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INTRODUCTION 

Dynamics of [2D] systems are vast and their behaviours are 

determined by the nature of equilibrium points, periodic orbits, limit 

cycles, etc. Critical values for bifurcations parameters are highly 

associated with system’s time evolution and have physical 

significances. We will consider a number of examples that show how 

bifurcation parameters are a deciding factor for systems undergoing 

bifurcation solutions.  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
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An equilibrium or fixed point of a dynamical system generated by 

system of ordinary differential equations (ODEs) is a solution that 

does not change with time. The stability of typical equilibria of 

smooth ODEs is determined by the sign of real part of eigenvalues of 

the Jacobian matrix. These eigenvalues are often referred to as the 

eigenvalues of the equilibrium.  In [2D] systems the Jacobian matrix 

is 

 
/ /

( , )
/ /

f x f y
x y

g x g y

    
=  

    
J  

  

It has two eigenvalues, which are either both real or complex-

conjugate.  The eigenvalues can be found using the Python function 

eig. 

 

Python 

The eigenvalues are calculated in Python using the function eig 
 

# Jacobian matrix and eigenvalues 

J = np.array([[0,0],[0,-1]]) 

Jev, Jef = eig(J) 
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In [1D] the stability of fixed points is characterised by '( )ef x , where 

 '( ) 0ef x        x grows exponentially 

 '( ) 0ef x        x decays 

 '( ) 0ef x =       indeterminate – check by graphical means 

'( )ef x  determines the rate of growth or decay and 1/ '( )ef x  gives 

the characteristic time scale for the growth or decay.  

 

Some fixed points may be semi-stable (half-stable) 

 

The solution to the governing ODEs may not be unique and their 

maybe many solutions. 

 

A hyperbolic equilibrium can be a 

• Node when both eigenvalues are real and of the same sign. 

Stable node: both eigenvalues are real and negative. 

Unstable node: both eigenvalues are real and positive.  

• Saddle is always unstable when the eigenvalues are real and of 

opposite signs.  

• Focus (spiral point) when eigenvalues are complex-conjugate; 

The focus is stable when the eigenvalues have negative real part 

and unstable when they have positive real part. 
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In [1D] fixed points can be created or destroyed or destabilized as 

parameters are varied—but in [2D] same is true of closed orbits as 

well. Thus, we can begin to describe the ways in which 

oscillations can be turned on or off. 

 

Using eigenvalues and eigenvectors stability criteria 

In many physical processes, a system can be modelled using ordinary 

differential equations and it is important to know the stability of the 

solutions that describe the behaviour of the system. Often the stability 

of the solution can be found from the eigenvalues and eigenvectors of 

the Jacobian matrix. 

 

After finding this stability, you can show whether the system will be 

stable and damped (if there is a change, the system will adjust itself 

and return to steady state); unstable and undamped fluctuations, or 

unstable system in which the amplitude of the fluctuation is always 

increasing (such system will not be able to return to steady state). For 

the undamped situation, the constant fluctuation will be hard on the 

system and can lead to equipment failure or with the ever-increasing 

amplitude of the fluctuations catastrophic failure will be the result. 

 

Eigenvalues can be used to determine whether a fixed point (also 

known as an equilibrium point) is stable or unstable. A stable fixed 

point is such that a system can be initially disturbed around its fixed 
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point yet eventually return to its original location and remain there. A 

fixed point is unstable if it is not stable.  

 

The eigenvalues of a system linearized around a fixed point can 

determine the stability behaviour of a system around the fixed point. 

The particular stability behaviour depends upon the existence of real 

and imaginary components of the eigenvalues, along with the signs of 

the real components and the distinctness of their values. That is, the 

eigenvalues give us the local stability around the fixed point. 

 

Real Eigenvalues (no imaginary parts) 

• All Zero Eigenvalues: the system will be unstable 

• All Positive Eigenvalues: when all eigenvalues are real, positive, 

and distinct, the system is unstable. On a phase portrait plot, a 

point in the vector field with multiple vectors circularly 

surrounding and pointing out of the point is called a source 

node. 

