

Ian Cooper School of Physics, University of Sydney ian.cooper@sydney.edu.au

DOWNLOAD MATLAB SCRIPTS

This document gives you a brief introduction and a reference section for getting started with Matlab. The first section describes the extensive on-line help that is provided within the Matlab environment. The remaining sections describe some of the more commonly used Matlab commands, how data is stored in matrices and how to create your own Matlab functions.

HELP

There are an enormous number of Matlab commands that can be used. Using the Command Window or the Help Window, one can access most of the information about using Matlab. Access to the Help Window is though typing **helpdesk** or selecting the Help menu or typing **help** in the Command Window. A good way to get more familiar with using Matlab is to know how to use the help provided effectively.

The Help has a hierarchical structure, for example:

help (help topics) \rightarrow **help elfun** (elementary math functions) \rightarrow **help atan2** (four quadrant inverse tangent).

The help entries can be searched for keywords using the **lookfor** command. For example, searching for the keyword gives numerous matches:

lookfor 'inverse' \rightarrow

nvhilb	inverse Hilbert matrix.
ipermute	inverse permute array dimensions.
acos	inverse cosine.
acosh	inverse hyperbolic cosine.
acot	inverse cotangent.
acoth	inverse hyperbolic cotangent.

Typing **help** in the Command Window gives a list of the available help topics.

help

matlab\general	General purpose commands		
matlab\ops	Operators and special characters		
matlab\lang	Programming language constructs		
matlab\elmat	Elementary matrices and matrix manipulation		
matlab\elfun	Elementary math functions		
matlab\specfun	Specialized math functions		
matlab\matfun	Matrix functions and numerical linear algebra		
matlab\datafun	Data analysis and Fourier transforms		
matlab\audio	Audio support		
matlab\polyfun	Interpolation and polynomials		
matlab\funfun	Function functions and ODE solvers		
matlab\sparfun	Sparse matrices		
matlab\graph2d	Two dimensional graphs		
matlab\graph3d	Three dimensional graphs		
matlab\specgraph	Specialized graphs		
matlab\graphics	Handle Graphics		
matlab\uitools	Graphical user interface tools		
matlab\strfun	Character strings		
matlab\iofun	File input/output		
matlab\timefun	Time and dates		
matlab\datatypes	Data types and structures		
matlab\verctrl	Version control		
matlab\winfun	Windows Operating System Interface Files		
	(DDE/COM)		
matlab\demos	Examples and demonstrations		
toolbox\local	Preferences		
images\images	Image Processing Toolbox		
images\imdemos	Image Processing Toolbox demos and		
	sample images		
signal\signal	Signal Processing Toolbox		
signal\signal	Signal Processing Toolbox		
signal\sigtools	Design & Analysis Tool (GUI)		
signal\sptoolgui	Signal Processing Toolbox GUI		
signal\sigdemos	Signal Processing Toolbox Demonstrations.		

For more help on directory/topic, type "help topic". For command syntax information, type "help syntax".

Elementary math functions

Trigonometric				
sin	Sine	sinh	Hyperbolic sine	
asin	Inverse sine	asinh	Inverse hyperbolic sine	
cos	Cosine	cosh	Hyperbolic cosine	
acos	Inverse cosine	acosh	Inverse hyperbolic cosine	
tan	Tangent.	tanh	Hyperbolic tangent	
atan	- Inverse tangent	atan2	Four quadrant inverse tangent	
atanh	Inverse hyperbolic tangent			
sec	Secant	sech	Hyperbolic secant	
asec	Inverse secant	asech	Inverse hyperbolic secant	
CSC	Cosecant	csch	Hyperbolic cosecant	
acsc	Inverse cosecant	acsch	Inverse hyperbolic cosecant	
cot	Cotangent	coth	Hyperbolic cotangent	
acot	Inverse cotangent	acoth	Inverse hyperbolic cotangent	

Exponential					
ехр	Exponential	log	Natural logarithm		
log10	Common (base 10) logarithm	log2	Base 2 logarithm and dissect floating point number		
pow2	Base 2 power and scale floating point number	realpow	Power that will error out on complex result		
reallog	Natural logarithm of real number	realsqrt	Square root of number greater than or equal to zero		
sqrt	Square root	nextpow2	Next higher power of 2		

Complex				
abs	Absolute value	angle	Phase angle	
complex	Construct complex data from real and imaginary parts	conj	Complex conjugate	
imag	Complex imaginary part	real	Complex real part	
unwrap	Unwrap phase angle	isreal	True for real array	
cplxpair	Sort numbers into complex conjugate pairs			

Rounding and remainder				
fix	Round towards zero	floor	Round towards minus infinity	
ceil	Round towards plus infinity	round	Round towards nearest integer	
mod	Modulus (signed remainder after division)	rem	Remainder after division	
sign	Signum			

help atan2

ATAN2 Four quadrant inverse tangent. ATAN2(Y,X) is the four quadrant arctangent of the real parts of the elements of X and Y. $-pi \le ATAN2(Y,X) \le pi$.

