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The following mscripts are used to solve the scalar wave equation using 
the finite difference time development method. All the mscripts are 
essentially the same code except for differences in the initial conditions 
and boundary conditions. Graphical outputs and animations are 
produced for the solutions of the scalar wave equation.   
 

em_swe_03.m    

 models the propagation of either a rectangular pulse or a 

Gaussian pulse 

 

em_swe_04.m    

 models the superposition and interference of propagating waves 

 

em_swe_05.m    

 models the propagation of traveling harmonic waves 

 

em_swe_06.m    

 models standing waves 

 

em_swe_07.m    

 models the reflection and transmission of a Gaussian pulse at an 

interface 
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Introduction 

 

We will use the finite difference time domain (FDTD) method to find 

solutions of the most fundamental partial differential equation that 

describes wave motion, the one-dimensional scalar wave equation. 

 

The [1D] scalar wave equation for waves propagating along the X axis 

can be expressed as 

 

(1)  
2 2

2

2 2

( , ) ( , )u x t u x t
v

t x

 


 
 

 

where ( , )u x t  is the wavefunction and v is the speed of propagation of 

the waveform. For electromagnetic waves, the wave function represents 

the electric field or magnetic field; for sound waves, the wave function 

represents the pressure or particle displacement fluctuations; and for 

waves on strings, the wave function gives the string displacement. 

 

 

Finite Difference time Development Method 

 

 The FDTD method can be used to solve the [1D] scalar wave equation. In 

the numerical solution, the wavefunction is approximated at discrete 

times and discrete grid positions. Let the execution time for a simulation 

be given by T. The time step is 
t

t h  and the number of time steps is Nt.  

The wavefunction ( , )u x t  is calculate at Nx discrete positions from x = 0 

to x = L where the spacing between the grid points is 
x

x h   

 

The nt
th time interval is 

 

   [ ] 1 1,2,3, ,
t t t t t

t n n h n N    

 

The nx
th grid position is   

         

  [ ] 1 1,2,3, ,
x x x x x

x n n h n N    
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The wavefunction ( , )u x t  at time [ ]
t

t n and grid position [ ]
x

x n  is 

expressed in terms of the time index nt and the spatial index nx as 
[ , ]

x t
u n n  

 
The second partial derivative of the wavefunction in space at time 

[ ]
n

t t t  for 2 1
x x

n N    is approximated by the central difference 

formula 

 

 (2) 
       2

2 2

, 1, 2 , 1,
x t x t x t x t

x

u n n u n n u n n u n n

x h

    



 

 

The central difference approximation to the second partial time 

derivative of  ( , )u x t  for 2 1
t t

n N    at the grid position [ ]
x

x x n  is 

 

 (3) 
       2

2 2

, , 1 2 , , 1
x t x t x t x t

t

u n n u n n u n n u n n

t h

    



 

 

Substituting the two central difference expressions of equations 2 and 3 

into the [1D] scalar wave equation (1), we get for the latest value of the 

wavefunction at the grid point  [ ]
x

x x n   

 

 (4) 

     

      
2 2

2

, 1 2 , , 1

1, 2 , 1,

x t x t x t

t
x t x t x t

x

u n n u n n u n n

v h
u n n u n n u n n

h

    

 
    

 

 

 

This is a fully explicit second-order accurate expression for  , 1
x t

u n n   in 

that all wave quantities on the right hand side are known, that is, they 

were obtained during previous time steps, nt and 1
t

n  .  
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The wavefunction values have to been assigned at each grid point for 

the first two time steps to start the solution process given by equation 4 

 

  1,2,3, ,
x x

n N     

         
 

 

1 [1] 0 ,1

2 [2] ,2

t x

t t x

n t t u n

n t t h u n

  

  
 

   

Using the assigned values for the first two time steps and the specified 

boundary conditions, equation 4 is repeated used for all space points to 

calculate the solution of the scalar wave equation at all later times. 

 

A fundamental assumption in the FDTD method is that in the calculation 

of the wavefunction at a given grid point we need to know the two 

adjacent values of the wavefunction, but at the ends of the grid, this is 

not possible. To solve the scalar wave equation, the wavefunction at the 

grid points [1]x  and [ ]
x

x N  must be given at all times, that is, the 

boundary conditions must be specified. There are several different types 

of boundary conditions: 

 

Dirichlet       u(boundary) = 0      Fixed end 

 

Neumann     boundary
0

u

x





          Free end 

 

Implementing this boundary condition at [1]x  and at [ ]
x

x N  using a 

forward difference approximation for the derivative gives 

 

        1, 2, , 1,
t t x t x t

u n u n u N n u N n        
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Absorbing boundary condition (ABC): This is an important type of 

boundary condition, for example, most electromagnetics problems 

involve unbounded regions, which cannot be modelled computationally. 

