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Arguably the most broad-based evolution in the world view of 

science in the twentieth century will be associated with chaotic 

dynamics.  

    S.N. Rasband Chaotic Dynamics of nonlinear Systems. 

 

 

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 

 

chaos10.m 

The script is used to find the solutions of a pair of coupled first 

order differential equation with constant real coefficients. The 

trajectories for a set of initial conditions are plotted in a phase 

plane. The vector field of the state variables and the nullclines 

are also shown in the plot. For different simulations, most of 

the parameters are changed in the INPUT section of the script.   
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Phase plane analysis is one of the most important techniques 

for studying the behaviour of nonlinear systems, since there are 

usually no analytical solutions. 

 

In this document, we will consider the solutions to a pair of 

coupled first order differential equations with real and constant 

coefficients for the state variables  1 2( ), ( )x t x t  of the general 

form 

 (1) 1 11 1 12 2 13

2 21 1 22 2 23

/

/

dx dt k x k x k

dx dt k x k x k

  

  
  

 

If   13 230 0k k   then we have a homogeneous system, 

otherwise an inhomogeneous system.  

 

The first step is to find an equilibrium solution to the problem 

when 

  1 2/ 0 / 0dx dt dx dt    

 

An equilibrium solution corresponds to a fixed point called a 

critical point or a stationary point. 
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For a linear system, the solutions to find the equilibrium point 

 1 2,c cx x  can be found by writing the equations in matrix form 

 

 
11 1 12 2 13

21 1 22 2 23

c c

c c

k x k x k

k x k x k

  

  
  

 1 1311 12
c c

21 22 2 23

K x  = k K= x k
c

c

x kk k

k k x k

    
     

     
  

 

The values  1 2,c cx x  are computed with the Matlab statement  

 cx K \ k  

We now make the translations 

 1 1 1 2 2 2c cz x x z x x     

to give the homogeneous linear system  

  (2A) 1 11 1 12 2

2 21 1 22 2

/

/

dz dt k z k z

dz dt k z k z

 

 
 

or in matrix form 

 (2B)   1 11 12

21 222

z K z z K=
z k kd

k kzdt

   
     

  
  

 

The critical point for the homogeneous linear system is the 

Origin (0, 0) if det(K) ≠ 0. If det(K) = 0, then there are infinitely 

many solutions. We will only consider the case where  

det(K) ≠ 0. Since det(K) ≠ 0, both eigenvalues of the matrix K 

are non-zero.  
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The two systems (before and after the translations) have the 

same coefficient matrix K. Hence, their respective critical points 

will also have identical type and stability classification but with 

the critical point given by 

 1 1 1 2 2 2c cx z x x z x    .  

 

  

A solution to equation 2 can be expressed in terms of the two 

2x2 matrices for the eigenfunctions a and eigenvalues b of the 

matrix K. The solutions can be written as 

 

 (2A) 
   

   

11 22

11 22

1 1 11 2 12

2 1 21 2 22

( )

( )

b t b t

b t b t

x t C a e C a e

x t C a e C a e

 

 
  

 

where C1 and C2 are determined by the initial conditions 

 1 2( 0), ( 0)x t x t  .  

 

The final solution is expressed as 

 

 (2B) 
11 22

11 22

1 11 12

2 21 22

( )

( )

b t b t

b t b t

x t c e c e

x t c e c e

 

 
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The eigenfunctions a and eigenvalues b are computed using the 

function eig 

  [a, b] = eig(K) 

 

The matrices for the coefficients C and c are computed by the 

Matlab statements 

    % Initial conditions     
     xI = [x1I(c);x2I(c)]; 

  
   % C coefficients 
     C = a\xI; 

  
   % c coefficients 
     cc = zeros(2,2); 
     cc(:,1) = a(:,1)*C(1); 
     cc(:,2) = a(:,2)*C(2); 
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Example 1 

  

1 1 2

2 2

1 2

/

/ 4

0 ( 0) 9 ( 0) 9

dx dt x x

dx dt x

t x t x t

 