See also ATAN.

The Matlab help accessed through the Help Window contains more information than the information displayed in the Command Window. For example, searching in the Help Window for the function **atan2** gives:

atan2 Four-quadrant inverse tangent Syntax P = atan2(Y,X)

Description

P = atan2(Y,X) returns an array P the same size as X and Y containing the element-by-element, four-quadrant inverse tangent (arctangent) of the real parts of Y and X. Any imaginary parts are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the MATLAB floating-point representation of π .

atan uses sign(Y) and sign(X) to determine the specific quadrant.

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the interval $[-\pi/2, \pi/2]$, or the right side of this diagram.

Examples Any complex number z = x + iy is converted to polar coordinates with r = abs(z)theta =atan2(imag(z),real(z))

For example, z = 4 + 3i; r = abs(z); theta = atan2(imag(z), real(z)) r = 5 theta = 0.6435

help FILEFORMATS

Readable file formats.

Data Formats				
Format	Command	Returns		
MAT - MATLAB workspace	Load	Variables in file		
CSV - Comma separated	csvread	Double array.		
numbers				
DAT - Formatted text	importdata	Double array		
DLM - Delimited text	dlmread	Double array		
TAB - Tab separated text	dlmread	Double array		
Spreadsheet formats				
XLS - Excel worksheet	xlsread	Double & cell array		
Scientific data formats				
CDF - Common Data Format	cdfread	Cell array of CDF records		
FITS - Flexible Image Transport	fitsread	Primary or extension table		
System		data		
HDF - Hierarchical Data Format	hdfread	HDF or HDF-EOS data set		
Movie formats				
AVI - Movie	aviread	MATLAB movie		
Image formats				
TIFF - TIFF image	imread	Truecolor, grayscale or		
		indexed image(s).		
PNG - PNG image	imread	Truecolor, grayscale or		
		indexed image		
HDF - HDF image	imread	Truecolor or indexed		
		image(s)		
BMP - BMP image	imread	Truecolor or indexed image		
JPEG - JPEG image	imread	Truecolor or grayscale image		
GIF - GIF image	imread	Indexed image		
PCX - PCX image	imread	Indexed image		
XWD - XWD image	imread	Indexed image		
CUR - Cursor image	imread	Indexed image		
ICO - Icon image	imread	Indexed image.		
RAS - Sun raster image	imread	Truecolor or indexed		
PBM - PBM image	imread	Grayscale image		
PGM - PGM image	imread	Grayscale image		
PPM - PPM image	imread	Truecolor image		
Audio formats				
AU - NeXT/Sun sound	auread	Sound data and sample rate		
SND - NeXT/Sun sound	auread	Sound data and sample rate		
WAV - Microsoft Wave sound	wavread	Sound data and sample rate		

See also IOFUN

Matlab help is very useful but extensive and so the purpose of this Chapter is to review many of the common Matlab features and commands through illustrative examples.

GENERAL PURPOSE COMMANDS

The following table list just a few of the Matlab commands that are used for managing the Matlab environment. The Matlab command is typed into the Command Window. For more information on any of the commands lists use help, e.g., help ver.

N/ 41 1	
Matlab Command	Function / Purpose
helpdesk	Opens Help Window
demo	Can view and run available Matlab demonstrations.
info	Provides contact information for getting extra assistance with Matlab.
ver	Displays the current Matlab, Simulink and toolbox version information.
dir	Lists the files in a directory. Pathnames and wildcards may be used. For example, dir *.m lists all the M-files in the current directory.
cd	cd by itself, prints out the current directory. Change current working directory. cd directory-spec: sets the current directory to the one specified cd \a03\mat\graphics
	cd moves to the directory above the current one.
path	Controls Matlab's search path. For example, the following statements add another directory to Matlab's search path Windows: path(path,'c:\ao3\mat\graphics')
pdf	Shows current working directory.
what	List MATLAB specific files in the current directory.
which	Locates functions and files which result \rightarrow result not found. which sinc \rightarrow C:\a03\mat\mg\scripts\sinc.m
save load	save test.mat \rightarrow saves all workspace variables to the file test.mat in the current directory.
	load test \rightarrow loads the variables saved in the file test.mat.
	save xData \rightarrow saves only the variable xData.

	load Xdata \rightarrow loads the variable xData into the Matlab workspace.
	save test.mat xData yData zData \rightarrow saves the
	variables Xdata, yData and zData in the file
	test.mat in the current directory.
delete	delete test.mat \rightarrow deletes the file test.mat from the current directory.
pack	Consolidate workspace memory: performs memory garbage collection. Extended Matlab sessions may cause memory to become fragmented, preventing large variables from being stored. pack saves all variables on disk, clears the memory, and then reloads the variables.
diary	Save text of MATLAB session.
	diary filename \rightarrow causes a copy of all subsequent
	command window input and most of the resulting
	command window output to be appended to the
	named file. If no file is specified, the file 'diary' is
	used.
	diary off \rightarrow suspends it.
	diary on \rightarrow turns it back on.
	diary \rightarrow , by itself, toggles the diary state.
clear	clear \rightarrow clears all variables and functions from workspace.
	clear all \rightarrow removes all variables, globals, functions
	and MEX links.
	clear Xdata yData \rightarrow clears the variables xData and
	yData from the workspace.
home	Moves the cursor to the upper left corner of the
	Command Window and clears the visible portion of
	the window. You can use the scroll bar to see what
	was on the screen previously.
clc	Clears the command window and homes the cursor.
echo on / off	Toggles the printing of instructions from m-script in
	Command Window.

