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Download Scripts 
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em_vBE_01.m 

mscript used to calculate the trajectory of charged particles 

moving in a constant magnetic field or a constant electric field 

or constant crossed magnetic and electric fields. The input 

parameters are changed within the mscript. 

 

The mscript could be changed to study the motion of charged 

particles where the fields are non-uniform in space and time. 

 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/mpDocs/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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INTRODUCTION 

 

A charged particle of mass m and charge q will experience a 

force acting upon it in an electric field E . Also, the charged 

particle will experience a magnetic force acting upon it when 

moving with a velocity v in a magnetic field B .  

 

 If the charged particle is moving in the presence of both an 

electric field and magnetic field, the force F  acting on it is 

called the Lorentz force 

 

(1) F q E qv B= +                       Lorentz force 

 

If the charged particle is stationary (v = 0), the force depends 

only of the electric field. The direction of the electric force is in 

the same direction as the electric field if q > 0 and the electric 

force is in the opposite direction to the electric field if q < 0. 

 

When a charged particle is moving only in a magnetic field, the 

direction of the magnetic force is at right angles to both the 

direction of motion and the direction of the magnetic field as 

given by the right-hand palm rule.  
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The magnetic force q v B  is always perpendicular to the 

velocity v  and so it does no work on the particle and does not 

change its speed or kinetic energy. The magnetic force only 

changes the direction of motion, which tends to make the 

charged particle go in a circle or in a helix. 

 

+ q

out of page

+ I

F
B

v

( )v q+

F

B

v⊥

fingers

palm face

thumb



( )v q−

F

B

( )v q⊥ +

fingers

palm face

thumb



motion of a
positive charge in a 
magnetic field

motion of a 
negative charge in 
a magnetic field

v (+q)



  4 

The charged particle will move in a circular path of radius R in a 

uniform magnetic field when v  and B are perpendicular to 

each other. In this situation, the centripetal force is simply the 

magnetic force 

   

  
2

m v
q v B

R
=  

 

 (2) mv
R

q B
=  

 

The radius of the circular orbit depends on the momentum of 

the particle, its charge and the strength of the magnetic field. 

 

A charged particle trapped going in circles in a B field displays a 

characteristic cyclotron frequency   (or f ). The period T is the 

time for one revolution 

 

 (3a) 2 2 1
2

2

R m q B
T f f

v q B T m

 
 


= = = = =  

 (3b) 
q

B
m

 =          cyclotron frequency 

 

The period T and the cyclotron frequency   are both 

independent of the velocity of the particle. This fact is made 

use of in many applications. 
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If the charge particle’s velocity is neither parallel nor 

perpendicular to the magnetic field, the trajectory of the 

particle is a helix. If the B field is parallel to the Z axis and the 

initial velocity is parallel to the XZ plane, then, the particle 

moves in the Z direction with uniform speed vz while it 

continues to go in circles of radius /
x y

R mv q B=  where the xy
v

is the velocity of the charged particle in an XY plane. 

If there is region of crossed E and B fields ( )E B⊥  then the 

magnitudes of the fields can be adjusted so that a particle can 

move without any deflection when 

   

 (4) 
E

v
B

=              velocity v independent of the mass m 

 

In the region of the crossed E and B fields, the trajectory will be 

a cycloid if the speed is not too great. The charged particle 

starts from rest, then, it tends to migrate in the direction of the 

vector E B . 

 

The motion of charged particle, usually electrons or positive 

ions, under the action of E and B fields is the basis of many 

fundamental experiments in physics, for example, magnetic 

focusing, measurement of charge to mass ratio (q / m) in a mass 

spectrometer, cyclotron and magnetron.   
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Numerical analysis of the trajectories 

 

The equation of motion of the charged particle moving in the E 

and B fields can be found from the Lorentz force and Newton’s 

Second law of Motion and from which we can give the 

acceleration a  of the particle at any instant as  

 

 (5) ( )
q

a E v B
m

= +   

 

We will only consider trajectories of a charged particle in 

regions of uniform crossed E and B fields ( )E B⊥  where the E 

field is in the direction of the Y axis and the B field in the 

direction of the Z axis. The vectors for the E field and B field and 

their Cartesian components are 

 

    ( )0, ,0E E    and   ( )0,0,B B   
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The description of the trajectory is given its terms of a charged 

particle displacement, velocity and acceleration vectors and 

their Cartesian components 

 

 Acceleration ( ), ,
x y z

a a a a    

 Velocity ( ), ,
x y z

v v v v  

 Displacement ( ), ,s x y z  

 

 

The acceleration, velocity and displacement are approximated 

at N discrete times where the nth step is given by 

 

 [ ] ( 1) ( 1) 1,2,3, ,t n n t n h n N= −  = − =  

 

where t h   represents a very small-time increment.  

