
 1

 DOING PHYSICS WITH MATLAB

FOURIER ANALYSIS

FOURIER TRANSFORMS

Ian Cooper

matlabvisualphysics@gmail.com

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

 GitHub

 Google Drive

maths_ft_02.m

mscript used to calculate the Fourier transform, the power

spectral density and the inverse Fourier transform functions by

the direct integration of the Fourier integrals using Simpson’s

rule. A wide variety of functions, sound files and data files (eg

ecg) can be investigated. All parameters can be changed within

the mscript.

Wave and mat Files

 wav_S1000_1008.wav

 audio440.wav

 audioGuitar1.wav

 audioClarinet1.wav

 audioVoice1.wav

 Train.wav

 ecg.mat

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb

 2

The Script calculates the Fourier transform H(f) for different

signal functions h(t). The signal function is selected by the

variable flagF (flagF = 1, 2, … , 17):

% 1 Gaussian function
% 2 Exponential function
% 3 Sinusoidal function
% 4 Superposition of sinusoidal functions
% 5 Square Wave
% 6 Sawtooth function
% 7 Single square pulse
% 8 Damped sinusoidal function
% 9 ECG
% 10 Beats
% 11 Beats: audio file
% 12 Audio file: 440 Hz signal
% 13 Audio file: Guitar 220 Hz
% 14 Audio file: Clarinet 220 Hz
% 15 Audio file: Voice 220 Hz
% 16 Audio file: train whistle
% 17 Digital Filtering

It is very easy to add other functions to the Script

Inputs for each function
Enter function or load data file h

Time domain: number of grid points for time (must be an odd
number) nT; start time tMin = 0; end time tMax
Frequency domain: number of grid points for frequency (must
be an odd number) nF; start time fMin = 0; end time fMax
Plots: XLIMS = [tMin tMax]; XTICKS = tMin:dt:tMax;
 XLIMSF = [fMin fMax]; XTICKSF = fMin:df:fMax;

 3

Audio files .wav

The signal for the audio recording is obtained using the load

command

 [signal, Fs] = audioread('audio440.wav');

The variable signal is the input function of time. Fs is the

sampling frequency or frequency rate. The time interval dt

between the signal data points is thus

 dt = 1/Fs;

The input variable h is extracted from the signal function

 h = signal (h1:h2);

where h1 and h2 are the start and end indices respectively.

The number of time steps nT is given by the length of h

 nT = length(h);

and the maximum time span tMax is

 tMax = (nT-1)*dt;

The code to play the audio recording is

 sound(signal, Fs);

 4

Introduction

Fourier transform methods (or spectral methods) are used in a

very large class of computational problems. Many physical

processes can be described in the time domain by the values of

a function ()h t or else in the frequency domain ()H f . The

function ()H f is usually complex function specified by its

amplitude and phase. It is useful to think of ()h t and ()H f as

being two different representations of the same function. One

goes back and forth between these two representations by

means of the Fourier transform equations

 (1)
(2)

() ()
i f t

H f h t e dt


−
= 

 (2)
(2)

() ()
i f t

h t H f e df
 −

−
= 

Equation 1 is the Fourier transform and equation 2 gives the

inverse Fourier transform. If t is measured in seconds, then the

frequency f is measured in hertz. It is more straight forward to

use the frequency f rather than the more commonly used

angular frequency  ()2 f  .

 The total power in a signal is the same whether we compute

it in the time domain or in the frequency domain. This result is

called Parseval’s theorem

 5

 (3)
2 2

() ()Total Power h t dt H f d f
 

− −
= = 

If one wants to compute how much power there is the

frequency interval between f and df, one does not usually

distinguish between negative and positive values of f, but

rather regards f as varying from zero frequency or DC ()0f =

to f → . In such cases, one defines the one-sided power

spectral density PSD of the function ()h t as

 (4)
2 2

() () ()psd f H f H f= + −

If ()h t is a real function, then

 (5)
2

() 2 () 0psd f H f f=   

 (6)
2

0
2 ()Total Power H f d f


= 

Usually, the Fourier transforms given by equations 1 and 2 are

calculated by the fast Fourier transform method. There are

Matlab functions fft and ifft that can be implemented to find

the Fourier transforms. However, they are not easy to use as

the sampling rate and frequency domain are not independent.