Miscellaneous m-script commands

miscinancous m-script commanus			
pause wait for user response	keyboard		
(press any key to continue)	stops execution of the m-script and		
(F)))	gives control to keyboard.		
$\mathbf{p}_{ause}(10) \rightarrow \text{ halts execution of}$	8		
$pause(10) \rightarrow nans execution of maximum for 10 accords$	K appears hefers the prompt		
m-script for 10 seconds	K appears before the prompt.		
pause(0.1) \rightarrow halts execution of	Variables may be examined or		
m-script for 0.1 seconds	changed – all commands are valid.		
pause off \rightarrow subsequent pause	Kayboard mode terminated by hitting		
ignored	Reyboard mode terminated by mitting		
Ignored	Enter		
	input		
pause on \rightarrow subsequent pause	prompt user for input		
commands should pause			
	num = input('How many particles? ')		
	······································		
menu			
choice - menu(header item1	item?)		
choice – menu(neader, itemit,	item2,)		
Generate a menu of choices for user input.			
K = menu('Choose a color','Red','Blu	e','Green') \rightarrow		
Choose a color			
1) Red			
2) Blue			
3) Green			
-,			
Select a menu number:			
The number entered by the user in response to the prompt is returned as K			
\cdot	not to the prompt to retained up it		
(i.e. $K = 2$ implies that the user selected	Rlue)		

Operators and special functions

+	plus	-	minus	^	matrix power
.^	array power	١	backslash or left division	/	slash or right division
./	array division	:	colon (subscripting, array manipulation)	()	parentheses (contains arguments)
	decimal point		parent directory		continuation
,	comma (argument / statement separator)	;	semicolon (suppress statement output)	*	matrix multiplication
•*	array multiplication	%	comment	'	transpose
-'	nonconjugated transpose	Ι	assignment		equality
<	less than	>	greater than	<=	less than or equal to
>=	greater than or equal to	8	logical AND	I	logical OR
~	logical NOT	xor	logical EXCLUSIVE OR		

Rational and logical operations

= < <= > >= == ~~= x = 1; y = 20; if x == 2, a = 0, end; if y >= 15, a = 1, end $\rightarrow a = 1$ $x == 4 \rightarrow 0$ $x == 1 \rightarrow 1$	& logical and x = 1; y = 20; if $x == 1 \& y \le 2, a = 0, end;$ if $x > 0 \& y \le 100, a = 1, end$ $\rightarrow a = 1$
	~
logical or	logical not
$\begin{array}{l} x = 1; \ y = 20; \ a = 99; \ b = 1; \\ \text{if } x < 1 \ \ y >= 2, \ a = 0, \ \text{end}; \\ \text{if } x > 10 \ \ y < 1, \ a = 1, \ \text{end} \\ \rightarrow a = 0 \end{array}$ $\begin{array}{l} \text{if } (x == 2 \ \ y \sim = 19) \ \& \ (a == 99), \\ b = 0; \\ \rightarrow b = 0 \end{array}$	x = 1; y = 20; a = 0; $\sim x \rightarrow 0 \sim y \rightarrow 0 \sim a \rightarrow 1$ $x \sim = 4 \rightarrow 1$

ARRAYS AND MATRICIES

Matlab works with arrays or matrices and the elements may be strings, real or complex numbers and functions can have real or complex arguments. Matlab functions and arithmetic operations can be performed directly on matrices. A matrix of a single element can be through of a single constant or variable (A = 3). A matrix can be a row vector or a column vector or a multi-dimensional array. Unlike most programming languages, commands can act simultaneously on all elements of an array. For example the set of numbers 1, 4, 9, 16, 25, 36, 49 can be entered into a row vector by a statement in the Command, for example:

xR = [1 4 9 16 25 36 49]

The command **sqrt(xR)** will act on each element of the array xR by taking the square root of each number

sqrt(xR) \rightarrow 1 2 3 4 5 6 7

The name of a matrix must be start with any letter, followed by any combination of letters (upper or lower case) and numbers, for example,

A, a, ScreenWidth, xR, xC, Slit_separation (A and a refer to different matrices)

The tables below show how data can be entered into a matrix; how to perform some of the operations and use functions that can act on matrices; and lists some of the special Matlab matrices. The appearance and number of significant figures of a matrix displayed in the Command Window can be changed using the **format** command.

