
Doing Physics with Matlab 1

 DOING PHYSICS WITH MATLAB

 MATHEMATICAL ROUTINES

 COMPUTATION OF ONE-DIMENSIONAL
 INTEGRALS

Ian Cooper

School of Physics, University of Sydney

ian.cooper@sydney.edu.au

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

math_integration_1D.m
Demonstration mscript evaluating the integral of two functions using a number of

different methods

simpson1d.m
Function to give the integral of a function using Simpson’s 1/3 rule.

NUMERICAL INTEGRATION
COMPUTATION OF ONE-DIMENSIONAL INTEGRALS

The function simpson1d.m is a very versatile , accurate and easy to implement

function that can be used to evaluate a definite integral of a function between a lower

bound and an upper bound. It is easier to use than the standard Matlab integration

functions such as quad. The function simpson1d.m is described in detail below.

We want to compute a number expressing the definite integral of the function f(x)

between two specific limits a and b

 ()d
b

a
I f x x

The evaluation of such integrals is often called quadrature.

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts

Doing Physics with Matlab 2

We will consider the following integrands to test the accuracy of different integration

procedures:

 (1) () cos()f x x

 (2) () e j xf x

The integrals are evaluated over a quarter cycle in an attempt to find a minimum

number of partitions of the domain that produce accurate results within a reasonable

time. For the testing procedures, the following integrals are to be evaluated from

a = 0 to b = /2

/ 2

0
cos()dI x x

 and

/ 2

0
djxI e x

These integrals can be evaluated analytically and the exact answers are

/ 2 / 2

00
cos()d sin() sin(/ 2) sin(0) 1I x x x

/ 2

/ 2 / 2

0
0

1 1
e d e e 1 1jx jx jI x j

j j

The numerical procedures assume that neither the integrand f(x) nor any of its

derivatives become infinite at any point over the domain of the integration [a, b], and

that the limits of integration a and b are finite. Furthermore, we assume that f(x) can

be computed, or its values are known at N points xc where c = 1, 2, …, N that are

distributed in some manner over the domain [a, b] with x1 = a and xN = b.

The qualifier closed signifies that the integration involves the values of the integrand

at both the end-points. If only one or none of the end points are included, the

qualifiers used are semi-closed and open respectively.

A major problem that arises with non-adaptive methods is that the number N of

partitions of the function required to provide a given accuracy is initially unknown.

One approach to this problem is to successively double the number of partitions, and

compare the results as the number of partitions increase.

Doing Physics with Matlab 3

Closed Rectangle Rule

The region from a to b is divided into N rectangles of equal width x h where

1

b a
x h

N

with each rectangle centre occurring at the points x1 = a, x2 = x1+ h, … xN = b.

For example, the plot below shows the domain divided into 4 rectangles, N = 4.

However, the sub-division of the domain by this means extends from

a - h/2 to b + h/2 and not simply from a to b.

The integral is approximated by the contribution from each rectangle, such that

1

()
N

i

i

I f x x

For the case shown in the plot above where N = 4, the integral is approximated by

 1 2 3 4() () () ()I f x f x f x f x h where
3

b a
h

 .

0

20

40

60

80

100

120

1 2 3 4

Doing Physics with Matlab 4

Open Midpoint Rule

The mid-point rule is the first member of a family of open Newton-Cotes rules

corresponding to quadratic, cubic and higher-order interpolating polynomials with

evenly spaced points. In the open midpoint rule, the area of each rectangle is added to

find the integral. The domain a to b in divided into N partitions, with the width of

each partition being h = (b – a)/N. The function is evaluated at the midpoint xi of each

rectangle where xi = a + (h/2)(2N-1). The value of the integral is then given by

1

()d ()
N

b

ia
I f x x h f x

Doing Physics with Matlab 5

Trapezoidal Rule

The function f(x) is approximated by a straight line segment connecting adjacent

points. The area under the curve is then approximated by adding the area of each

trapezium. The interval a to b is divided into N-1 partitions of width h (h x) where

h = (b – a)/(N - 1). The area of each partition is simply the area of a trapezium which

is its base times its mean height. The area of the i
th

 trapezium is

 1

2

i if f
h

 where fi f(xi) and i = 1, 2, …..N-1

Summing all the trapezia gives the composite, closed trapezoidal rule

1

1 1

2 1
2 2

N N
N N

i i
f f f f

I h f h f

For evenly distributed spacings, the composite rule is equivalent to the trapezoidal

version of the closed Newton-cotes rule.

The Matlab function, trapz implements a procedure to calculate the integral by the

trapezoidal rule. For example, the integration of the function y1 w.r.t the variable x

 Integral_1 = trapz(x,y1) % estimate of the integral

Doing Physics with Matlab 6

Simpson’s 1/3 rule

This rule is based on using a quadratic polynomial approximation to the function f(x)

over a pair of partitions. N-1 is the number of partitions where N must be odd and

h = (b – a) / (N-1). The integral is expressed below and is known as composite

Simpson’s 1/3 rule.

 1 2 4 2 3 5 14(... 2(...)
3

N N N
h

I f f f f f f f f

Simpson’s rule can be written vector form as

T

3

h
I cf

where 1 214 2 4 ... 2 41 and ... Nf f f c f .

Simpson’s rule is an example of a closed Newton’s-Cotes formula for integration.

Other examples can be obtained by fitting higher degree polynomials through the

appropriate number of points. In general we fit a polynomial of degree N through

N +1 points. The resulting polynomials can them be integrated to provide an

integration formula. Because of the lurking oscillations associated with the Gibbs

effect, higher-order formulas are not used for practical integration.

simpson1d.m
The function f and the lower bound a and the upper bound b are passed onto the

function (in the order f, a, b) and the function returns the value of the integral

function integral = simpson1d(f,a,b)

% [1D] integration - Simpson's 1/3 rule
% f function a = lower bound b = upper bound
% Must have odd number of data points
% Simpson's coefficients 1 4 2 4 ... 2 4 1

numS = length(f); % number of data points

sc = 2*ones(numS,1);
sc(2:2:numS-1) = 4;
sc(1) = 1; sc(numS) = 1;

h = (b-a)/(numS-1);

integral = (h/3) * f * sc;

Doing Physics with Matlab 7

EXAMPLES

(1)
/ 2

0
cos()d 1I x x

 (2)

/ 2

0
d 1jxI e x j

Method Estimate N

Closed Rectangle (1) 1.0950

(2) 1.0950 + 1.0950i

9

99 (1) 1.0080

(2) 1.0080 + 1.0080i

Open-Midpoint (1) 0.9978

(2) 0.9978 + 0.9978i

9

99 (1) 0.9968

(2) 0.9733 + 0.9733i

Trapezoidal (1) 1.0000

(2) 1.0000 + 1.0000i

9

99 (1) 1.0000

(2) 1.0000 + 1.0000i

Simpson’s 1/3 (1) 1.0000

(2) 1.0000 + 1.0000i

9

All the integrations took less than one second on a fast Windows computer. Even with

only 9 points, the Simpson’s 1/3 rule estimate was equal to the exact values.