 

     

 

 

Command Window Output 

   D.E. coefficients k11 k12 k13 / k21 k23 k23 

               -1.00    1.00   0.00    
                 0.00   -4.00   0.00    
   

  Eigenvalues b =  

                -1     0 
                 0    -4 
   

 Eigenfunction a =  

                1.0000   -0.3162 
                0              0.9487 
 
Initial conditions: t =0 corresponds to array index 1. 
 
   x1(1) = 9   x2(1) = -9    

   cc =  

               6.0000    3.0000 
                0            -9.0000 
 

Therefore, the solution is 

                

4
1

4
2

( ) 6 3

( ) 9

t t

t

x t e e

x t e

 



 

 
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Graphical output: 

 

 

The upper diagram shows two trajectories starting from the 
initial locations (x1(1) = 9, x2(1) =+9 and x2(1) = -9). The 
solutions converge to the fixed equilibrium (critical) point at 
the Origin (0, 0). The lower diagram shows the time evolution 
of the state variables for the initial condition x1(1) = 0 and 
x2(1) = -9. 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm


Doing Physics with Matlab      8 

Our starting point to look at the dynamics of a system is to set 

up a phase plane. A phase plane plot for a two-state variable 

system consists of curves of one state variable versus the other 

state variable  1 2( ), ( )x t x t , where each curve called a 

trajectory is based on a different initial condition. The graphical 

representation of the solutions is often referred to as a phase 

portrait. The phase portrait is a graphical tool to visualize how 

the solutions of a given system of differential equations would 

behave in the long run.   

 

We can set up a vector field which is constructed by assigning 

the following vector to each point on the x1-x2 plane: 

  
1

2

/

/

dx dt

dx dt

 
 
 

  

 

The slope of these vectors is 

  2
2 1

1

/
/

/

dx dt
m dx dx

dx dt
    

 

Thus, the vector field can be computed without knowing the 

solutions 1x  and 2x . This allows you to visualize the solution of 

the system for any given initial condition  1 2( 0), ( 0)x t x t   as 

the vector field must be tangential to any solutions at all point 

of the system.  
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Next we can plot the 1x  and 2x  nullclines of the phase plane 

plot, where the nullclines are the straight lines determined by: 

 1x -nullcline      1 / 0dx dt   

        2x -nullcline      2 / 0dx dt   

 

Theses nullclines lines show the points where 1x is independent 

of time t  and the points where 2x  is also no longer changing 

with time. The interscetion of the two nullclines represent 

steady-state values of fixed points of the system. 

 

Fig. 1.   Vector field (quiver function) and x1 and x2 

nullclines. The arrows point in the direction of increasing 

time t. The critical point is at the intersection of the two 

nullclines. 
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The coupled differential equations (equation 1) are specified by 

the matrix K and the solution for the two state variables 

depends upon the eigenvalues b and eigenfunctions a of the 

matrix K.  The nature of the eigenvalues (real / imaginary) 

determine the type of equilibrium for the system. If the 

eigenvalue is greater than zero, then the term increases 

exponentially with time and if less than zero, the term 

decreases exponentially with time, since a solution is of the 

form:         1 2
1 2( )

b b
x t c e t c e t   

 where b1 and b2 are the eigenvalues. 

 
0

0 0

bt

bt

b t e

b t e

  

  
  

 

The larger the eigenvalue, the faster the response and the 

smaller the value of the eigenvalue, the slower the response. 

Due to the two-dimensional nature of the parametric curves, 

we will classify the type of those critical points by the shape 

formed of the trajectories about the critical point. 

For distinct real eigenvalues, the trajectories either move away 

from the critical point to an infinite-distant away (when the 

eigenvalues are both positive) or move toward from infinite-

distant out and eventually converge to the critical point (when 

eigenvalues are both negative). This type of critical point is 

called a node. It is asymptotically stable if eigenvalues are both 

negative, unstable if both are positive values.   
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Case 1: real eigenvalues of opposite sign 

There is a saddle point at the intersection of the two nullclines. 