Format x = 51.12345678987	$y = 5.1123456 \times 10^{23}$
format or format short	format long
$x \rightarrow 51.1235$	$x \rightarrow 51.12345678987654$
y → 5.1123e+023	$y \rightarrow 5.11234560000000e+023$
format short e	format long e
$x \rightarrow 5.1123e+001$	$x \rightarrow 5.112345678987654e+001$
y → 5.1123e+023	$y \rightarrow 5.11234560000000e+023$
disp (display array)	
disp(x) \rightarrow 51.1235	
tm = ' time t (s)'	
disp(tm) \rightarrow time t (s)	

There is a very extensive set of Matlab mathematical functions. Some of the functions which are most commonly used are given in the table below. It is a good idea to practice using these functions in the Command Window.

winscentaneous runcu	Miscel	aneous	funct	tions
----------------------	--------	--------	-------	-------

abs(x) abs(-51) → 51	sqrt(x) sqrt(51) → 7.1414 sqrt(-51) → 0 + 7.1414i
round(x) round to nearest integer round(51) → 51 round(-51) → -51 round(51.145) → 51 round(-51.145) → -51 round(51.845) → 52 round(-51.845) → -52	$\begin{array}{ll} \textbf{fix(x)} & \text{round towards zero} \\ fix(51) & \rightarrow & 51 \\ fix(-51) & \rightarrow & -51 \\ fix(51.145) & \rightarrow & 51 \\ fix(-51.145) & \rightarrow & -51 \\ fix(51.845) & \rightarrow & 51 \\ fix(-51.845) & \rightarrow & -51 \end{array}$
floor(x) round toward - ∞ floor(51) \rightarrow 51 floor(-51) \rightarrow -51 floor(51.145) \rightarrow 51 floor(-51.145) \rightarrow -52 floor(51.845) \rightarrow 51 floor(-51.845) \rightarrow -52	ceil(x) round toward $+\infty$ ceil(51) \rightarrow 51 ceil(-51) \rightarrow -51 ceil(51.145) \rightarrow 52 ceil(-51.145) \rightarrow -51 ceil(51.845) \rightarrow 52 ceil(-51.845) \rightarrow 52
$\begin{array}{rl} \text{sign}(\textbf{x}) & \text{sign} \\ & \text{sign}(51.145) \rightarrow 1 \\ & \text{sign}(-51.145) \rightarrow -1 \\ & \text{sign}(0) \rightarrow 0 \end{array}$	mod(x,y)modulus $mod(30,5) \rightarrow 0$ $mod(-30,5) \rightarrow 0$ $mod(31,5) \rightarrow 1$ $mod(-31,5) \rightarrow 4$ $mod(34,5) \rightarrow 4$ $mod(-34,5) \rightarrow 1$
rem(x,y) remainder rem(30,5) → 0 rem(-30,5) → 0 rem(31,5) → 1 rem(-31,5) → -1 rem(34,5) → 4 rem(-34,5) → -4	exp(x) exponential base e exp(1) \rightarrow 2.7183 exp(0) \rightarrow 1 exp(-5.145) \rightarrow 0.0058
log(x) log base e log(exp(1)) → 1 log(10) → 2.3026	log10(x) log base 10 log10(exp(1)) → 0.4343 log10(51.145) → 1.7088
factorial(x) factorial x! factorial(4) → 24	rand random number 0 to 1 rand → 0.9318 rand(2,3) → 0.4660 0.8462 0.2026 0.4186 0.5252 0.6721 a = 1; b = 10; floor(a + b*rand) → random integer from 1 to 10 ? rand('state', sum(100*clock)) reset random number generator, so different results are obtained

date $s = date; s \rightarrow 04-Oct-2003$	clock clock = [year month day hour minute seconds] fix(clock) \rightarrow 2003 10 4 16 23 35
etime	tic starts a seconds counter
difference in seconds between two dates	toc stops the seconds counter
T0 = [2000 10 15 0 0 0] T1 = [2004 10 10 12 0 0]	
etime(T1,T0) \rightarrow 125841600	
cputime elapsed CPU time in seconds	
a = cputime \rightarrow	
a = 1.81101000000000e+003	
eval	feval
evaluates a string expression	executes functions specified by strings
s = '123'	
$a = eval(s) \rightarrow a = 123$	
global	(press Enter)
defines global variables	Long lines converted into short lines
	y = amp1*sin(2*pi*x/lambda1) + amp2*sin(2*pi*x/lambda2)

Complex numbers z = x + i y $i = \sqrt{-1}$ or $j = \sqrt{-1}$

	-
angle(z)	real(z)
z = 4.5600 + 1.2300i	z = 4.5600 + 1.2300i
$angle(z) \rightarrow 0.2635$	real(z) $\rightarrow 4.5600$
imag(z)	conj(z)
z = 4.5600 + 1.2300i	z = 4.5600 + 1.2300i
$imag(z) \rightarrow 1.2300$	conj(z) → 4.5600 - 1.2300i
abs(z) z = 4.5600 + 1.2300i abs(z) → 4.7230	