• All Negative Eigenvalues: when all eigenvalues are real, 

negative, and distinct, the system is stable. Graphically on a 

gradient field, there will be a node with vectors pointing toward 

the fixed point. This is called a sink node. 

• Positive and Negative Eigenvalues: the fixed point is an 

unstable saddle point. A saddle point is a point where a series of 

minimum and maximum points converge at one area in a vector, 
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without hitting the point. It is called a saddle point because in 

[3D] surface plot the function looks like a saddle. 

• Repeated Eigenvalues: the stability of the critical point depends 

on whether the eigenvectors associated with the eigenvalues are 

linearly independent, or orthogonal. This is the case of 

degeneracy, where more than one eigenvector is associated with 

an eigenvalue. In general, the determination of the system's 

behaviour requires further analysis. For the case of a fixed point 

having only two eigenvalues, however, we can provide the 

following two possible cases. If the two repeated eigenvalues 

are positive, then the fixed point is an unstable source. If the two 

repeated eigenvalues are negative, then the fixed point is a 

stable sink. 

 

Complex Eigenvalues 

When eigenvalues are of the form  a + b j, where a and b are real 

scalars there are three important case to consider: the real part  is 

positive, or negative, or zero. In all cases, when the complex part of 

an eigenvalue is non-zero, the system will be oscillatory. the stability 

of oscillating systems (i.e. systems with complex eigenvalues) can be 

determined entirely by examination of the real part. Although the sign 

of the complex part of the eigenvalue may cause a phase shift of the 

oscillation, the stability is unaffected. 
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• Positive Real Part: the system is unstable and behaves as an 

unstable oscillator. This can be visualized as a vector tracing a 

spiral away from the fixed point. The plot of response with time 

of this situation would look sinusoidal with ever-increasing 

amplitude. This situation is usually undesirable as any external 

disturbance will result in the system itself not returning to the 

steady state. 

• Zero Real Part: the system behaves as an undamped oscillator. 

This can be visualized in two dimensions as a vector tracing a 

circle around a point. The plot of response with time would look 

sinusoidal.  

• Negative Real Part: the system is stable and behaves as a 

damped oscillator. This can be visualized as a vector tracing a 

spiral toward the fixed point. The plot of response with time of 

this situation would look sinusoidal with ever-decreasing 

amplitude. This system is stable since steady state will be 

reached even after a disturbance to the system. The oscillation 

will bring the system back to the fixed point. It is important to 

know that having all negative real parts of eigenvalues is a 

necessary and sufficient condition of a stable system. 
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If the phase portrait changes its topological structure as a parameter is 

varied, then a bifurcation has occurred. Examples include changes in 

the number or stability of fixed points, closed orbits, or saddle 

connections as a parameter is varied. That is, the qualitative structure 

of the flow can change as parameters are varied. In particular, fixed 

points can be created or destroyed, or their stability can change. These 

qualitative changes in the dynamics are called bifurcations, and the 

parameter values at which they occur are called bifurcation points. 

Bifurcations are important scientifically—they provide models of 

transitions and instabilities as some control parameter is varied. 

 

The evolution of a [2D] system can lead to growth, decay, 

equilibrium, oscillations, periodic motion, aperiodic motion, and 

chaos. Often the best way to understand the time evolution of a 

system is not through the mathematics, but through the visualisation 

of the orbits (trajectories) in phase space where the vector field can 

give a qualitative view.  Local stability equilibrium at a point is 

characterised by small disturbances being damped out in time, 

whereas local instability, the disturbance grows with time. Stable 

fixed points (equilibrium points) are referred to as attractors or sinks. 