Historically, the fast Fourier transform is used because of the

speed of the calculations is much faster than the direct

 6

evaluation of the Fourier integrals. But, with the speed and

memory of modern computers and using software such as

Matlab, the computation of the Fourier integrals can be by the

direct integration without any problems, thus, Fourier Analyse

can be made simple.

Matlab

The time and frequency domains are specified by the variables

for the time interval and number of samples:

 time domain tMin tMax nT

 frequency domain fMax fMax nF−

The number of samples nT and nF must be odd numbers for

evaluating the integrals using Simpson’s rule. Hence, the

frequency domain includes both negative and positive

frequencies in computing the inverse Fourier transform

(equation 2) and the total power (equation 6).

The function ()h t has only non-zero values in the interval time

interval from tMin to tMax

 () 0 () 0t tMin h t t tMax h t =  =

 7

The function ()h t is specified by the variable flagF in the

switch/case statements. The defined function simpson1d.m

uses Simpson’s rule to evaluate each integral.

% FOURIER TRANSFORM CALCULATIONS ===============

 H = zeros(1,nF); hI = zeros(1,nT);HT = zeros(1,nF);

% Fourier Transform H(f)

 for c = 1:nF

 g = h.* exp(1i*2*pi*f(c)*t);

 H(c) = simpson1d(g,tMin,tMax);

 end

% INVERSE Fourier Transform hI(t)

for c = 1:nT

 g = H.* exp(-1i*2*pi*t(c)*f);

 hI(c) = simpson1d(g,fMin,fMax);

end

The code for the power calculations:

% One-sided power spectral density PSD Ph(f)

 psd = 2.*conj(H).*H;

% Total power PT (time domain) and PF (frequency domain)

 PT = simpson1d(h.^2,tMin,tMax);

 PF = simpson1d(Ph,fMin,fMax)./2;

 fprintf('PT = %4.4f \n \n',PT);

 fprintf('PF = %4.4f \n \n',PF);

 8

EXAMPLES

1. Gaussian Function ()2
() exph t t= −

Fig. 1.1. A plot of a Gaussian function and its inverse Fourier

transform.

Fig. 1.2. The Fourier transform ()H f of the function ()h t

 9

Fig. 1.3. One sided power spectral density PSD, ()hP f . Only

the positive frequency interval is displayed.

The total powers in the signal calculated from equation 3 are

displayed in the Command Window

 time domain PT = 0.7071

 frequency domain PF = 0.7071

The execution time for the computation using the tic / toc

commands is less than one second.

A narrow Gaussian signal has a wide spectrum whereas a wide

Gaussian signal has a narrow spectrum such that t f K  

where  gives the widths and K is some positive constant.

 10

Fig. 1.4. Wide signal.

Fig. 1.5. Narrow signal.

 11

Fig. 1.6. Narrow spectrum for narrow pulse.

Fig. 1.7. Wide spectrum for narrow pulse.

 12

2. EXPONENTIAL FUNCTION () 2 exp(3)h t t= −

We can compute the continuous Fourier transform of an

exponential function such as

 3
() 2

t
h t e

−
=

 We can test our numerical estimate of the Fourier transform

with the analytically estimate given by

()

2
()

3 2
H f

i f
=

+

Fig. 2.1. The function h(t) and the inverse Fourier transform

hI(t).

 13

Fig. 2.2. The Fourier transform showing excellent agreement

between the numerical results and the analytical prediction.

Fig. 2.3. One sided power spectral density PSD, ()hP f . Only

the positive frequency interval is displayed.