(angles must be radians)					
sin(x) x = 30 % x in degrees sin(x*(pi/180)) → 0.5000	asin(x) x = 0.7071 $asin(x) \rightarrow 0.7854$ % angle in radians $(180/pi)^*asin(x) \rightarrow 44.995$ % angle in degrees				
cos(x) x= 30 % x in degrees $cos(x*(pi/180)) \rightarrow 0.8660$	acos(x) x = 0.7071 acos(x) → 0.7854 % angle in radians (180/pi)*acos(x) → 45.0005 % angle in degrees				
tan(x) x= 30 % x in degrees tan(x*(pi/180)) → 0.5774	atan(x) x = 0.7071 atan(x) → 0.0706 % angle in radians (180/pi)*atan(x) → 4.0447 % angle in degrees				
atan2(y,x) y = 1; x = 1 tan2(y,x)/pi → 0.2500 y = 1; x = -1 tan2(y,x)/pi → 0.7500 % answers in rad / π	atan2(y,x) y = -1; x = 1 tan2(y,x)/pi → -0.2500 y = 1; x = -1 tan2(y,x)/pi → 0.7500 % answers in rad / π				

Trigonometric functions (angles must be radians)

Setting up matrices				
Simple variables	Row vector			
u = 6; v = -12; Complex variable z = 12 - 3i	$xR = [1 2 3 4] \rightarrow 1 2 3 4$ $yR = [9, 6, 3] \rightarrow 9 6 3$ Xmin = 0; Xmax = 3; dX = 0.5; X = Xmin : dX : Xmax $\rightarrow 0 \ 0.5 \ 1.0 \ 1.5 \ 2.0 \ 2.5 \ 3.0$ $length(XR) \rightarrow 4$ $length(yR) \rightarrow 3$ $length(X) \rightarrow 7$ Removing an element $X(6) = [] \rightarrow 0 \ 0.5 \ 1.0 \ 1.5 \ 2.0 \ 3.0$			
Column Vector	Matrix $\underline{3}$ rows $\times \underline{4}$ columns			
$ xC = [1 ; 2; 3; 4] \rightarrow 1 \\ 2 \\ 3 \\ 4 $	$M = \begin{bmatrix} 1 & 2 & 3 & 4; & 5 & 6 & 7 & 8; & -1 & -5 & -8 & -7 \end{bmatrix} \rightarrow \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$			
length(xC) \rightarrow 4				
Removing element $xC(3) = [] \rightarrow 1$ 2 4	$M(:, 2) \rightarrow 2 \qquad \text{column vector}$ $\begin{array}{c} 6 \\ -5 \end{array}$ $M(1, :) \rightarrow 1 \ 2 \ 3 \ 4 \qquad \text{row vector}$ $M(2, [1, 2]) \rightarrow 5, 7$			
Adding a column	$\operatorname{Pr}(\mathcal{Z}, [\mathcal{I} \mathcal{Z}]) \rightarrow \mathcal{Z}$			
$xC(:,2) = [6; 7; 8; 9] \rightarrow$	M(3, 2:3) → -5 -8			
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Removing a column $M(:, 2) = [] \rightarrow 1 3 4$ 5 7 8 -1 -8 -7			

Matricies	
size	who
size of an array	lists the current variables
size(u) \rightarrow 1, 1 size(xR) \rightarrow 1, 4 size(xC) \rightarrow 4, 1 size(M) \rightarrow 3, 4	whos lists all the variables in the current workspace, together with information about their size, bytes, class, etc.
linspace(Xmin; Xmax, N) linear spaced row vector with N elements from Xmin to Xmax values with a spacing between elements of dX = (X(N)-X(1))/(N-1) Xmin = 0; Xmax = 10; N = 10; X = linspace(Xmin,Xmax,N) → 0, 1.111, 2.222, 3.333, 4.444, 5.556, 6.667, 7.778, 8.889, 1.000 Xmin = 0; Xmax = 10; N = 11; X = linspace(Xmin,Xmax,N) → 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10	logspace(a, b, N) generates a row vector of N logarithmically equally spaced points between decades 10^{a} and 10^{b} a = 0; b = 3; N = 6; X = logspace(a,b,N) → 1.0e+003 * 0.0010 0.0040 0.0158 0.0631 0.2512 1.0000
eye(N)	zeros(M,N)
<i>N×N</i> identity matrix	M×N zero matrix
$eye(4) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$zeros(3,5) \rightarrow \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
ones(M,N)	sort(X)
M×N unit matrix	X = [9 5 7 3 1 2 8]
ones(2,6) $\rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 &$	sort(X) \rightarrow 1 2 3 5 7 8 9