The equilibrium point is unstable. 

 

Case 2: real eigenvalues and both negative 

The stable fixed-equilibrium point is called a nodal sink. 

 

Case 3: real eigenvalues and both positive 

The unstable fixed-equilibrium point is called a nodal source. 

 

Case 4: imaginary eigenvalues and negative real parts 

The stable fixed-equilibrium point is called a spiral sink. 

 

Case 5: imaginary eigenvalues and positive real parts 

The unstable fixed-equilibrium point is called a spiral source. 

 

Case 6: purely imaginary eigenvalues 

This gives a generic equilibrium called a center. 

 

 

You can investigate the different types of solutions by running 

the script chaos10.m for each of the following cases.  
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Case 1: real eigenvalues of opposite sign 

The unstable equilibrium point called a saddle. 

 

D.E. coefficients k11 k12 k13 / k21 k23 k23 
   1.00   1.00   0.00    
   4.00   1.00   0.00    
   
Eigenvalues b =  
    3.0000         0 
         0   -1.0000 
 
Eigenfunction a =  
    0.4472   -0.4472 
    0.8944    0.8944 

 

 

If the initial condition for 2 ( 0) 0x t   , then the trajectory 

reaches the Origin. Otherwise, the solutions will always leave 

the origin. Hence, the point (0,0) is an unstable equilibrium 

point for the system and is called a saddle point.  

11 1 23 0b t x x        
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Fig. 1.1.   The trajectories are always directed away from 

the Origin (0, 0). The Origin (0, 0) is an unstable equilibrium 

point called a saddle point. 
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D.E. coefficients k11 k12 k13 / k21 k23 k23 
   -1.00   0.00   0.00    
   0.00   4.00   0.00    
   
Eigenvalues b =  
    -1     0 
     0     4 
 
Eigenfunction a =  
     1     0 
     0     1 
 
Initial conditions: t = 0   x1(1) = 10   x2(1) = -0.2 
     cc = 
           10.0000         0 
                0         -0.2000 
 
 

1 1 1

4
2 2 2

( ) (0) 0

( ) (0)

t

t

x t x e t x

x t x e t x


  

  
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Fig. 1.2.   The trajectories are always directed away from 

the Origin (0, 0). The Origin (0, 0) is an unstable equilibrium 

point called a saddle point. 
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D.E. coefficients k11 k12 k13 / k21 k23 k23 
   2.00   1.00   0.00    
   2.00   -1.00   0.00    
   
Eigenvalues b =  
              2.5616         0 
                    0   -1.5616 
 
Eigenfunction a =  
               0.8719   -0.2703 
               0.4896    0.9628 

 
Initial conditions: t = 0   x1(1) = 10   x2(1) = - 9 
     cc = 
             6.4552    3.5448 
             3.6249  -12.6249 
 
 
    1 2t x x    

 

The trajectories given by the eigenvectors of the negative 

eigenvalue initially start at infinite-distant away, move 

toward and eventually converge at the critical point. The 

trajectories with the eigenvector of the positive eigenvalue 

move in exactly the opposite way: start at the critical point 

then diverge to infinite-distant out. Every other trajectory starts 

at infinite-distant away, moves toward but never converges to 

the critical point, before changing direction and moves back to 

infinite-distant away. All the while it would roughly follow the 

two sets of eigenvectors. This type of critical point is always 

unstable and is called a saddle point.  
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Fig. 1.3.   The trajectories are always directed away from the 
Origin (0, 0). The Origin (0, 0) is an unstable equilibrium point 
called a saddle point. 
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Case 2: real eigenvalues and both negative 

The stable fixed-equilibrium point is called a node sink. 