 

For 2n  , each component of the acceleration is approximated 

using a finite difference formulation  

 

 (6) 
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Also, for 2n   each component of the velocity is approximated 

by 

 

 (7) 

[ 1] [ 1]
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The cross product v B  can be expressed as 

 

  

0 0

x y z

i j k

v B v v v

B

 
 

 =  
 
 

 

 

  ( ) ( ) ( ) 0
y x

x y z
v B v B v B v B v B =  = −  =  

 

The components of the acceleration from the Lorentz force are 

 

 (8) ( ) 0
x y y x z

q q
a v B a E v B a

m m

   
= = − =   
   
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Combining equation (6), (7) and (8) we can get expressions for 

the displacement components at the nth time step where 2n   

 

 

( )

2

[ 1] 2 [ ] [ 1] [ 1] [ 1]

2

[ 1] 2 [ ] [ 1] [ 1] [ 1]
2
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 Since 0
z

a =  then at all time steps 1,2,3, ,n N=  

 

  [ ] [1] [ ] [1] [ ]
z z z
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Let 

 (9) 
2

1 2
2

q B h q E h
k k

m m
= =  

then 

 

 1 1
[ 1] 2 [ ] [ 1] [ 1] [ 1]x n x n x n k y n k y n+ = − − + + − −  

 1 1 2
[ 1] 2 [ ] [ 1] [ 1] [ 1]y n y n y n k x n k x n k+ = − − − + + − +  

 2 2

1 1 1 1 1 1 2
[ 1] 2 [ ] [ 1] [ 1] [ 1]k y n k y n k y n k x n k x n k k+ = − − − + + − +  

 

Rearranging expressions for [ 1]x n +  and [ 1]y n +  
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1
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The initial conditions for the trajectory are 

 (10) 

( )

0 0 0
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After the first time step 

 (11) 
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0 0
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For time steps when 2n   

(12)     
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3 1 1 1 1 2

1 1 2

[ 1] 2 [ ] 1 [ 1] 2 [ ] 2 [ 1]

[ 1] 2 [ ] [ 1] [ 1] [ 1]

[ 1] [ 1]
z

x n k x n k x n k y n k y n k k

y n y n y n k x n k x n k

z n u t n

+ = + − − + − − +

+ = − − − + + − +

+ = +
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Matlab Programming 

 

We need to specify the XYZ dimensions of a volume element in 

which the trajectory of the particle is calculated and the XY 

regions in which the E and B fields are zero and uniform. 

 

Then the following input parameters are specified: the values 

of the E and B fields; the initial position and velocity; the charge 

and mass of the particle; the time step h; and the number of 

time steps N. A rough guide for stability is to set h such that 

 

  1
q B h m

h
m q B

    

 

The code to assign the time step is 

% time step 

    if B == 0; h = 1e-9; 

      else 

         h = abs(0.01 * m / (q * B)); 

   end 

 

It is always good practice to run the program with smaller and 

smaller time steps and check that you get convergence in the 

results. 
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We can then use equations (7) to (12) to calculate the 

trajectory of the charged particle. 

 

The Matlab variables to specify the volume element and field 

region are 

 

 xMin, xMax, yMin, yMax, zMin, zMax 

 xFMin, xFMax, yFMin, yFMax, zFMin, zFMax  

    

Matlab input variables 

 Mass of particle   m 

 Charge on particle   q 

 Electric field   E 

 Magnetic field   B 

 Initial velocities   ux   uy   uz 

 Number of time steps   N 

Order of Matlab calculations 

 Constants (equation 8)   k1   k2 

         

 Initial displacement, velocity and acceleration (equation 

10) at time step 1 (t = 0 and n = 1) 

  

 Displacement, velocity and acceleration (equation 11) at 

time step 2 (t = h and n = 2) 
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 Displacement For loop from n = 3 to n = N 

  displacement components (equation 12) 

 

 Velocity For loop from n = 3 to n = N 

  velocity components (equation 7) 

 

 acceleration For loop from n = 3 to n = N 

  acceleration components (equation 8) 
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Simulations 

 

The mscript  em_vBE_01.m  is used for the modelling of a 

charged particle through a region of uniform magnetic and 

electric fields. The direction of the magnetic field is in the Z 

direction and the electric field is in the Y direction. 

 

Uniform circular motion 

We can test the accuracy of our model by comparing the 

theoretical and simulation results for the uniform circular 

motion of a proton in a uniform magnetic field. 