One option is to use one of the above boundary conditions and make the 

simulation region very large, and terminate the simulation before 

reflections from the boundary perturb the solution in the region of 

interest. The drawback of this approach is that the larger the simulation 

region, the greater the computational cost of the simulation. A better 

approach is to use a boundary condition that absorbs waves and reflects 

as little energy as possible.  

 

 

Numerical Stability and the Magic Time Step     

 

  1x t
t

x

x h v t v h
t h S

v v x h

 
     


 

The accuracy of the FDTD method is very dependent upon the time step 

t
h  size and the size of the grid spacing 

x
h . The grid space resolution 

directly impact the numerical phase velocity. It is useful to define the 

numerical stability factor called the Courant number S where 

 

 (5) 
v t

S
x





 

 

and the grid sampling resolution N
 

 

 (6) 0

x

N
h




  

 

0
  is the “real-world” wavelength and not the numerical wavelength in 

the FDTD grid.  To have numerical stability the condition 1S  must be 

satisfied. 
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For a particular choice of grid 
x

h  the corresponding spatial sampling is  

  
0,min

max

2
t

c
v h

f
         

where 
max

f is the maximum sampling rate and 
0,min
  the minimum free-

space wavelength that can be sampled without aliasing. Hence, 

 

  0,min

, min

2
2t

x x

v h
N S

h h



    

and since 1S   then , min
2N  . 

 

These conditions imply that in one time step 
t

h  a wave can propagate at 

most one grid point 
x

h . 

 

Of particular interest is the case where 1S   or 
x

t
v


   and the results 

of using this time step is so remarkable that it is called the magic time 

step. When the magic time step is used the numerical solution to the 

scalar wave equation is an exact solution and not an approximation. We 

can proceed any number of time steps of the FDTD algorithm, always 

calculating the exact propagating waveform. 
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Rectangular Pulse Propagation 

 

We will give a number of example calculations of the propagation of 

pulses in a Nx = 200 grid point range of length L = 100 a.u. and grid 

spacing hx = 0.500 a.u. The free space propagation velocity is set to 

v = 10 a.u. 

 

Running the simulations for different Courant numbers S for a 

rectangular pulse, clearly demonstrates, that in the solving the [1D] 

scalar wave equation it is best to use the magic time step where  S = 1. 
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Rectangular pulse  S = 1  magic time-step

 
Fig. 1.   Position of the rectangular pulse at fixed time 

intervals for S = 1 (magic time-step).  Nt = 160     

em_swe_03.m 

 

Figure 1 shows the position of the pulse after fixed time intervals when 

the time step is set equal to the magic time step where the Courant 

number is S = 1. The shape and spatial width of the pulse are completely 

preserved as it propagates along the X axis. The free space velocity is 

10.00v   a.u. The numerical velocity vn can be measured from the 

displacement of the pulse dx from t = 0 a.u. and at the end of the 

execution time dt = 8.00 a.u. The uncertainly in the measurement of the 

displacement is / 2 0.25
x

h  .  

 (9.99 0.02)
n

v    a.u.               measured using Matlab Data Cursor tool 
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 The free space velocity and the numerical velocity of propagation are 

the same when S = 1 (the time step is set equal to the magic time step). 

 

Rectangular pulse  S = 0.95 

 
Fig. 2.   Position of the rectangular pulse at fixed time 

intervals for S = 0.95.   Nt = 168     em_swe_03.m 

 

Figure 2 shows the propagation of the pulse when S = 0.95 < 1. There is 

a ringing effect at the leading and trailing edges of the pulse. The 

numerical velocity is (9.93 0.02)
n

v v   . The ringing represents time 

retarded propagation of the sparsely, high frequency spectral 

components of the discontinuities at the steps of the rectangular pulse. 
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Rectangular pulse  S = 0.70 

 
Fig. 3.   Position of the rectangular pulse at fixed time 

intervals for S = 0.70.   Nt = 230     em_swe_03.m 

 

If you carefully compare figures 1 and 3, there is a weak superluminal 

response (
n

v v ) that propagates just ahead of the leading edge of the 

rectangular pulse. After the time interval of dt = 8.00 a.u. the leading 

edge of the pulse for S = 1.00 is at x   95 a.u. whereas for the pulse for 

S = 0.7, the position of the leading edge is at x   100 a.u.  