 
D.E. coefficients k11 k12 k13 / k21 k23 k23 
   -1.00   0.00   0.00    
   0.00   -4.00   0.00    
   
Eigenvalues b =  
    -4     0 
     0    -1 
 
Eigenfunction a =  
     0     1 
     1     0 
 
                       1 20 0t x x     
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Fig. 2.1.   The solutions converge to the Origin (0, 0) for all 

initial conditions. The point (0,0) is a stable equilibrium 

point for the system and is called a stable node or nodal 

sink. 
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D.E. coefficients k11 k12 k13 / k21 k23 k23 
   -2.00   0.00   0.00    
   1.00   -4.00   0.00    
   
Eigenvalues b =  
    -4     0 
     0    -2 
 
Eigenfunction a =  
         0    0.8944 
    1.0000    0.4472 
 

1 20 0t x x    
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Fig. 2.2.   The solutions converge to the Origin (0, 0) for all 

initial conditions. The point (0,0) is a stable equilibrium 

point for the system and is called a stable node or nodal 

sink. 
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Nonhomogeneous Linear Systems with Constant Coefficients 
 
D.E. coefficients k11 k12 k13 / k21 k23 k23 
   1.00   -2.00   -1.00    
   2.00   -3.00   -3.00    
   
Eigenvalues b =  
   -1.0000         0 
         0   -1.0000 
 
Eigenfunction a =  
    0.7071    0.7071 
    0.7071    0.7071 
 
The critical point is at (3, 1). It has repeated eigenvalues equal 

to -1. Hence, there is only one linearly independent 

eigenvector. Therefore, the critical point at (3, 1) is an 

asymptotically stable improper node.  
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Fig. 2.3   Asymptotically stable improper node. The critical 

point is (3,1).   
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Case 3: real eigenvalues and both positive 

The unstable equilibrium point is called a node source. 

D.E. coefficients k11 k12 k13 / k21 k23 k23 
   3.00   1.00   0.00    
   1.00   3.00   0.00    
   
Eigenvalues b =  
     2     0 
     0     4 
 
Eigenfunction a =  
   -0.7071    0.7071 
    0.7071    0.7071 
 

                     1 2t x x    
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Fig. 3.1.   The solutions diverge to the Origin (0, 0) for all 

initial conditions. The point (0, 0) is an unstable equilibrium 

point for the system and is called a nodal source. 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm


Doing Physics with Matlab      26 

Case 4: Imaginary eigenvalues with negative Real parts 

The stable equilibrium point is called a spiral sink. 

  

D.E. coefficients k11 k12 k13 / k21 k23 k23 
   -0.20   1.00   0.00    
   -1.00   -0.20   0.00    
   
Eigenvalues b =  
  -0.2000 + 1.0000i     0.0000 + 0.0000i 
   0.0000 + 0.0000i    -0.2000 - 1.0000i 
 
Eigenfunction a =  
   0.7071 + 0.0000i     0.7071 + 0.0000i 
   0.0000 + 0.7071i     0.0000 - 0.7071i 
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Fig. 4.1.   Spiral sink. The solutions for the state variables 

oscillates as they decay towards zero. 
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D.E. coefficients k11 k12 k13 / k21 k23 k23 

   4.00   -3.00   0.00    

   15.00   -8.00   0.00    

   

Eigenvalues b =  

  -2.0000 + 3.0000i     0.0000 + 0.0000i 

   0.0000 + 0.0000i    -2.0000 - 3.0000i 

 

Eigenfunction a =  

   0.3651 + 0.1826i     0.3651 - 0.1826i 

   0.9129 + 0.0000i     0.9129 + 0.0000i 
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Fig. 4.2.   Spiral sink. The solutions for the state variables 

oscillates as they decay towards zero. 
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Case 5: Imaginary eigenvalues with positive Real parts 

The unstable equilibrium point is called a spiral source 

D.E. coefficients k11 k12 k13 / k21 k23 k23 
   2.00   -1.00   0.00    
   2.00   0.00   0.00    
   
Eigenvalues b =  
   1.0000 + 1.0000i   0.0000 + 0.0000i 
   0.0000 + 0.0000i   1.0000 - 1.0000i 
 