Unstable fixed points are referred to as repellers or sources.  
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To analyse a dynamical system, it is 

important to determine the existence of 

equilibrium points. For example, the 

acrobats in the photograph are in a 

stable equilibrium position: if an 

acrobat tilts laterally, the long rod 

moves to causes the system to tilt in 

the opposite direction, returning to the 

equilibrium position. If the acrobat did 

not have the rod, that equilibrium 

position would be unstable: if an 

acrobat tilted sideways, then the 

acrobat would make them tilt further, 

moving the system away from the 

equilibrium position.  
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Example 1        Saddle-Node Bifurcation        

The saddle-node bifurcation is the basic mechanism by which fixed 

points are created and destroyed. As a parameter is varied, two fixed 

points move toward each other, collide, and mutually annihilate. 

 

Consider the [2D] nonlinear dynamical system governed by the 

equations 

 2 2
( ) ( )x r x y y f x r x g y y= − = − = − = −  

where r is the bifurcation parameter. The fixed points of the system 

are dependent upon the bifurcation parameter r.  

 

We need to consider the three cases when r < 0, r = 0 and r > 0 

individually to explore the system dynamics for the x subsystem given 

the fact that in the y subsystem, the y-direction the motion is 

exponentially damped ( )0t y→ → . Figure 1.1 shows the phase 

portrait plots for r = 9 > 0, r = 0 and r = -9 < 0. For r > 0, there are 

two fixed points ( ),0r  which is a node (stable) and ( ),0r−  which 

is a saddle (unstable). As r decreases, the saddle and node move 

closer and coalesce at r = 0 to give a semi-stable fixed point. When r 

< 0, the peak of the parabola falls below zero and all fixed points are 

annihilated.  
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Fig. 1.1.   
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Mathematical analysis 

Fixed points:    2
0e ex r x x r= − = =   

Stability: To determine the stabilities of the fixed points, one needs to 

evaluate the Jacobian matrix of the system for local stability and find 

the eigenvalues. The Jacobian matrix is 

 
/ / 2 0

( , )
/ / 0 1

f x f y x
x y

g x g y

    −   
= =   

    −   
J  

r > 0     cs120.py 

The system has two fixed points:    ( ) ( ), 0 , 0r r− +  

 0 0 0e e ey y x x r x r=  = =  = − = +  

The Jacobian matrices are JP and JM  

2 0 2 0

0 1 0 1
e e

r r
x r x r

   − +
= + = = − =   

− −   
P MJ J  

Consider the case when r = 9, then the fixed points and eigenvalues of 

the Jacobian are:  

• xe = (-3, 0)   eigenvalues = (+6, -1) 

The eigenvalues are real (positive, negative) therefore the fixed 

point is a saddle. and is unstable. 
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• xe = (+3, 0)   eigenvalues = (-6, -1) 

The eigenvalues are real (negative, negative) therefore the fixed 

point is a stable node.  

 

r = 0       cs121.py        

Fixed point  0 0 0 0 0e ex r x y y= =  = =  =      

 
0 0

0 1

 
=  

− 
J   

The eigenvalues of the Jacobian are (0, -1) This indicates that the 

fixed point (0, 0) is semi-stable and is a saddle equilibrium. 

 

r < 0       cs122.py              

There are no fixed points since 0x   for all values of x 

 t x→ → −    
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Graphical Analysis 

Figure 1.2 shows the vector field of the system as a Python quiver 

plot and as a streamplot. 

Figure 1.3 shows the time evolution of the system for different initial 

conditions. The ODEs were solved using the Python function odeint. 
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Fig. 1.2. 

 

 

 



16 
 

 

Fig. 1.3  

 

From the graphical analysis, we see that the system with r > 0 has two 

fixed points, one is a stable node ( ),0r and the other is a saddle 

point. When r decreases, the saddle and the stable node approach each 

other. They collide at r = 0 and disappear when r < 0. This type of 

bifurcation is known as saddle-node bifurcation (figure 1.4). The 

name “saddle-node” is because its basic mechanism is the collision of 

two fixed points - a saddle and a node of the system and in this 

example the bifurcation point is r = 0. 
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Fig. 1.4. 

