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mec_fr_mg_bv.m 
Computation of the displacement, velocity and acceleration for the motion of an object 

acted upon by a resistive force RF v   and its weight GF m g . The equation of 

motion is solved by analytical means (integration of the equation of motion) and by a 
finite difference numerical method.  
 
mec_fr_mg_bv2.m 
Computation of the displacement, velocity and acceleration for the motion of an object 

acted upon by a resistive force 2

RF v   and its weight GF m g . The equation of 

motion is solved by analytical means (integration of the equation of motion) and by a 
finite difference numerical method.  
 
mec_stokes.m 
Computation of the displacement, velocity and acceleration for the motion of an object 

acted upon by a resistive force 6R FF Rv  (Stokes Law), the buoyance force Fbuoy 

and its weight GF m g . The equation of motion is solved by a finite difference 

numerical method.  
 
mec_drag.m 
Computation of the displacement, velocity and acceleration for the motion of an object 

acted upon by a resistive force 21
2

6R D FF C A v  and its weight GF m g . The 

equation of motion is solved by a finite difference numerical method.  
 
mec_tt_ball.m 
Experimental data for a table tennis ball falling from rest. Used to plot the actual 
measurements of displacement and time from a video recording with the predicted 
values of displacement using a finite difference approach.  
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INTRODUCTION 

We will consider the vertical motion of objects through fluids near the Earth’s 

surface where the acceleration due to gravity is assumed to be constant               

g = 9.80 m.s-2.  

The motion of falling objects is usually described with constant acceleration. This 

is only approximately true. For example, in introductory physics textbooks, two 

objects of different mass when dropped simultaneously from rest will hit the 

ground at the same time. This is an idealized situation and ignores the effects of 

the air resisting the motion of the falling objects. Air resistance, a friction which 

increases with increasing speed, acts against gravity, so the speed of falling 

objects tends toward a limit called terminal velocity (terminal speed).  

Motion through any real fluid (liquid or gas) gives rise to forces resisting the 

motion. To a reasonable approximation, fluid resistance tends to depend on 

either the first power of the speed (a linear resistance) or the second power (a 

quadratic resistance). Our two models for the resistive force FR are 

 Model (1) RF v                                   low speeds 

 Model (2) 2

RF v                                 high speeds 

where  and  are constants of proportionality. 

Model (1) for linear resistance is often applicable when the object is moving with 

low speeds. In the motion through a fluid, the resistive force RF v  is often 

called the viscous drag and it arises from the cohesive forces between the layers 

of the fluid. The S.I. units for the constant  are N.m-1.s-1 or kg.s-1. 

Model (2) for quadratic resistance is more applicable for higher speeds. In the 

motion through fluids, the resistive force 2

RF v  is usually called the drag 

and is related to the momentum transfer between the moving object and the 

fluid it travels through. The S.I. units for the constant are N.m-2.s-2 or kg.m-1.  

Many problems in the mathematical analysis of particles moving under the 

influence of resistive forces, you start with the equation of motion. To find 

velocities and displacements as functions of time you must integrate the 

equation of motion.  
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The equation of motion for an object can be derived from Newton’s Second Law 

 
1

i

i

a F
m

                Newton’s Second Law 

For the vertical motion of an object through a fluid, the forces acting on the 

object are the gravitational force FG (weight) and the resistive force FR. In our 

frame of reference, we will take down as the positive direction. 

 

Therefore, the vertical acceleration a of an object through a fluid is 

  /a g m v                             Model (1) 

    2/ /a g m v v v               Model (2) 

In Model 2 

 If the object is moving down then v > 0 

           2 2 2/ / / 1 /a g m v v v g m v g m v          

 If the object is moving up then  v < 0  

           2 2 2/ / / 1 /a g m v v v g m v g m v           
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MODEL 1   RF v ma m g v           

The mscript used for the plots is  mec_fr_mg_bv.m 

 

Analytical Approach     RF v ma m g v         

For the vertical motion of an object through a fluid, the forces acting on the 

object are the gravitational force FG (weight) and the resistive force FR. In our 

frame of reference, we will take down as the positive direction. 

The equation of motion of the object is determined from Newton’s Second Law. 

 R

dv
ma m F mg v a g v

dt m


       

where a is the acceleration of the object at any instance. 

The initial conditions are      0 00 0 /t v v x a m v      

When a = 0, the velocity is constant v = vT where vT is the terminal velocity  

  0 Tm g v   

T

m g
v


                             terminal velocity 

We start with the equation of motion then integrate this equation where the limits 

of the integration are determined by the initial conditions (t = 0 and v = v0) and 

final conditions (t and v) 
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Therefore, we can express the velocity v as 

     /

0

m t

T Tv v v v e


                         velocity 

  /
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m t
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
   

  

 

 

 

In every case, the velocity v tends towards the limiting value vT. 