Eigenfunction a =  
   0.4082 + 0.4082i   0.4082 - 0.4082i 
   0.8165 + 0.0000i   0.8165 + 0.0000i 
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 Fig. 5.1.   An unstable spiral source. 
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D.E. coefficients k11 k12 k13 / k21 k23 k23 
   2.00   -1.00   0.00    
   2.00   0.00   0.00    
   
Eigenvalues b =  
   1.0000 + 1.0000i   0.0000 + 0.0000i 
   0.0000 + 0.0000i   1.0000 - 1.0000i 
 
Eigenfunction a =  
   0.4082 + 0.4082i   0.4082 - 0.4082i 
   0.8165 + 0.0000i   0.8165 + 0.0000i 
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Fig. 5.2.   An unstable spiral source. 
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D.E. coefficients k11 k12 k13 / k21 k23 k23 
   -2.00   -6.00   8.00    
   8.00   4.00   -12.00    
   
Eigenvalues b =  
   1.0000 + 6.2450i   0.0000 + 0.0000i 
   0.0000 + 0.0000i   1.0000 - 6.2450i 
 
Eigenfunction a =  
  -0.2835 + 0.5901i  -0.2835 - 0.5901i 
   0.7559 + 0.0000i   0.7559 + 0.0000i  
 

The critical point is at (1, 1). It has complex eigenvalues with 

positive real parts, therefore, the critical point at (1, 1) is an 

unstable spiral point.  
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Fig. 5.3.    Unstable spiral with the critical point at (1, 1).  
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Case 6: Imaginary eigenvalues with zero Real parts 

The equilibrium point is called a center. 

 

D.E. coefficients k11 k12 k13 / k21 k23 k23 
   0.00   -1.00   0.00    
   1.00   0.00   0.00    
   
Eigenvalues b =  
   0.0000 + 1.0000i     0.0000 + 0.0000i 
   0.0000 + 0.0000i     0.0000 - 1.0000i 
 
Eigenfunction a =  
   0.7071 + 0.0000i     0.7071 + 0.0000i 
   0.0000 - 0.7071i      0.0000 + 0.7071i 
 

 

 
  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm


Doing Physics with Matlab      37 

 

 
Fig. 6.1.  System shows center stability. 
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D.E. coefficients k11 k12 k13 / k21 k23 k23 
   -1.00   -1.00   0.00    
   4.00   1.00   0.00    
   
Eigenvalues b =  
   0.0000 + 1.7321i     0.0000 + 0.0000i 
   0.0000 + 0.0000i     0.0000 - 1.7321i 
 
Eigenfunction a =  
  -0.2236 + 0.3873i    -0.2236 - 0.3873i 
   0.8944 + 0.0000i     0.8944 + 0.0000i 
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Fig. 6.2.  System shows center stability. 
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Summary 

Asymptotically stable: All trajectories converge to the critical 

point as t  . Stable critical point:  K eigenvalues are all 

negative or have negative real part for complex eigenvalues.  

 

Unstable critical point:  All trajectories (or all but a few, in the 

case of a saddle point) start out at the critical point at t  , 

then move away to infinitely distant out as t  . A critical 

point is unstable if at least one of the K eigenvalues is positive 

or has positive real part for complex eigenvalues. 

 

Stable (or neutrally stable):  Each trajectory moves about the 

critical point within a finite range of distance and never moves 

out to infinitely distant, nor (unlike in the case of asymptotically 

stable) does it ever go to the critical point. A critical point is 

stable if the K eigenvalues are purely imaginary.  

 

As t increases, if all (or almost all) trajectories 

1. Converge to the critical point → asymptotically stable. 

2. Move away from the critical point to infinitely far away → 

unstable. 

3. Stay in a fixed orbit within a finite (i.e., bounded) range of 

distance away from the critical point → stable (or 

neutrally stable). 

  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
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An application of phase plane analysis which model the retina 

uses the mscript chaos10eye.m 

 

A Simple model of the retina: C-cell / H-cell negative feedback 

interaction:  

 

http://www.physics.usyd.edu.au/teach_res/mp/doc/chaos10.pdf 

 

 

 

 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/doc/chaos10.pdf