Even after the fixed points have annihilated each other, they continue 

to influence the flow as they leave a ghost, a bottleneck region that 

sucks trajectories in and delays them before allowing passage out the 

other side. Bifurcation theory is rife with conflicting terminology, and 

different people use different words for the same thing. For example, 

the saddle-node bifurcation is sometimes called a fold bifurcation. 

 

Example 2                 Transcritical Bifurcation     

There are certain scientific situations where a fixed point must exist 

for all values of a parameter and can never be destroyed. For example, 

in the logistic equation and other simple models for the growth of a 

single species, there is a fixed point at zero population, regardless of 

the value of the growth rate. However, such a fixed point may change 
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its stability as the parameter is varied. The transcritical bifurcation 

is the standard mechanism for such changes in stability. 

The normal form for a transcritical bifurcation is 

 2
x r x x y y= − = −  

 

We need to consider the three cases when r < 0, r = 0 and r > 0 

individually to explore the system dynamics for the x subsystem given 

the fact that in the y subsystem, the y-direction the motion is 

exponentially damped ( )0t y→ → .  

 

The fixed points are (-r, 0) and (r, 0) and we see from figure 2.1 that 

for all values of r, there is a fixed point at the Origin (0, 0). 
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Fig. 2.1 

 

For r < 0, there is an unstable fixed point at xe = r and a stable fixed 

point at xe = 0.  As r increases, the unstable fixed point approaches the 

Origin, and coalesces with it when r = 0. Finally, when r > 0, the 

Origin has become unstable xe = 0, and xe = r is now stable. Hence, 

we can say that an exchange of stabilities has taken place between the 

two fixed points. Note the important difference between the saddle-

node and transcritical bifurcations. In the transcritical case, the two 
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fixed points don’t disappear after the bifurcation—instead they just 

switch their stability. 

 

Fig. 2.2    

 

Mathematical analysis 

Fixed points:    2
0 0e e e ex r x x x x r= − = = =  

Stability: To determine the stabilities of the fixed points, one needs to 

evaluate the Jacobian matrix of the system for local stability and find 

the eigenvalues. The Jacobian matrix is 

 
2 0

( , )
0 1

e e

r x
x y

− 
=  

− 
J  

 

r > 0     cs125.py 

The system has two fixed points:    ( ) ( )0, 0 , 0r  

The Jacobian matrices are   
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0 0
0

0 1 0 1
e e

r r
x x r

−   
= = = =   

− −   
J J  

Let r = +10, then the two fixed points are (0, 0) and (10,0) and the 

Jacobians matrices are 

 

( )

( )

10 0
(0,0) eigenvalues 10, 1

0 1

10 0
(10,0) eigenvalues 10, 1

0 1

 
= = − 

− 

− 
= = − − 

− 

J

J

 

• The fixed point (0, 0) is an unstable saddle point for r > 0. 

• The fixed point (r, 0) is stable node for r > 0.  

 

r = 0                 cs124.py 

Let r = 0, then there is one fixed points (0, 0)  

Jacobian is 

 
0 0

( , )
0 1

x y
 

=  
− 

J  

and the eigenvalues are (0, -1).  The fixed point (0, 0) is semi-stable. 

r < 0             cs123.py 

Let r = -10, then the two fixed points are (0, 0) and (-10,0) and the 

Jacobians matrices are 
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( )

( )

10 0
(0,0) eigenvalues 10, 1

0 1

10 0
( 10,0) eigenvalues 10, 1

0 1

− 
= = − − 

− 

+ 
− = = + − 

− 

J

J

 

• The fixed point (0, 0) is a stable node for r < 0. 

• The fixed point (r, 0) is a saddle point (unstable) for r < 0.  

 

Graphical analysis 

Figure 2.3 shows the vector field of the system as a Python quiver 

plot and as a streamplot. Figure 2.4 shows the time evolution of the 

system for different initial conditions. The ODEs were solved using 

the Python function odeint. 