 14

3. Sinusoidal functions ()0 0 0() sin 2h t A f t = +

We can easily computer the Fourier transform of the sinusoidal

function expressed in the form

 ()0 0 0() sin 2h t A f t = +

Fig. 3.1. The function ()0 0 0() sin 2h t A f t = + where

0 0 01 10 Hz 0 radA f = = = . A = 1. The units for time t

are seconds.

 15

Fig. 3.2. Absolute value of the Fourier transform and its

phase. To plot the phase, uncomment the code in the

segment for figure 2.

Fig. 3.3. Real and imaginary parts of the Fourier transform.

 16

Fig. 3.4. One sided power spectral density PSD, ()hP f . Only

the positive frequency interval is displayed.

 The total powers in the signal calculated from equation 3 are

displayed in the Command Window

 time domain PT = 0.2000

 frequency domain PF = 0.2000

 17

Doubling the amplitude: A = 2

 time domain PT = 0.8000

 frequency domain PF = 0.7999

Fig. 3.5. When the amplitude is doubled, the energy

supplied by the signal increases by a factor of 4 [
2

P A].

 18

Doubling the frequency: f = 20 Hz

 time domain PT = 0.2000

 frequency domain PF = 0.1999

Fig. 3.6. When the frequency is doubled, the energy supplied
by the signal does not change (not increase x4 ???).

 19

Changing the phase: 0 / 6 =

Fig. 3.7. Changing the phase of the sinusoidal function has
negligible effect on the Fourier transform.

 20

4. Superposition of sinusoidal functions

Consider the signal which is the superposition of four sinusoidal
functions where Hz 0 20f = .

() ()

() ()

1 0 2 0

3 0 4 0

() sin 2 sin 2 (2)

sin 2 (3) sin 2 (4)

h t A f t A f t

A f t A f t

 

 

= + +

+

Fig. 4.1. The superposition of four sinusoidal function:

0 1 2 3 420 1f Hz A A A A= = = = =

 21

Fig. 4.2. The absolute value of the Fourier transform and the

PSD function.

The total powers in the signal calculated from equation 3 are

displayed in the Command Window

 time domain PT = 0.4000

 frequency domain PF = 0.3972

 22

Simulation with parameters:

0

1 1 2 2

3 3 4

20

1 20 2 40

3 60 4 4 80

f Hz

A f A f

A f A f

=

= = = =

= = = =

Fig. 4.3. The function and the inverse Fourier transform.

 23

 Fig. 4.4. The Fourier transform.

The major four peaks in figure 16 can be found in the

Command Window using the statements

 [a b]=findpeaks(abs(H),'MinPeakHeigh',0.13)

 f(b)

 a./a(4)

The frequencies of the peaks and their relative heights […]

are:

 18.4 [1.0] 39.1 [1.6] 59.6 [2.3] 80.3 [3.0]

 24

Fig. 4.5. The PSD function.

The major four peaks in figure 17 can be found in the

Command Window using the statements

 [a b] = findpeaks(Ph,'MinPeakHeigh',0.03)

 f(b)

 a./a(4)

The frequencies of the peaks and their relative heights […]

are:

 18.4 [1.0] 39.1 [2.6] 59.6 [5.1] 80.3 [9.1]

 25

5. Square wave

A square wave can be approximated by a Fourier series of the

form

()
()

() ()

0
0

0 0

sin 2 (3)
() sin 2

3

sin 2 (5) sin 2 (7)

5 7

f t
h t f t

f t f t




 

= + +

+ +

Fig. 5.1. The square wave signal ()0 10 Hzf = and its inverse

Fourier transform.

The series exhibits a non-uniformity of convergence near a

discontinuity. Note, the overshoot, which is called the Gibb’s

phenomena. The greater the number of terms included in the

 26

series a better the approximation, however, the overshoot

remains finite.

Fig. 5.2. The Fourier transform of the square wave signal.