 

In the numerical solution for 1S   some of the spectral components of 

the pulse travel at a speed slower than v whilst other spectral 

components travel faster than v. As well as the ringing effect, there is 

broadening of the pulse as it propagates. 
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Gaussian pulse propagation 

 

We can study the propagation of pulses which have an initial Gaussian 

spatial profile using the magic time step. For the magic time step, the 

pulse advances one grid space in one time step. 

 

The Gaussian pulse is specified in the Matlab mscript as a function of the 

spatial index nx. The input parameters for the Gaussian pulse are 
   % Gaussian pulse 
      A = 0.8;         % pulse amplitude 
      s = 5;           % pulse width 
      np = 20;         % pulse starting point given by index np 

 

Gaussian profile is specified at time steps 1 and 2 
     if flag == 1     % Gaussian pulse: 1st & 2nd time steps 
        for nx = 2 : Nx-1   % time step nt = 1 
            u(nx,1) = A .* exp(-0.5 .* ((nx-np)./s).^2); 
        end 

  
        for nx = 2 : Nx - 1   % time step 2 
            u(nx,2) = A .* exp(-0.5 .* ((nx-np-1)./s).^2); 
        end 
     end 

 

When the magic time step is used the Gaussian profile and speed of 

propagation are preserved as shown in figure 4.  

 
Fig. 4.   Propagation of a Gaussian pulse. The pulse starts at 

position x = 10 a.u.at time t = 0 and at finishes at position 

x = 90 a.u. after a simulation time of t = 8.0 a.u.     

em_swe_03.m 
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The numerical speed of the pulse can be calculated in the Matlab 

Command Window using logical functions 

 

 n

dx
v

dt
           dx = distance travelled in the time interval dt 

 
 >> (x(u(:,end) == max(u(:,end))) - x(u(:,1) == max(u(:,1))))/8 

 ans = 9.9874 

 

The free space wave speed is v =  10 a.u. and is its value agrees with the 

numerical wave speed vn = (9.99  0.02) a.u.   

 

Boundary Conditions 

 

We can use the Gaussian pulse to investigate the behaviour of the pulse 

for different boundary conditions. The same boundary conditions apply 

at each time step for nt = 1 to nt = Nt -1 

 

Dirichlet boundary conditions   u(boundary) = 0 
 u(1,  nt+1)  = 0;    % Fixed end 
      u(Nx, nt+1)  = 0;    % Fixed end 

 

 

Neumann  boundary conditions   boundary
0

u

x





  

 u(Nx,nt+1) = u(Nx-1,nt+1);        % Free end 
 u(1,nt+1)  = u(2,nt+1);           % Free end 

 
 
Absorbing boundary conditions   ABC 
Using the magic time step, it takes one time step for the wave to 
propagate from one grid position to the next. Hence, to apply absorbing 
boundary conditions at the ends of the simulation space, the values of 
the wavefunction at the boundaries are set to the adjacent 
wavefunction values one time step earlier.  
 
     u(Nx,nt+1) = u(Nx-1,nt);      % ABC 
     u(1,nt+1)  = u(2,nt);         % ABC 

 
Figures 5 and 6 show the graphical output for a number of simulations of 
a pulse being reflected from the boundaries of the simulation region.  
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Fig. 5.   A Gaussian pulse reflected a fixed end termination 

u(boundary) = 0. The reflected pulse is inverted because of a 

 change in phase upon reflection.     em_swe_03.m 
  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm


Doing Physics with Matlab      14 

 
Fig. 6.   A Gaussian pulse reflected a free end termination 

boundary
0

u

x





. The reflected pulse is upright because of a zero 

change in phase upon reflection.     em_swe_03.m 
 

You can view a simulation of a pulse of being reflected from the end 
x = L which is a free end and from the end x = 0 which is a fixed end.  
 

view animation 
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Superposition Principle: Interference 

 

We can model the superposition of waves by considering two pulses 

moving in opposite directions. If one pulse is given by the wavefunction 

1
( , )u x t  and the other pulse by 

2
( , )u x t and both wavefunctions are 

solutions of the scalar wave equation (equation 1) then using the 

property of linearity, the sum of any number of solutions is also a 

solution.  This fact is called the superposition principle. Hence, when 

two or waves combine, the resultant wave is the algebraic sum of the 

individual waves. 