From the plots in figures 2.3 and 2.4, we see that the behaviour of the 

system changes when the bifurcation parameter r increases from a 

negative value and passes through the Origin (r = 0), where the saddle 

becomes a stable node and the stable node becomes a saddle.  

r < 0    xe(0, 0)  stable node   →  r > 0    xe(0, 0)  unstable saddle 

xe(r  < 0, 0)  unstable saddle  →  xe(r > 0, 0)  stable node 

This type of bifurcation is known as transcritical bifurcation. and 

the bifurcation point is r = 0. This type of bifurcation is same as in a 

[1D] system where no fixed points are disappeared. 
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Example 3A        Supercritical pitchfork bifurcation    

Codes:  cs126.py (r < 0),  cs127.py (r = 0) and cs128.py (r > 0) 

 

The pitchfork bifurcation is common in physical problems that have a 

symmetry. For example, many problems have a spatial symmetry 

between left and right. In such cases, fixed points tend to appear and 

disappear in symmetrical pairs. For example, consider a vertical beam 

loaded at the top. For a small load, the beam is stable corresponding 

to zero horizontal deflection. But, if the load exceeds the buckling 

threshold, the beam may buckle to either the left or the right. The 

vertical position has gone unstable, and two new symmetrical fixed 

points, corresponding to left- and right-buckled configurations, have 

been born. There are two very different types of pitchfork bifurcation. 

The simpler type is called supercritical, and will be discussed first. 

 

Consider a [2D] parametric system given by 

 3
x r x x y y= − = −  

 

Note that this equation for x is invariant under the change of variables 

x → -x. That is, if we replace x by -x and then cancel the resulting 

minus signs on both sides of the equation, the equation does not 

change. This invariance is the mathematical expression 

of the left-right symmetry mentioned earlier and the vector fields are 

equivalent. 
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Mathematical analysis and graphical analysis 

Fixed points:   0 0 0 0e e ex x x r y y=  = =  =  =  

The  Jacobian of the system is 

 
2/ / 3 0

( , )
/ / 0 1

f x f y r x
x y

g x g y

      −
= =   

    −   
J  

r < 0          There is only one stable fixed point (0, 0) 

Let r = -9     ( )
9 0

(0,0) eigenvalues 9, 1
0 1

− 
= = − − 

− 
J  

r = 0           There is only one stable fixed point (0, 0) 

Let r = 0     ( )
0 0

(0,0) eigenvalues 0, 1
0 1

 
= = − 

− 
J  

r > 0     There are three fixed point: 

               (0, 0) is unstable 

               ( ),0r− , and ( ),0r+  are both stable 

Let r = 9     ( )
6 0

( 3,0) eigenvalues 6, 1
0 1

− 
 = = − − 

− 
J stable 

                    ( )
9 0

(0,0) eigenvalues 9, 1
0 1

 
= = − 

− 
J     unstable 
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Fig. 3.1     The fixed points of the system for r < 0, r = 0 and r > 0. 

                  Red dot unstable,  blue dots are stable 
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Fig. 3.2     Phase portraits. 
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When r < 0, the Origin is the only fixed point, and it is stable. When r 

= 0, the Origin is still stable, but much weaker. Now solutions no 

longer decay exponentially fast—instead the decay is a much slower. 

This lethargic decay is called critical slowing down.  Finally, when 

r > 0, the Origin has become unstable. Two new stable fixed points 

appear on either side of the origin, symmetrically 

located at ex r=  . The reason for the term “pitchfork” becomes 

clear when we plot the bifurcation diagram (figure 3.3). Actually, 

pitchfork trifurcation might be a better word! This type of 

bifurcation is known as supercritical pitchfork bifurcation. 

• r < 0, the only fixed point is a stable node at the Origin. 

• r = 0, the Origin is still stable, but now we have very slow 

(algebraic) decay along the X-direction instead of exponential 

decay; this is the phenomenon of “critical slowing down. 

• r > 0, the Origin loses stability and gives birth to two new stable 

fixed points symmetrically located at ( ),0r . 

