V1;   V(end,:) = V1;  V(iS,iS) = V2;    

 

• Solving Laplace’s equation 
% dSum difference in sum of squares  /  n  number of iterations 
    dSum = 1; n = 0; 

  
while  dSum > tol 
    sum1 =  sum(sum(V.^2)); 

         
    for ny = 2: Ny-1 
            V(iS,iS) = V2; 
        for nx = 2: Nx-1 
            V(ny,nx) = Ky * (V(ny,nx+1) + V(ny,nx-1)) + Kx * (V(ny+1,nx) + 

V(ny-1,nx)); 
            V(iS,iS) = V2; 
        end 

         
    end 
   V(iS,iS) = V2; 
   sum2 =  sum(sum(V.^2)); 
   dSum = abs(sum2 - sum1); 
   n = n+1; 
end 

 

• Electric field  /  Potential  /  Line integral 

   [Exx, Eyy] = gradient(V,hx,hy); 
   Exx = -Exx;  Eyy = -Eyy;  
   E = sqrt(Exx.^2 + Eyy.^2); 
   Ey1 = Exx(:,1); 
   Ey2 = Exx(iS,ind1); 
   Ex21 = Exx(ind1,1:ind1);  
   V21 = simpson1d(Ex21,minX1,minX2); 
 

 

• Charge Q  / capacitance per unit length / charge density 
 

% charge Q / capacitance per unit length /  
   Q2 = -4*eps0*simpson1d(Ey2',minY2,maxY2); 
   Q1 =  4*eps0*simpson1d(Ey1',minY1,maxY1); 
   Q = abs(abs(Q2)-abs(Q1))/2; 
   Cap = Q/(V1-V2); 
 

%  charge density one side of inner square 
     sigma = Ey2;  
% theoretical capacitance of two concentric cylinders 
     b = 8*maxX1/(2*pi); a = 8*maxX2/(2*pi); 
     CapT = 2*pi*eps0/log(b/a); 