 

Plots of the velocity v as functions of time t 

    m = 2.00 kg 

  = 5.00  kg.s-1 

 g = 9.80  m.s-2 

 vT = 3.92  m.s-1 

 

Initial values for velocity v0
   [m.s-1] 

 blue:  10   red: vT     magenta: 2     cyan: 0  
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The acceleration a as a function of time t is 
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Initial values for velocity v0
   [m.s-1] 

 blue:  10   red: vT     magenta: 2     cyan: 0  
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We can now calculate the displacement x as a function of velocity t 
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Initial values for velocity v0
   [m.s-1] 

 blue:  10   red: vT     magenta: 2     cyan: 0  

 

So far we have only considered the case where the initial velocity was either zero 

or a positive quantity ( 0 0v  ), i.e., the object was released from rest or 

projected downward. We will now consider the case where the object was 

project vertically upward (v0 < 0). Note: in our frame of reference, the origin is 

taken as x = 0, the position of the object at time t = 0; down is the positive 

direction and up is the negative direction.  

When the object is launched upward at time t = 0, the initial velocity has a 

negative value. Let u be the magnitude of the initial velocity v0 

 0 00 0v v u u     

Therefore, the equation for the velocity v as a function of time t can be 

expressed as 
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We can now find the time tup it takes for the object to rise to its maximum height 

xup above the origin (remember: up is negative). At the highest point v = 0, 

therefore, 
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The maximum height xup reached by the object in time t = tup is 
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For the parameters 

m = 2.00 kg    = 5.00 kg.s
-1

   g = 9.8 m.s
-2

   u = 10 m.s
-1

   vT = 3.92 m.s
-1

   

   

The time to reach maximum height is tup = 0.507 s 

The max height hup reached is hup = 2.013 m     xup = - 2.013 m 
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We can find the displacement x as a function of velocity v 
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We can integrate this equation by a substitution method or an algebraic 

manipulation method.  

Substitution Method
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Algebraic manipulation 
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For the object projected up with an initial velocity v0 = - u   where  u > 0, the 

maximum height reached xup occurs when v = 0 
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Note: up is negative and down is positive in our frame of reference. 
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Numerical Approach     RF v ma m g v        

We can also find the velocity and displacement of the object by solving Newton’s 

Second Law of motion using a finite difference method. 

We start with 

  /
dv

a g m v
dt

                 
T

m g
v


  

In the finite difference method we calculate the velocity v and displacement x at 

N discrete times tk at fixed time intervals t 

  t1, t2, … , tk, …, tN      t =t2 - t1       t1 = 0     tk = (k-1) t     k = 1, 2, 3, … ,  N 

The acceleration a is approximated by the difference formula 
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Therefore, the velocity  2kv t  at time tk+2 is 
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Hence, to calculate the velocity  2kv t  we need to know the velocity at the two 

previous time steps 1kt   and kt . We know t1 = 0 and v(t1) = v(0) = v0. 

We estimate the velocity at the second time step t2 

    2 1 1 1 1( ) ( ) ( ) ( ) /v t v t a t t v t m v t t       

where we have assumed a constant acceleration in the first time step. We can 

improve our estimate of 2( )v t  by using an average value of the acceleration in 

the first time step 
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We can now calculate the velocity v(t) at all times from t = t1 to t = tN.   
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The acceleration at each time step is 

    k ka t g v t
m
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The displacement at each time step is 
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
 








 

        2 12k k kx t x t t v t     
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EXAMPLE      RF v ma m g v      

The mscript mec_fr_mg_bv.m  can be used for simulations for the motion of an 

object acted upon a resistive force of the form RF v    (Model 1).  

Input parameters 

 m = 2 kg      = 10 kg.s-1   v0 = 10 m.s-1   t = 1x10-4 s     tmax = 2.00 s 

Outputs     N numerical approach     A analytical approach 

 terminal velocity   vT = 1.96  m.s-1 

 

 

acceleration     0t a    

 

 

   

 

 

velocity     Tt v v    
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displacement     t x   

  

For the input parameters used in this simulation, there is excellent agreement 

between the values calculated using the numerical and analytical approaches. 

 

However, you always need to be careful in using numerical approaches to solve 

problems. In this instance, you need to check the convergence of results by 

progressively making the time step t smaller. 

 

When the time step is                     

t = 5x10-2 s the numerical and 

analytical results do not agree. The 

time step is too large for accurate 

results using the numerical 

approach. 
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MODEL 2         
2 2

RF v ma m g v           

The mscript used for the plots is  mec_fr_mg_bv2.m 

 

Analytical Approach     2 2

RF v ma m g v         

For the vertical motion of an object through a fluid, the forces acting on the 

object are the gravitational force FG (weight) and the resistive force FR. In our 

frame of reference, down is the positive direction. 