 

Fig. 3.3 
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Example 3B        Subcritical pitchfork bifurcation    

In the supercritical case 3
x r x x y y= − = −  (Example 3A), the cubic 

term is stabilizing and it acts as a restoring force that pulls x(t) back 

toward x = 0. If instead the cubic term were destabilizing, as in 

 3
x r x x y y= + = −  

then we’d have a subcritical pitchfork bifurcation.  

 

Fig. 3.4 
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Example 4      Supercritical Hopf Bifurcation       cs129.py 

Consider a physical system that settles down to equilibrium through 

exponentially damped oscillations, that is, small disturbances decay 

after ringing for a period of time. However, suppose that the decay 

rate depends on a control parameter r. In many cases, when the 

control parameter increases from a negative value, the decay of the 

oscillations become slower and slower and finally changes to growth 

at a critical value rc.  For r > rc, the equilibrium state will lose stability 

and the resulting motion is a small-amplitude, sinusoidal, limit cycle 

oscillation about the former steady state. This type of bifurcation is 

known as a supercritical Hopf bifurcation. 

 

Consider a two-dimensional system with control (bifurcation) 

parameter r 

( ) ( )2 2 2 2
x r x y x x y y x r y y x y= − − + = + − +  

This is a very simple example of a supercritical Hopf bifurcation. 

The system has a unique fixed point at the Origin (0, 0). 

The ODEs governing the system are best expressed in polar 

coordinates where  

 2 2 2
cos sin tan /x R y R R x y y x  = = = + =  
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After some tedious algebra, the ODEs in polar coordinates are 

 3
1R r R R = − =  

The ODEs now are decoupled and are easy to analyse for r < 0, r = 0 

and r > 0. The fixed points are determined from 0R =  and the 

stability from 3 2
( ) '( ) 3f R r R R f R r R= − = −  

 0 0R R R r=  = =   

 

 0 0 '(0) 0r R f r  = =   

 

The Origin (0, 0) is the only fixed point which a stable spiral when 

 r < 0. 

 0 0 '(0) 0r R f r  = =    

 

 The Origin (0, 0) is a fixed point which an unstable spiral when 

 r > 0. 

 0 '( ) 2 0r R r f r r  = = −   

The fixed points with R r=   are stable spirals. 

 

In this example, in terms of the flow in phase space, the supercritical 

Hopf bifurcation occurs when r > 0 (r > rc = 0) when the stable spiral 

changes into an unstable spiral surrounded by a circular orbit of radius 

R r= .  
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Fig. 4.1   As the control parameter r becomes less negative, the rate at 

which R → 0 (x → 0 and y → 0) decreases. 
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Fig. 4.2     Phase portrait of the system r < 0.  The fixed point is at the 

Origin (0, 0) is a stable spiral and all trajectories are attracted to it in 

anti-clockwise direction. The more negative the value of the control 

parameter r, the more rapidly the oscillation decay to zero.    
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Fig. 4.3     Phase portrait of the system for r = 0.  The fixed point is at 

the Origin (0, 0). is a weak stable spiral and all trajectories are 

attracted to it very slowly in anticlockwise direction.      
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When r > 0 the attractor is a stable circular limit cycle with radius 

R r= . 

 

 

 

Fig. 4.4    Phase portrait plots showing the limit cycle with radius R 

                  4 2.00R r R= = =  
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Fig. 4.6   Time evolution of the system r = 4.0 > 0 

 

When r < 0, the fixed point is at the Origin (0, 0) and is a stable spiral 

and all trajectories are attracted to it in anticlockwise direction. For 

r = 0, the Origin is still a stable spiral, but is very weak. For r > 0, the 

Origin is an unstable spiral, and the orbit in phase space is a stable 

limit cycle of radius R r= . 
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The Jacobian matrix for the fixed point at the Origin (0, 0) and its 

eigenvalues are 

 ( )
1

(0,0) , 1
1

r
J eigenvalues r j r j j

r

− 
= = + − = − 
 

 