The location and amplitude of the peaks can be estimated using

the ginput function in the Command Window

 >> xx = ginput

 xx =

 9.7581 0.1940

 29.9194 0.0638

 50.0806 0.0379

 69.9194 0.0268

 90.2419 0.0212

 110.0806 0.0176

 27

The Fourier transform routine correctly calculated the peak
frequencies of 10, 30, 50, 70, 90 and 110 Hz.

The relative heights of the peaks can be computed in the

Command Window

>> xx(:,2)./xx(1,2)

 1.0000 0.3287 0.1956 0.1384 0.1092 0.0905

 The theoretical predictions for the relative amplitudes are

 1/1 1/3 1/5 1/7 1/9 1/11

 1.0000 0.3333 0.2.000 0.1429 0.1111 0.0909

Again, good agreement between the theoretical values and the

computed values.

Fig. 5.3. The PSD function.

 28

6. SAWTOOTH FUNCTION

A sawtooth function can be approximated by a Fourier series of

the form

()0

1

sin 2
() (1)

n

n

n f t
h t A B

n



=

= + −

Fig.

6.1. The sawtooth function and the inverse Fourier transfer.

The DC component of the function has been removed. The

fundamental frequency is ()0 0.10 Hzf = .

As for the square wave, there are overshoots at the

discontinuities.

 29

Fig. 6.2. The Fourier transform of the sawtooth function.

The location and amplitude of the peaks can be estimated using

the ginput function in the Command Window

 >> xx = ginput

 xx =
 0.0992 81.1835
 0.1992 40.1076
 0.3008 26.6535
 0.3992 20.0283
 0.5008 15.9513
 0.6008 13.3012
 0.7008 11.4666
 0.8008 9.8358
 0.9008 8.9185
 0.9992 8.1031
 1.1008 7.1857

 30

The Fourier transform routine correctly calculated the peak

frequencies of 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

1.00 and 1.10 Hz.

The relative heights of the peaks can be computed in the

Command Window (xx(:,2)/xx(1,2)) and again there is good

agreement between the theoretical values and the computed

values.

n 1/n Theory Computed

1 1/1 1.000 1.000

2 1/2 0.500 0.494

3 1/3 0.333 0.328

4 1/4 0.250 0.247

5 1/5 0.200 0.197

6 1/6 0.167 0.164

7 1/6 0.143 0.141

8 1/8 0.125 0.121

9 1/9 0.111 0.110

10 1/10 0.100 0.100

11 1/11 0.091 0.089

 31

Fig. 6.3. The PSD function.

 32

7. Single Square Pulse

The Fourier and inverse of a single square pulse can easily be

computed.

 Square pulse generated by the code

 h = zeros(1,nT);
 h(round(nT/3) : round(2*nT/3)) = 1;
 % h = h - 0.5;

The DC component of the square pulse can be removed by un-

commenting the statement % h = h – 0.5.

Fig. 7.1. The square pulse and its inverse Fourier transform.

 33

Fig. 7.2. The Fourier transform of the square pulse with a large

DC component.

Fig. 7.3. The PSD function for the square pulse.

 34

Fig. 7.4. The square pulse and its inverse Fourier transform

with the DC component removed.

 35

Fig. 7.5. The absolute value of the Fourier transform of the

square pulse with the DC component removed. The spacing

between the peaks for f > 0 or f < 0 is constant ()0.60 Hzf = .

 36

We can explore the concept that a narrow pulse has a much

broader frequency spectrum.

Fig. 7.6 Square wave pulses.

 37

Fig. 7.7. The narrow pulse (top graph) does have a broader

spectrum where higher frequency components make a

contribution to the Fourier Transform.

 38

8. Damped sine wave

The function for a damped sine wave can be expressed as

 0() exp(/) sin(2)h t A t f t = −

This function might represent the displacement of a damped

harmonic oscillator or the electric field in a radiated wave, or

the current in an antenna.

Fig. 8.1. A damped sine wave with 01 10 Hz 0.1 sA f = = =

 39

Fig. 8.2. The Fourier transform of the damped sine.