 

The total function ( , )u x t  for our two pulses is simply the sum of the two 

individual wavefunctions 

 

  
1 2

( , ) ( , ) ( , )u x t u x t u x t   

 

The superposition principle vastly increases the number of waveforms 

that waves can take and gives rise to a rich palette of patterns called 

interference.  When the two pulses add to give a maximum amplitude of 

the result waveform, the waves are said to interfere constructively. 

Destructive interference occurs when the amplitude of the waves cancel 

each other giving a minimum amplitude of the resultant waveform. 

 

Figure 7 shows the two pulses interfering constructively as they pass 

through each other and figure 8 shows destructive interference. Notice 

that the pulse simply pass through each other. 
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Fig. 7.   Two pulses traveling in opposite directions interfere 

with each other. At time t = 3.0 a.u. the pulses interfere 

constructively, the resultant waveform has a maximum 

amplitude.       em_swe_04.m 
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Fig. 8.   Two pulses travelling in opposite directions interfere 

with each other. At time t = 3.0 a.u. the pulses interfere 

destructively and the resultant waveform has a minimum 

amplitude.      em_swe_04.m 

 

The wavefunction ( , )u x t  is a function of both position and time. Figures 

7 and 8 shows the position at the pulse at fixed times. However, Matlab 

can be used to create animated gifs. You can view an animation of 

colliding pulses which exhibit both constructive and destructive 

interference. The animation gives you a better picture of the interference 

phenomenon. 

 

view animation 
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http://www.physics.usyd.edu.au/teach_res/mp/images/ag_swe_002.gif
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_swe_002.gif


Doing Physics with Matlab      18 

Traveling waves 

 

We can model harmonic waves propagating along the simulation space. 

At x = 0, a source point is used to set up the traveling wave which moves 

from the left to the right 

 

  
2

0, sin
t

u x t A
T

 
   

 
        sinusoidal source at x  = 0 

 

At the end of the simulation region, x L , we need to employ absorbing 

boundary conditions, otherwise, a reflected wave traveling from right to 

left would interfere with the incident waveform traveling left to right. 

Once the sinusoidal wave has been established, each grid point moves up 

and down with simple harmonic motion and the speed of the wave is the 

free space speed v.  

 

Figure 9 shows the waveform at fixed time intervals for a wave with the 

source parameters  A = 1,  T = 2.5 a.u. and  v = 10 a.u. The theoretical 

wavelength of the traveling wave is 25 a.u.vT    From figure 9 you 

can estimate the speed of the wave, the wavelength and then calculate 

the period of the wave using the Matlab Data Cursor tool 

 

 Numerical velocity             10.1 0.1 a.u.
n

v     

 Numerical wavelength      25.3 0.5 a.u.
n
    

 Numerical period                2.51 0.05 a.u.
n

T    

 

 The numerical values agree well with the specified values within the 

uncertainties in making the measurements on the course grid. 
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Fig. 9.   Harmonic wave at fixed time intervals due to a sinusoidal point 

source located at x = 0. Absorbing boundary conditions are employed at 

x = L so that there is no reflected wave at the boundary.     em_swe_05.m 

 

view animation 

 
  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
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Standing Waves 

 

We can model the behaviour of waves confined in [1D] space by finding 

the wavefunction that is a solution to the scalar wave equation. In our 

model no energy is dissipated from the vibrating system. We start with 

the wavefunction being zero at all grid point ( ,0) 0u x   and a small 

amplitude sinusoidal point source applied to the boundary at 0x   

(origin). The wavefunction is set to zero at the boundary  x L . 

 

Boundary conditions 

 

 ( , ) 0u L t  .  

  
2

0, sin
t

u t A
T

 
  

 
        sinusoidal source at  0x   

 

A node occurs when the value of the wavefunction is zero at all times. A 

true node exists in our model at x L  and provided the amplitude A is 

small than at 0x   we can assume the boundary condition approximates 

a node and behaves as a fixed end. Therefore, the wave will be confined 

to the region from 0x   to x L  since reflections occur at both 

boundaries.  