 

The bifurcation point (0, 0) is called a focus or spiral point when 

eigenvalues are complex-conjugate; The focus is stable when the 

eigenvalues have negative real part and unstable when they have 

positive real part. Therefore, the Origin is a stable spiral when r < 0 

and an unstable spiral when r > 0. The eigenvalues cross the 

imaginary axis from left to right as the parameter r changes from 

negative to positive values. Hence, a supercritical Hopf bifurcation 

occurs when a stable spiral changes into an unstable spiral surrounded 

by a limit cycle. 
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Example 5      Subcritical Hopf Bifurcation       cs130.py   cs131.py 

The Hopf bifurcations come in both super- and subcritical 

varieties. The subcritical case is always much more dramatic, and 

potentially dangerous in engineering applications. After the 

bifurcation, the trajectories must jump to a distant attractor, which 

may be a fixed point, another limit cycle, or infinity. 

 

Consider a two-dimensional system with bifurcation parameter r 

( ) ( )

( ) ( )

2
2 2 2 2

2
2 2 2 2

x r x y x x y x x y

y x r y y x y y x y

= − − + − +

= + + + − +

 

The system has a unique fixed point at the Origin (0, 0). 

The ODEs governing the system are best expressed in polar 

coordinates where  

 2 2 2
cos sin tan /x R y R R x y y x  = = = + =  

After some tedious algebra, the ODEs in polar coordinates are 

 3 5
1R r R R R = + − =  

The ODEs now are decoupled and are easy to analyse for r < 0, r = 0 

and r > 0. 
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The important difference from the earlier supercritical case is that the 

cubic term R3 is now destabilizing; it helps to drive trajectories away 

from the Origin. 

 

Mathematical analysis 

The fixed points are determined from 0R =  and the stability from 

        

4 2

2

3 5 2 4

0 0

1 1 4

2

( ) '( ) 3 5

e e

e

e e e

R R R r

r
R

f R r R R R f R r R R

=  − − =

 +
=

= + − = − +

 

 

r < 0    

If r < -1/4 then the Origin (0, 0) is the only fixed point and is a stable 

spiral.  

 

For -1/4 < r < 0 then there are three fixed point. 

4 2

2

3 5 2 4

0 0

1 1 4

2

( ) '( ) 3 5

0 '(0) 0.2 0 stable

0.2 0.526 '(0.526) 0.247 0 unstable

0.851 '(0.851) 0.647 0 stable

e e

e

e e e

e

e

e

R R R r

r
R

f R r R R R f R r R R

R f r

r R f

R f

=  − − =

 +
=

= + − = − +

= = = − 

= − = = 

= = − 
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r > 0 

4 2

2

3 5 2 4

0 0

1 1 4

2

( ) '( ) 3 5

0 '(0) 0 unstable

0.2 1.082 '(1.082) 3.142 0 stable

e e

e

e e e

e

e

R R R r

r
R

f R r R R R f R r R R

R f r

r R f

=  − − =

+ +
=

= + − = − +

= = 

= = = − 

 

   

There are two fixed points when r > 0, (0, 0) which is unstable and 

(Re, 0) which a stable spiral. 

 

Graphical analysis 

The phase portraits shown figure below show: 

• r < 0 there are two attractors, a stable limit cycle and a stable 

fixed point at the Origin. Between them lies an unstable cycle. It 

is the player to watch since as r increases, the unstable cycle 

tightens like a noose around the fixed point (0, 0). A subcritical 

Hopf bifurcation occurs at r = 0, where the unstable cycle 

shrinks to zero amplitude and engulfs the Origin, rendering it 

unstable.     cs130.py 

• r > 0 the large-amplitude limit cycle is suddenly the only 

attractor. Solutions that used to remain near the origin are now 

forced to grow into large-amplitude oscillations.    cs131.py 
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Stable limit cycle 

Res = 

0.8506508083520399 

 

R = 0.5258311121191336 

> Reu  

 