Fig. 8.3. Energy spectrum for the damped sine wave.

The width of the PSD function at half maximum power is

approximately equal to
1

3.18 Hzf
 

  = . The width at half

maximum power using the data Cursor of figure 31 is 3.40 Hz.

 40

9. ECG recording

The raw data for an ECG recoding is stored in the data file

ecg.mat. An estimate of the time scale is used and the DC

component of the signal is removed.

Fig. 9.1. The ECG recording.

 41

Fig. 9.2 The Fourier transform of the ECG recording and PSD

function for the ECG recording.

 42

10 BEATS (sound files)

A beat signal is computed by the addition of two sinusoidal

functions

 A1 = 1; A2 = 1;

 f1 = 1000; f2 = 1008;

 phi1 = 0; phi2 = 0;

 h = A1.*sin(2*pi*f1*t + phi1) + A2.* sin(2*pi*f2*t+ phi2);

Fig. 10.1. Beat pattern of two pure tones 1000 Hz and 1008 Hz.

 43

Fig. 10.2. The Fourier transform of the beat signal. It took

about 43 seconds to calculate the Fourier transform. Zoom

view of the PSD function showing the two peaks

at frequencies 1000 Hz and 1008 Hz.

 44

11. BEATS (audio file)

The recording of a beat pattern produced by two pure tones of

1000 Hz and 1008 Hz is loaded from the wav file

wav_S1000_1008.wav.

Fig. 11.1. Beat pattern.

 45

Fig. 11.2. The Fourier transform of the beat signal. It took

about 43 seconds to calculate the Fourier transform. Zoom

view of the PSD function showing the two peaks

at frequencies 1000 Hz and 1008 Hz.

 46

12. Sound recording at 440 Hz

 [signal, Fs] = audioread('audio440.wav');

Fig. 12.1. 440 Hz Signal

Fig. 12.2. The Fourier transform accurately predicts the signal

frequency at 440 Hz.

 47

13. 220 Hz Guitar / 14. 220 Hz Clarient / 15. 220 Hz Voice

We can compare three recording of a note at 220 Hz produced

by a guitar, clarinet and by a voice.

 48

Guitar

Clarinet

Voice

 49

The predominant frequencies for the guitar are its fundamental

(220 Hz) and the 1st harmonic (440 Hz). The clarinet

fundamental is at 220 Hz, the 1st harmonics at 440 Hz and a

strong 3rd harmonic at 660 Hz. The voice has the fundamental

at 220 Hz and the 3rd harmonic at 660 Hz and the 2nd harmonic

is absent.

 50

16. Train Whistle

The recording of a train whistle is loaded from the wav file

Train.wav.

Fig. 16.1. The sound of a train whistle.

Fig. 16.2. The Fourier transform of a train whistle.

 51

17. Digital Filtering

We can digitally filter a signal by setting the Fourier transfer

function to zero for the desired frequency range. For example,

consider the superposition of two sine functions with

frequencies 1000 Hz and 100 Hz.

h = sin(2*pi*1000*t) + sin(2*pi*100*t);

Fig. 17.1. Unfiltered signal with frequency components 1000

Hz and 100 Hz.

 52

Fig. 17.2. Fourier transform of the unfiltered signal with

frequency components 1000 Hz and 100 Hz.

Fig. 17.3. PSD function for the unfiltered signal with frequency

components 1000 Hz and 100 Hz.

 53

The original signal can be low pass filtered by removing all

frequency components with values less than 500 Hz by

uncommenting the lines of code

% Filtering (uncomment for filtering effects)
% H(f<500) = 0;

 H(f<500) = 0;

Fig. 17.4. The 100 Hz frequency component is removed and we
are left with the pure 1000 Hz signal.

 54

Fig.17.5. The filtered Fourier transform with the low frequency

100 Hz component removed.

Fig. 17.6. The filtered PSD function with the low frequency 100

Hz component removed.