 

For our model we will use the input parameters (all units are arbitrary) 

 

 Length of confined space  L = 100  

 Number of grid points  Nx = 200 

 Number of time steps  Nt   variable 

 Speed of wave  v = 10 

 Courant number  S = 1   (use magic time step) 

 Sinusoidal point source located at the origin  

       Amplitude  A = 0.1 

       Period  T  variable 

 Boundary condition at  x L  is ( , ) 0u L t    (fixed end) 

              Wavelength   /v T       
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The sinusoidal vibration of the source at the origin initiates a disturbance 

that travels at a speed v from the left to the right towards the boundary 

at x L . When the traveling sinusoidal wave reaches this boundary, the 

wave is reflected. The wave is then reflected from the boundary at the 

origin. The waves are now confined in space with a node at each end and 

travel left to right and right to left interfering with each other according 

to the superposition principle. The sinusoidal source at 0x   is 

continually adding energy to the wave and energy is returned to the 

source from the wave moving from right to left. A wave is built-up that 

vibrates at the frequency of the source. At most frequencies very little 

energy is added from the source to the wave.  

 

However, at certain frequencies of vibration of the source, energy is very 

efficiently added to the wave and large amplitude vibration are created 

and give a stationary vibration pattern called a stationary wave or 

standing wave. The frequencies at which the confined wave can vibrate 

at are called the natural frequencies of vibration. When a system is 

disturbed, it tends to vibrate in a mode that is a mixture of its natural 

frequencies of vibration. The source frequency is called the driving 

frequency.  When the driving frequency matches a natural frequency, 

large amplitude vibrations can occur. This phenomenon is called 

resonance and the frequencies are often referred to as the resonance 

frequency. 

 

The time taken for the disturbance to be travel from the origin and 

return is 
1

2 /T L v .  Just as the disturbance returns to the origin, the 

source produces a disturbance that reinforces the wave and energy is 

therefore efficiently transferred from the source to the wave. If the 

source vibrates sinusoidally with a period equal to   2 /L v  then energy 

will be continually added to the wave building up its amplitude. The 

natural frequency for this mode of vibration is called the first harmonic 

or the fundamental frequency. 

 
1

1

1

2

v
f

T L
   
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If the source driving frequency 
1

1, 2, 3,
n

f n f n    then the rate 

at which energy is transferred from the source to the wave is maximized 

and large amplitude vibrations will occur. n is referred to as the mode 

number, for example, if 2n  , then 
2

f  is called the 2nd harmonic.  

 

When a stationary waveform pattern is established in the confined space 

with a node at each end (0, ) ( , ) 0u t u L t  , the waveform is 

characterised by a sequence of equally spaced nodes ( 0u    zero 

amplitude) and antinodes (
max

u u  maximum amplitude) at fixed 

positions in the confined space. The positons of the nodes and antinodes  

do not vary with time.  The spacing between adjacent nodes or adjacent 

antinodes is equal half-wavelength 

 
2

1, 2, 3,
n

L
n

n
    

For our specified parameters the resonances modes for the wave 

confined in space for the first five harmonics are 

 

 

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

1 20 1 / 20 200

2 10 2 / 20 100

3 6.7 3 / 20 66.7

4 5 4 / 20 50

5 2.5 5 / 20 40

n T f

n T f

n T f

n T f

n T f











   

   

   

   

   

 

 

Figure 10 shows the time evolution of the wavefunction when the source 

frequency is not equal to a natural frequency.  Only a small amplitude 

wave is created and there are no nodes or antinodes.  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm


Doing Physics with Matlab      23 

 
 Fig. 10. The driving frequency of the source is not equal to a 

natural frequency. Only a small amplitude wave is created 

that oscillates at the driving frequency.     em_swe_06.m 

 

Figures 11 to 15 shows the time evolution of the wavefunction as a 

function of position in the confined space for the first five harmonics. The 

amplitude of the wave increases with time as energy is continually 

transferred from the source to the wave. For each harmonic that is 

excited, a standing wave pattern is established with the sequence node, 

antinode, node, … , antinode, node. The location of the nodes and 

antinodes varies slightly with time because there is not a true node at 

the origin ( 0x  ). 
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 Fig. 11.   Fundamental or 1st harmonic mode. 

 

 
1 1 1

1 20 1/ 20 200n T f                em_swe_06.m 
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 Fig. 12.   2nd harmonic mode. 

 

 
2 2 2

2 10 2 / 20 100n T f                     em_swe_06.m 
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 Fig. 13.   3rd harmonic mode. 

 

 
3 3 3

3 6.7 3 / 20 66.7n T f           em_swe_06.m 
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 Fig. 14.   4th harmonic mode. 

 

 
4 4 4

4 5 4 / 20 50n T f              em_swe_06.m   
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 Fig. 15.   5th harmonic mode. 

 

 
5 5 5

5 2.5 5 / 20 40n T f              em_swe_06.m 
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We can change the boundary conditions so there is always an antinode 
at  x L . The wave is still confined in the region from 0x   to x L  
because of the reflections at the boundaries. When the source 
frequency matches a natural frequency, large amplitude oscillations are 
created.  
 