 

 

Unstable limit cycle 

Reu = 

0.5257311121191336 

 

 

 

 

 

R = 0.5256311121191336 

   < Reu
 

 

 

    -1/4  < r = -0.20 < 0 

 

 

Fig. 5.1    Phase portraits for r = -0.20 for different initial values of R 
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Fig. 5.2    Fig. 5.1.  If r < -1/4, then the only fixed point is the Origin 

(0, 0) and it is a stable spiral.      
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Fig. 5.3    If r < -1/4, then the only fixed point is the Origin (0, 0) and 

it is a stable spiral.      
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Fig. 5.4     If r < -1/4, then the only fixed point is the Origin (0, 0) and 

it is a stable spiral.  For -1/4 < r < 0 then there are three fixed point. 

       blue dots – stable spiral and red dot – unstable spiral.  
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r > 0     cs131.py 

There are two fixed points when r > 0, (0, 0) which is unstable and 

(Re, 0) which a stable spiral. 

 

Fig. 5.5     There are two fixed points when r > 0, (0, 0) which is 

unstable and (Re, 0) which a stable spiral.          

 

Fig. 5.6     Phase portrait as a streamplot for r = 0.2.      
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Fig. 5.7   r > 0:   The system oscillates with large amplitude. 

 

Note that the system exhibits hysteresis: once large-amplitude 

oscillations have begun, they cannot be turned off by bringing r back 

to zero. The large oscillations will persist until r = -1/4 where the 

stable and unstable cycles collide and annihilate. 
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Example 6    Homoclinic Bifurcations 

A homoclinic bifurcation, in this scenario, part of a limit cycle moves 

closer and closer to a saddle point and at the bifurcation, the limit 

cycle touches the saddle point and becomes a homoclinic 

orbit.  

 

Consider the example 

 2
x y y r y x x y x= = + + −  

 

The fixed points of the system are (-1, 0), (0, 0), and (+1, 0). The 

fixed point (0, 0) is a saddle and the other two are centres. The phase 

space orbit is dependent upon the initial conditions ( x(0), y(0) ). 

 

To study the behaviour of the system, it is best to consider an initial 

value of r = -0.900 and then run the simulation cs133.py for small 

positive increments in r. The phase space orbit depends upon the 

initial conditions x(0) and y(0), so they have to be chosen with care. 

The critical value for the bifurcation parameter is rc ~ -0.865. So, we 

need to consider values of r < rc and r > rc. 
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r < rc 

The fixed points and eigenvalues for r  = -0.900 are: 

 (-1,0)     ev = [ 1.02547463 -2.92547463]  → unstable 

 (0, 0)      ev =  [ 0.64658561 -1.54658561]  → unstable  

         (+1, 0)    ev = [0.05+0.99874922j 0.05-0.99874922j] 

              → oscillations: a stable limit cycle and as r increases,  

                   the limit cycle passes closer to a saddle point at the Origin 

 

Fig. 6.1     r < rc = 0.865  
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r ~ rc 

 

 

Fig. 6.2     The bifurcation point at (0, 0) occurs when rc ~ 0.865. 
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r > rc 

The fixed points and eigenvalues for r  = -0.800 > rc are: 

 (-1,0)     ev = [ 1.05192213, -2.85192213] → unstable 

 (0, 0)      ev = [ 0.67703296 -1.47703296]  → unstable saddle 

         (+1, 0)    ev = [0.1+0.99498744j 0.1-0.99498744j] 

              →  the limit cycle swells and breaks the connection to the 

                    fixed point at the Origin and the loop is destroyed into the 

                    saddle, creating a homoclinic orbit. 

 

Fig. 6.3      All orbits will go to infinity when r > rc  

                   ( )t x y→ → → . 

 

The key to this bifurcation is the behaviour of the unstable manifold 

of the saddle. Look at the branch of the unstable manifold that leaves 

the Origin: after it loops around, it either hits the origin veers off 

to one side or the other. 