sum(X)	max(X) min(X)
X = [9 5 7 3 1 2 8]	X = [9 5 7 3 1 2 8]
$sum(X) \rightarrow 35$	$max(X) \rightarrow 9$ min(X) $\rightarrow 1$
$M = \begin{bmatrix} 1 & 2 & 3 & 4; & 5 & 6 & 7 & 8; & -1 & -5 & -8 & -7 \end{bmatrix} \rightarrow \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ -1 & -5 & -8 & -7 \end{bmatrix} \rightarrow$
sums columns sum(M(:,1)) $\rightarrow 5$	min(M) \rightarrow -1 -5 -8 -7 min columns
sum(M,2) \rightarrow 10	max(M) \rightarrow 5 6 7 8 max columns
26 -21 sums rows	min(min(M)) \rightarrow -8 max(max(M)) \rightarrow 8
$sum(sum(M)) \rightarrow 15$ sums all elements	max or min of all elements max(M') \rightarrow 4 8 -1
	max rows

	num2str	str2num
	converts a number to a string	converts a character array representation
	pi = 3.14159265358979	matrix
$S = [1.126 \ 2.123 \ ; \ 3.123 \ 4.123]$		str2num('123') \rightarrow 123
	$ \rightarrow 1.123 2.123 \\ 3.123 4.123 $	str2num('abc123') \rightarrow []
	num2str(ni) _> '3 1416'	
	num2str(pi) \rightarrow '3.1416 num2str(pi, 0) \rightarrow '3' num2str(pi,8) \rightarrow '3.1415927' num2str(h) \rightarrow '6.6261e-034' num2str(h, 0) \rightarrow '7e-034' num2str(h,8) \rightarrow '6.63e-034' num2str(S,2) \rightarrow	disp displays the array, without printing the array name, same as leaving the semi- colon off an expression except that empty arrays don't display.
		disp(pi) \rightarrow 3.1416
	5.1 4.1	disp('Speed') \rightarrow Speed
max_speed = 25.45 disp('The maximum speed is ',num2str(max_speed),' m/s ') \rightarrow		nax_speed),' m/s ') \rightarrow
	The maximum speed is 25.45 m/s	

Format is a format control string containing conversion specifications or any optional text

%P.Qe	for exponential
%P.Qf	for fixed point
%P.Qg	select shorter of %P.Qe or %P.Qf

P integer specifying field width Q integer specifying number of decimal places

\n produces a new line

fprintf

Write formatted data to file.

x = 0:.1:1; y = [x; exp(x)]; fid = fopen('exp.txt','w'); fprintf(fid,'%6.2f %12.8f\n',y); fclose(fid);

sprintf

Write formatted data to string.

```
sprintf('%0.5g',(1+sqrt(5))/2) \rightarrow 1.618

sprintf('%0.5g',1/eps) \rightarrow 4.5036e+15

sprintf('%15.5f',1/eps) \rightarrow 503599627370496.00000

sprintf('%d',round(pi)) \rightarrow 3

sprintf('%s','Speed') \rightarrow Speed

sprintf('The array is %dx%d.',2,3) \rightarrow The array is 2x3.

sprintf('\n') \rightarrow line termination character
```

csvrad read a file of comma-separated valuescswrite write a file of comma-separated values

fcloseclose filefopenopen filefreadread binary data from filefwritewrite binary data to filefprintfwrite formatted data to filefscanfread formatted data from file

Matrix operations

Matrices that have identical dimensions can be **added** or **subtracted**. $A = [1 2 3; 4 5 6] \rightarrow \frac{1 2 3}{4 5 6} \qquad B = [9 8 7; 6 5 4] \rightarrow \frac{9 8 7}{6 5 4}$ $A + B \rightarrow \frac{10 \ 10 \ 10}{10 \ 10 \ 10} A - B \rightarrow \frac{-8 \ -6 \ -4}{-2 \ 0 \ 2}$ 1 2 3 $C = [A; 10 \ 11 \ 12] \rightarrow 4 \ 5 \ 6$ 10 11 12 $D = A + C \rightarrow ???$ Error using ==> + Matrix dimensions must agree. Matrices can be **multiplied** together. For example, C = A B where the matrix A has elements a_{ik} (i row and k column), B has elements b_{ki} and C has elements c_{ii} $c_{ij} = \sum_{k} a_{ik} b_{kj}$ $A = [1 2 3; 4 5 6] \rightarrow \begin{array}{c} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} B = [1 4; 2 6; 3 8] \rightarrow \begin{array}{c} 1 & 4 \\ 2 & 6 \\ 2 & 6 \end{array}$ $A*B \rightarrow \begin{array}{cccc} 14 & 40 \\ 32 & 94 \end{array} \quad B*A \rightarrow \begin{array}{cccc} 17 & 22 & 27 \\ 26 & 34 & 42 \\ 35 & 46 & 57 \end{array}$ Element by element multiplication can be done using the dot • operator, for example, C = [2 8; 4 12; 6 16]2 32 $B .* C = C .* B \rightarrow 8 72$ 18 128 For element by element multiplication, the two matrices must have matching dimensions. For example, error messages are returned for A .* B or B .*A A .*B \rightarrow ??? Error using ==> .* Matrix dimensions must agree. B.*A \rightarrow ??? Error using ==> .* Matrix dimensions must agree.