 

The graphical output of the mscript  em_vBE_01.m  includes a 

Figure Window which gives a summary of the parameters used 

in a simulation. Figure (1) gives the parameters used to test the 

numerical model. Figure (2) to (6) show the trajectory, the 

displacement, velocity and acceleration of the charged particle. 
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Fig. 1.   Parameter summary for the circular motion of a 

proton in a uniform magnetic field.  



  17 

  

 

Fig. 2.   The path of the proton in an XY plane. The 

shading shows the region of uniform magnetic field 

which is in the direction of the +Z axis. 
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Fig. 3.   Displacement vs time graph. The X and Y 

components of the displacement vary sinusoidally with 

time. The charged particle executes simple harmonic 

motion in the X and Y directions. 
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Fig. 4.   The [3D] trajectory of the proton. The path of 

the proton is in the shape of a helix. The number of time 

steps was increased to n  = 2000 to show more rotations 

about the Z axis. 
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Fig. 5.   Velocity vs time graph. The X and Y components 

of the velocity vary sinusoidally with time. The 

magnitude of the velocity |v| is constant. The magnetic 

force does zero work on the charged particle when it 

moves through the uniform B field. 
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Fig. 6.   Acceleration vs time graph. The X and Y 

components of the acceleration vary sinusoidally with 

time. 

 

From figure (2) the radius in the X and Y directions and the 

period were measured using the Matlab Data Cursor tool.  

 

The measures are 

 Rx = 0.2084  m     Ry = 0.2085 m     T = 1.64x10-7  s 

The theoretical radius using equation (2) is 

  R = 0.2085  m 

And from equation (3a), the period is 

 T = 1.64x10-7  s 

The numerical model value for the radius and period are in 

excellent agreement with the theoretical predictions. 
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Fig. 7.   Paths of the proton in an XY plane.  

          Blue curve   B = 0.36  T         Red curve   B = 0.72  T 

The larger the B field, the greater the strength of the 

magnetic force acting on the charged particle, hence, the 

smaller the radius of the circular orbit. 
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Magnetic deflection 

 

Magnetic fields are commonly used to control the path of 

charged particles. Figure 8 shows the trajectories of a proton 

launched with initial speed  ux = 8.0x106 m.s-1 and uy = 0  m.s-1 

into uniform magnetic fields of various strengths. When B > 0 

the B field is in the +Z direction (out of page) and B < 0 the B 

field is in the –Z direction (into page). The deflection of the 

particle is given by the right-hand rule. The greater the strength 

of the magnetic field, then the greater the deflection of the 

charged particle as it traverses the magnetic field. 

 

To obtain the multiple plots in a Matlab Figure Window, the 

statements in the mscript em_vBE_01.m that closes all Matlab 

Figure Windows and the shading of the field region are set as 

comments when the mscript is executed for the different 

values of the B field.  When you have finished, then the 

statements should be uncommented.  
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Fig. 8.  The trajectories of a proton traversing a uniform 

magnetic field of different strengths. The numbers give 

the magnetic field strengths [T].  

 

We will consider in more detail one of the trajectories 

shown in figure 8. Figure 9 gives the parameters for the 

deflection of a proton launched into a region of uniform 

magnetic field.  Figure 10 shows the trajectory and figure 11 

the X and Y components of the displacement. The particle 

travels in a straight line when B = 0 and is deflected by the 

magnetic field when B   0 which tends to cause the 

charged to move in a circular orbit. Figures 12 and 13 show 

the velocity and acceleration graphs. In the zero field zero 

the acceleration of the particle is zero and the particle 

moves with a constant velocity. 
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Fig. 9.   Matlab Figure Window giving the parameters 

used for the simulation of the deflection of a proton.  

 

 

  

 Fig. 10.   Trajectory of the proton.  
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Fig. 11.   Displacement vs time graph for the motion of the 

proton. 

 

 

Fig. 12.   Velocity vs time graph for the motion of the 

proton. 
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Fig. 13.   Acceleration vs time graph for the motion of the 

charged particle. 
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Electric field deflection 

 

A positively charge particle in an electric field will an electrical 

force acting in the same direction as the electric field. 

Therefore, a positively charged particle entering an electric 

field will be accelerated in the direction of the electric field. We 

will consider the simulation of a proton initially travelling in the 

+X direction that enters a uniform electric field which his 

directed in the +Y direction. Figure 14 shows the parameters 

used in the simulation.  

 

Fig. 14.   Parameters for the simulation of a proton 

entering a uniform electric field which is directed in the 

+Y direction. 
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Figure 15 shows the trajectory of the positively charged 

particle. Figures 16, 17 and 18 show the displacement, velocity 

and acceleration vs time graphs for the motion respectively. 