The equation of motion of the object is determined from Newton’s Second Law. 

    2 2/ /G R

dv
ma m F F mg v v v a g v v v

dt m


        

where a is the acceleration of the object at any instance. 

The initial conditions are       2 0
0 0

0

0 0 /
v

t v v x a g m v
v


 

      
 

 

When a = 0, the velocity is constant v = vT  where  vT  is the terminal velocity  

  2 20 T T

m g
m g v v


    

 T

m g
v


  

We start with the equation of motion then integrate this equation where the 

limits of the integration are determined by the initial conditions (t = 0 and v = v0) 

and final conditions (t and v). 

Since the acceleration depends upon v2 its a more difficult problem then for the 

linear resistive force example. We have to do separate analytical calculations for 

the motion when the object is falling or rising. 

Velocity of the object is always positive (falling object)   0 0 0v v   

Equation of motion 

  
2a g v

m


   
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2

2

2 2

2 2

0

1 1 1

2

1 1
2

4 1 1

4

T

T T T T

T T

T T

t

dv
a g v

dt m

dv dv m g
dt v

m g
g v v

m m

dv
dt dv

m v v v v v v v

m g
dt dv

m v v v v

g
dt dv

m v v v v

g
dt

m



  













 
    

 

  
             
      

   
      

      

    
      

     

 
   

  

 

   

0

0

1 1

4
log log

v

v
T T

v

e T e T v

dv
v v v v

g
t v v v v

m



 
  

  

       



 

   
0

0 0

0

0

4 2 2

0

2

0

4
log log

4
log log

4
log

4 4 4 2

v

e T e T v

T T
e e

T T

T T
e

T T

g
t

T T m

T T T T

T

g
t v v v v

m

g v v v v
t

m v v v v

g v v v v
t

m v v v v

v v v v g g g g
e

v v v v m mg v v

v v v









 

     

     
     

     

     
     

     

   
     

   

     

   

   

   

2 2

0 0

0 0

2

0

0

2

0

0

2

0 0

2

0 0

1
1 1

1

1

1

T T

T

T

T

T

g g
t t

v vT T
T T

T T

T T

g
t

vT

T

T g
t

vT

T

g
t

v

T T

T g
t

v

T T

v v v v
v e v v K K e

v v v v

K
v K v K v v

K

v v
e

v v
v v

v v
e

v v

v v v v e
v v

v v v v e

 









    
     

    

 
     

 

  
  

  
  
      

 
   

  
    

 

                             valid only if 0 0 0v v   
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We can now calculate the displacement x as a function of velocity v  

 

 

   

 
 

 

 

 

 

0

0

2

2 2

2

2 2 2 2

2

2 20

2
2 2

2 2 2

0

2 2

/

/ / /

2

2

2

2

log
2

log
2

T

T

T T

x v
T

v
T

v
T

e T
v

T T
e

T

dv v dv
a g m v

dt dx

v dv
m m g v v m g

dx

v dvm v dv V
dx

gv v v v

vv
dx dv

g v v

v
x v v

g

v v v
x

g v v



  



   

  

  
    

    

 
  

 

 
     

 

   
   

   

   

                                                       valid only if 0 0 0v v   

We can now investigate what happens as time t    

 
 

 

 

 

2

0

0

0
0

0
T

g
t

vT

T

T

T

v v
v t v e

v v

v t v

  
   

  

 

 

In falling, the object will finally reach a constant velocity vT (a = 0 ) which is 

known as the terminal velocity. 

2 2 2

0

2 2

1
0

log
2

T T

T

T T
e

T

t v v v v
v v

V v v
x

g v v

    


   
   

   

  

In falling, as time t increases the objects displacement x just gets larger and 

larger. 
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Example    Small rock dropped from rest: 

m = 0.010 kg    = 1.0010
-4

 kg.m
-1

   v0 = 0 m.s
-1

     vT  = 31.3 m.s
-1
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Example    Small rock thrown vertically downward   (v < vT) 

m = 0.010 kg    = 1.0010
-4

 kg.m
-1

   v0 = +5.00 m.s
-1

     vT  = 31.3 m.s
-1
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Example    Small rock thrown vertically downward   (v > vT) 

m = 0.010 kg    = 1.0010
-4

 kg.m
-1

   v0 = +40.0 m.s
-1

     vT = 31.3 m.s
-1

   

  

  
 

For problems in which the object is projected vertically upward, you have to 

divide the problem into two parts. (1) Calculate the time to reach its maximum 

height and calculate the maximum height reached for the upward motion. (2) 

Reset the initial conditions to the position at maximum height where the initial 

velocity becomes v0 = 0 and do the calculations for the downward movement of 

the object. 
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Velocity of the object negative and moving up   
0 0 0v and v    