The **transpose** of a matrix is gives by the command transpose or '. For example,

1 4 transpose(A) \rightarrow 2 5 3 6 $\mathsf{B'} \rightarrow \begin{array}{c} 1 & 2 & 3 \\ \end{array}$ 4 6 8 $xR = [2468] \rightarrow 2468$ $yR = [-111-1] \rightarrow -111-1$ -11 $yR' \rightarrow$ -1 xR * yR \rightarrow ??? Error using ==> * Inner matrix dimensions must agree. $xR * yR' \rightarrow 0$ $xR \cdot yR \rightarrow -2 \ 4 \ 6 \ -8$ xR .* yR' \rightarrow ??? Error using ==> .* Matrix dimensions must agree. If the matrix that is to be transposed has complex elements, then the 'operator gives the complex conjugate transpose. To give the transpose without conjugation, use the .' operation 1.0000 4.0000 + 8.0000i $C = [1 4+8i ; 2-i 5 ; 3+6i 6-3i] \rightarrow 2.0000 - 1.0000i$ 5.0000 3.0000 + 6.0000i6.0000 - 3.0000i 3.0000 - 6.0000i 2.0000 + 1.0000i1.0000 $C' \rightarrow$ 4.0000 - 8.0000i 5.0000 6.0000 + 3.0000i1.0000 2.0000 - 1.0000i 3.0000 + 6.0000iC.' \rightarrow 4.0000 + 8.0000i5.0000 6.0000 - 3.0000i Matrix division -6.0000 -5.5000 -5.0000 $A/B \rightarrow$ 2.3333 -3.3333 $A \setminus B \rightarrow$ 3.3333 -4.3333 0 0 0 5.0000 4.5000 4.0000 A ./ B \rightarrow 0.1111 0.2500 0.4286 0.6667 1.0000 1.5000

Manipulating matrices

	1	2	3
A =	4	5	6
	7	8	9

rot 90 rotate matrix by 90 deg	grees		diag create or extract diagonals				
rot90(A) $\rightarrow \begin{array}{cccc} 3 & 6 & 9 \\ 2 & 5 & 8 \\ 1 & 4 & 7 \end{array}$				diag(A) $\rightarrow \begin{array}{c} 1\\ 5\\ 9\end{array}$			
trace				det			
sum of diagonal elements				determinant			
trace(A) $\rightarrow 15$				det(A) \rightarrow 0			
tril				triu			
extract lower triangular part				extract upper triangular part			
1	0	0					
$\begin{array}{ccc} \text{trii}(A) \rightarrow & 4\\ & 7\end{array}$	8	0 9		$\begin{array}{cccc} \text{triu(A)} \rightarrow & 0 & 5 & 6 \\ & 0 & 0 & 9 \end{array}$			
fliplr				flipup			
flip matrix in the left – right				flip matrix in the up – down direction			
direction				789			
	2	1		flipup(A) \rightarrow 4 5 6			
$filpir(A) \rightarrow 6$	5 8	4 7		1 2 5			
flip matrix along specified dimension				norm matrix or vector norm			
				norm(x) gives Euclidean length			
flindim(A 1) _	7	8 5	9 6	$x = [0 \ 1 \ 2 \ 3]$			
inpain(/(,1)	1	2	3	x = [0 1 2 3]			
			1	$norm(x) \rightarrow sqrt(0+1+4+9)$			
flipdim(A,2) \rightarrow 6 5		4	= 3.7417				
	9	8	7				

Find

Find indices of nonzero elements.

 $I = FIND(X) \rightarrow$ the indices of the vector X that are non-zero.

 $I = FIND(A>100) \rightarrow$ the indices of A where A is greater than 100.

 $[I,J] = FIND(X) \rightarrow row and column indices of the nonzero entries in matrix X.$

 $[I,J,V] = FIND(X) \rightarrow$ vector containing the nonzero entries in X.

Note that find(X) and find(X \sim =0) will produce the same I and J, but the latter will produce a V with all 1's.

MATLAB AS A PROGRAMMING LANGUAGE

Control of the execution of a program

Matlab is a program language where the code is stored in text files as m-script or as functions. An important set of commands are used to control the flow of the program by testing when some condition is satisfied using **if-else-end** or **switch-case** commands and by using **for** and **while** loops to repeat a set of statements.

Examples: if-end, if-else-end, if-elseif-end commands

```
N = input(' Enter a number ');
text = 'The number is not an integer'
if mod(N,2) == 0, text = 'The number is even integer'; end
if mod(N,2) == 1, text = 'The number is odd integer'; end
disp(text)
N = input(' Enter a number ');
if mod(N,2) == 0
text = 'The number is even integer';
else
text = 'The number is not an even integer';
end
disp(text)
N = input(' Enter a number ');
if mod(N,2) == 0
 text = 'The number is even integer';
elseif mod(N,2) = 1
text = 'The number is an odd integer';
else
text = 'The number is not an integer';
end
disp(text)
```

Loops

To maximize speed of execution, matrices should be pre-allocated before a For or While Loop.