The acceleration of the particle is constant in the non-zero 

electric field region. The motion of the charged particle is 

similar to a projectile in a gravitational field. 

 

Fig. 15.  Trajectory of the positively charged particle in 

the electric field. 
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Fig. 16.   Displacement vs time graph for the motion of the 

proton. 

 

 

 

 Fig. 17.   Velocity vs time graph for the motion of the 

proton. 
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 Fig. 18.   Acceleration vs time graph for the motion of the 

charged. 
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Motion in uniform crossed magnetic and electric fields 

 

 

Fig. 19.  The trajectories of the proton in a uniform 

magnetic field B = 0.2 T and varying electric field 

strengths. The numbers give the strength of the electric 

field [x105 V.m-1].  ux = 8.0x106 m.s-1. 

 

When the magnetic force balances the electric force, the 

charged particle moves with constant velocity 

 Magnetic force  =  electric force 

  

 

( )6 5 -1
8.0 10 (0.1) 8.0 10 V.m

x

x

qu B q E

E u B

E

=

=

=  = 

 

The theoretical prediction agrees with the result of the 

numerical simulation. 
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Figure 20 shows the parameters used for a simulation with 

cross magnetic and electric fields. 

 

Fig. 20.   Parameters for the simulation of a proton 

entering a region of uniform magnetic field in the +Z 

direction and a uniform electric field which is directed in 

the +Y direction. 

 

Figure 21 shows the trajectory of the positively charged 

particle. Figures 22, 23 and 24 shows the displacement, velocity 

and acceleration vs time graphs for the motion respectively. 
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Fig. 21.  Trajectory of the positively charged particle in 

the electric field. 

 

 

Fig. 22.   Displacement vs time graph for the motion of the 

proton. 
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Fig. 23   Velocity vs time graph for the motion of the proton. 

 

 

Fig. 24.   Acceleration vs time graph for the motion of the 

charged. 
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Cycloid Motion 

 

Consider the motion of a charged particle in uniform magnetic 

and electric fields. The magnetic field is directed in the +Z 

direction and the electric field is in the +Y direction.  

 

When a positively charged particle enters the electromagnetic 

field region so that it is travelling in an XY plane, the electric 

field accelerates the charge particle resulting in an increase in 

the Y component of the velocity vy. Since the positive charged 

particle is moving in an XY plane, the magnetic field exerts a 

force on the positive charge and the faster the charge is 

moving, the greater the magnetic force. The direction of the 

force causes the charged particle to be deflected back around 

towards the Y axis. When the positive particle moves against 

the electric force it starts slowing down. As the velocity 

magnitude in the XY plane decreases, magnetic force decreases 

and the electric force takes over until the charged particle’s Y 

component of velocity comes zero, vy = 0. The positively 

charged particle is then accelerated again in the Y direction and 

the cycle is repeated, giving the cycloid motion. The period T 

for the cycloid motion is 

 

  
2 m

T
q B


=  
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Figure 25 is a Matlab Figure Window giving the parameters 

used for the simulation for the cycloid motion of a proton. 

Using the parameters given in figure 25, the theoretical value 

for the period is   T = 8.19x10-8  s 

Figure 26 shows a plot of the trajectory of the proton 

undergoing cycloid motion. The [3D] path of the proton is 

shown in figure 27 and the X and Y components of the 

displacement is shown in figure 28. The velocity and 

acceleration time graphs are shown in figures 29 and 30. 

 

Fig. 25.   Parameters for the simulation of a proton 

entering the uniform crossed magnetic and electric 

fields region. The magnetic field is directed in the +Z 

direction and the electric field in the +Y direction. 
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Fig. 26.  Trajectory of the proton in the crossed magnetic 

and electric fields showing the cycloid motion. 

 

 

Fig. 27.   [3D] path of the proton in the crossed B field and E 

field. 
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 Fig. 28.   The X and Y components of the displacement of the 

proton. 

 

 

 

Fig. 29.   The velocity vs time plots for the motion of the proton. 
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Fig. 30.   The acceleration vs time plots for the motion of the 

proton. 

 

The period of the cycloid motion can be measured using the 

Matlab Data Cursor tool using either the velocity or 

acceleration time graphs. The graphical measurement for the 

period is T = 8.19x10-8 s which is the same as the theoretical 

prediction.  
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Consider the case when the initial velocity is (E/B,0,0) 

In this case, the magnetic force balances the electric force. 

Since, the net force acting on the charge is zero, the charged 

object moves with a constant velocity in the +X direction as 

shown in figure 30. 

 

Fig. 30.   When the magnetic force balances the electric force, 

the net force is zero and so the charged object moves in the +X 

direction with constant velocity.  

 

 