   Boundary conditions   
 

    
2

0 0, sin small 0, 0 node
t

x u t A A u t
T

 
     

 
 

 

 0 antinode
x L

u

x



 


 

 
   Normal modes      1, 2, 3,n   

  

        
 

 
2 1 2 1 2 1

2 14 4

2 1 4 2 1
n n n

n vL L
f T

n L n v


  


  

 
 

 
        1n       Fundamental or 1st harmonic 
 
       Only the odd harmonics are natural frequencies   

1 3 5
, , ,f f f  

 

       2 1 1
2 1

n
f n f


           
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 Fig. 16.   Fundamental or 1st harmonic 
 
 

1 1 1
1 40 1/ 40 400n T f                em_swe_06.m 
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 Fig. 17.   3rd harmonic 
 

3 3 3
2 40 / 3 13.33 3 / 40 0.0750 133.33n T f        

                                                                                           

                                                                                              em_swe_06.m 
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Fig. 18.   5th harmonic 
 

5 5 5
3 40 / 5 8.000 5 / 40 0.1250 80.00n T f        

                                                                                           

                                                                                              em_swe_06.m 
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 Fig. 19.   7th harmonic 
 

7 7 7
4 40 / 7 5.714 7 / 40 0.1750 57.14n T f        

                                                                                           

                                                                                              em_swe_06.m 

 
 

view animations of standing waves 
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 Fig. 20.   Source driving frequency is equal to the frequency of the 
second harmonic 

1
2

source
f f and this does not equal one of the 

natural frequencies. A large amplitude standing wave is not 
created. 
                                                                                           

                                                                                              em_swe_06.m 
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Reflection and Transmission at an interface 

 

Waves experiences partial transmission and partial refection at an 

interface when there is a difference in velocity of the wave on either side 

of the interface. Reflection is a wave phenomenon that changes the 

direction of a wavefront at the interface. Transmission occurs when 

some of the energy of the incident wave is transferred across the 

interface.  

 

We can define the reflection coefficient r and the transmission 

coefficient t as 

 

 2 1 1 2

1 2 1 2

2
R T

I I

A v v A v v
r t

A v v A v v


   

 
 

 

where 
I

A  is the amplitude of the incident wave and  v1 is the speed of 

the incident wave, 
R

A  is the amplitude of the reflected wave travelling at 

speed v1 and 
T

A  is the amplitude of the transmitted wave traveling at a 

speed v2. 

 
We can model the reflection and transmission of waves at an interface 
by solving the scalar wave equation in which the wave speed to the left 
of the interface is v1 and v2  to the right of the interface. If the interface 
position is 

I
x  then 

 
 

1 2I I
x x v v x x v v       

 
Figure 21 shows the propagation of a Gaussian pulse striking the 
interface where 

2 1
/ 4v v . The incident pulse has an amplitude 1

I
A   

traveling from left to right and then striking the interface. There is 
excellent agreement between the theoretical and simulation values for 
the amplitudes of the reflected and transmitted pulses: 
 
 Theory         0.6000 0.4000

R T
A A    

 
 Simulation   0.6008 0.3993

R T
A A    
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The incident pulse has a width of 58
x

h  between the 1 / e  points. The 

width of the reflected pulse is 56
x

h which is almost the same as the 

width of the incident pulse. The spatial width of the transmitted pulse is 
14

x
h  which is about ¼ of the incident pulse width as predicted by the 

analytical theory.  

 
 
 Fig. 21.   Time evolution of a Gaussian pulse striking an 

interface at 50 a.u.x    

                       
1 2I I

x x v v x x v v       

 
 

view animation 

  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_swe_07_1.gif
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_swe_07_1.gif
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Both regions of the grid are modelled with the same values for 
x

h  and 
t

h  

but the Courant numbers are different 
1

1S   and 
2

1/ 4S  . We are no 

longer using the magic time step, therefore, our solution is only an 
approximation. In figure 21 the number of space grid point is 800

x
N  . 

If we run the simulation with 200
x

N  as shown in figure 22, then the 

results of the simulation are not accurate.  Generally, the smaller the 
value assigned for 

x
h , the more accurate the numerical predictions.  

 
Fig. 22.   Simulation showing a numerical instability in the 
solution. Generally, the smaller the values for the spatial and 
time increments the better the numerical stability and the 
more accurate predictions. 
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