for ... end break

Using the **for** ... **end** loop commands, statements can be repeated a number of times. Long loops are more memory efficient when the colon expression appears in the **for** command since the index vector is never created. The **break** statement can be used to terminate the loop prematurely. If the initial value is xMin, the increment is dx (can be positive or negative) and xMax is the final value of the loop variable

```
for c = xMin : dx : xMax
x = 20;
y = 10;
for cx = 1 : x;
for cy = x: -2 : y;
    psi(cx, cy) = cx^2 + cy^2;
    sin(2*pi*cx/25)*sin(2*pi*cy/55);
end
end
end
end
```

while ... end

The while statement is used to repeat a statement a number of times until a conditions is not satisfied. For example, to calculate a function a given number of steps

maxSteps - input('Enter the number of steps for calculations '); Steps = 1;

while Steps <= maxSteps x(Steps+1) =

switch ... case ... end

The selection of a block of code to be executed can be done with the **switch** - **cases** statements. For example to evaluate different functions

```
a = 2; b = 0.5;

x = 0 : 2 : 10;

flag = input('Select type of equation: 1, 2, ..., ')

switch flag

case 1

y = a .* x + b;

case 2

y = a .* x;

case 3

y = a .* exp(-b.*x)

otherwise

y = [];

end
```

Running this code with flag = $2 \rightarrow y = 0$ 4 8 12 16 20

FUNCTIONS

Functions in Matlab are a very powerful tool for evaluating a sequence of commands and / or evaluating mathematical functions. The function is a text file similar to an mscript and has a .m extension. Input variables can be passed to the function and output variables are returned, any intermediate variable values within the function are not passed on to the Matlab workspace or to other functions. The function can be executed from the Command Window or from an m-script. To illustrate the how to create and use Matlab functions, a number of examples will be considered.

Example: Distance between two points

If the coordinates of two points $P(x_P, y_P, z_P)$ and $Q(x_Q, y_Q, z_Q)$ are known than the distance, *d* between the points is

$$d = \sqrt{(x_{\rm P} - x_{\rm Q})^2 + (y_{\rm P} - y_{\rm Q})^2 + (z_{\rm P} - z_{\rm Q})^2}$$

The input variables passed to the function are the six coordinates of the two points P and Q. The output variable returned from the function is the distance d. The text for the function distance.m is

function d = distance(xP,yP,zP,xQ,yQ,zQ) % Function to calculate the distance between two points P and Q d = sqrt((xP-xQ)^2 + (yP-yQ)^2 + (zP-zQ)^2);

The following statement when entered into the Command Window

$$d = distance(0,0,0,1,1,1)$$

gives

Example: Converting between Cartesian and polar coordinates

A point P in a plane can be specified in Cartesian (x_P , y_P) or in polar coordinates (ρ_P , θ_P). The relationships between the two coordinate systems are

$$\rho_{\rm P} = \sqrt{x_{\rm P}^2 + y_{\rm P}^2} \qquad \theta_{\rm P} = \operatorname{atan}(\theta_{\rm P})$$
$$x_{\rm P} = \rho_{\rm P} \cos \theta_{\rm P} \qquad y_{\rm P} = \rho_{\rm P} \sin \theta_{\rm P}$$

The two functions to convert Cartesian to polar and polar to Cartesian coordinates are

```
function [rho, theta] = CartesianToPolar(x,y)
% Function to convert Cartesian coordinates (x, y)
% to polar coordinates (rho, theta)
% The Matlab function atan2 returns an angle in radians
% If y >=0 then 0 <= theta <= pi
% if y < 0 then -pi < theta < 0
rho = sqrt(x^2 + y^2);
theta = atan2(y,x);
function [x, y] = PolarToCartesian(rho,theta)</pre>
```

```
% Function to convert Polar coordinates (rho, theta)
% to Cartesian coordinates (x, y)
% The angle theta must be in radians
x = rho * cos(theta);
y = rho * sin(theta);
```

The functions can be used in the Command Window or executed from an m-script, for example,

[xP, yP] = PolarToCartesian(1, pi/4)

gives

xP = 0.7071 and yP = 0.7071

[rho, theta] = CartesianToPolar(3, 4)

gives

rho = 5 and theta = 0.9273

Example: Evaluating an expression

Functions are very useful for evaluating a mathematical expression from the Command Window or from an m-script. We will consider evaluating the sinc function that is widely used in physics and engineering with the function sinc.m. The sinc function can be expressed as a function of the single variable θ where θ is an angle in radians by

$$sinc(\theta) = \frac{\sin(\theta)}{\theta}$$

The sinc function approaches 1 as θ approaches 1, but this causes a problem in Matlab when you try to divide by zero. This can problem can be overcome by using the Matlab function eps which is the smallest difference between two numbers.

function result = sinc(theta)

% Function to evaluate the sinc function

result = sin(theta + eps) ./ (theta + eps);

For example, sinc(0) gives then answer 1. For the array input for θ theta = 0 : 0.25 : 1

theta	0.0000	0.2500	0.5000	0.7500	1.0000
sinc(theta)	1.0000	0.9896	0.9589	0.9089	0.8415