Equation of motion                      Note:  up is the positive direction 

  2a g v
m


                valid only if    0 0 0v and v   

0

2

2

2 2

2 2

2 20

2 2

1
Standard  Integral atan

1
atan

T

T

t v

v
T

T T

dv
a g v

dt m

dv dv m g
dt v

m g
g v v

m m

dv
dt

m v v

dv
dt

m v v

dx x
C

a x a a

v
t

m v v



  









 
    

 

  
             
      

 
 

 

 
 

 

   
    

    

    
     

     

 



0

0

0atan atan atan

v

T

T Tv

v

T T

T T Tv

m m g v

v v g g

v v v v v
t

g v g v v

 

      
        

    

           
             
           

 

The time tup to reach maximum height occurs when v = 0 

0 0
0

0
atan atan atan 0T T

up

T T T

v v v v
t v

g v v g v

         
             
         

 

The velocity v as a function of time t is 

 

0

-10

atan atan

tan atan atan tan

T T T

T

T T

v v g
t

v v v

v g
v v t

v v
 

     
      

     

    
      

    

      0 0 0v and v   
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The displacement x as a function of velocity v is 

 

   

 
 

 

 

 

 
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2
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log
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v
T

v
T

e T
v

T T
e

T

dv v dv
a g m v

dt dx

v dv
m m g v v m g

dx

v dvm v dv v
dx

gv v v v

vv
dx dv

g v v

v
x v v

g

v v v
x

g v v



  



   

  

  
    

    

 
  

 

 
     

 

   
   

   

            0 0 0v and v   

The maximum height xup reached by the object occurs when v = 0 

 
2 2

2 2

0

log
2

T T
up e

T

v v
x

g v v

  
   

   
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Example    Small rock thrown vertically upward   (v0 < 0  v0 = - u  u > 0) 

m = 0.010 kg    = 1.0010
-4

 kg.m
-1

   v0 = - 12.0 m.s
-1

     vT  = 31.3 m.s
-1

   

  

  
 

The terminal velocity vT is 

     

2

2 4 -1

-1

/

/ 10 9.8 / 10 m.s

31.31 m.s

T

T

T

v m g

v m g

v



  



 


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When v = 0 the object reaches its maximum height xup
   (up is negative) 

 

2 2

2 2

0

log
2

6.855 m

T T
up e

T

up

v v
x

g v v

x

  
   

   

 

  

The time tup to reach the maximum height 

 

0atan

1.169 s

T
up

T

up

v v
t

g v

t

  
    

   



 

The calculations agree with the values for tup and xup determined from the graphs. 

  
 

From the graphs:   

 x = 0     time   t = 2.275  s     velocity   v = 11.21  m.s
-1

 

 

Time to fall from max height to origin   tdown = (2.375 – 1.169) s = 1.206 s 

                      takes slight longer to fall then rise to and from origin to max height 

 

Launch speed = 12.00  m.s-1 slightly greater than return speed = 11.21 m.s-1 

  

                             

In the absence of any resistive forces  2 2

0 0 2a g v v a t v v a s      

At maximum height  0 1.2245 s 7.3469mup upv t x      
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Numerical Approach     2 2

RF v ma m g v        

We can also find the velocity and displacement of the object by solving Newton’s 

Second Law of motion using a finite difference method. 

We start with 

 (4)   2/
dv v

a g m v
dt v


 

    
 

       

In the finite difference method we calculate the velocity v and displacement x at 

N discrete times tk at fixed time intervals t 

  t1, t2, … , tk, …, tN      t =t2 - t1       t1 = 0     tk = (k-1) t     k = 1, 2, 3, … ,  N 

The acceleration a is approximated by the difference formula 

  
     1 2

2

k k kdv t v t v t

dt t

  



 

Therefore, the velocity  2kv t  at time tk+2 is 

 

   
   

         

32
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k
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v t v t
g m v t v

t

v t v t t g m v t v









 


 



   

 

        
3

/ /k k k

dv
a t g m v t v t

dt
    

Hence, to calculate the velocity  2kv t  we need to know the velocity at the two 

previous time steps 1kt   and kt . We know t1 = 0 and v(t1) = v(0) = v0. 

We estimate the velocity at the second time step t2 

 (13)  2 1 1( ) ( ) ( )v t v t a t t    

where we have assumed a constant acceleration in the first time step. We can 

improve our estimate of 2( )v t  by using an average value of the acceleration in 

the first time step 

 1 2
1 2

( ) ( )
( ) ( )

2

a t a t
v t t v t

 
    

 

We can now calculate the velocity v(t) at all times from t = t1 to t = tN.   
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The displacement at each time step is 

  

 
   2

1
2

k k

k

dx x
v

dt t

x t x t
v t

t






 








 

 (15)        2 12k k kx t x t t v t     

Provided the time step is small enough, there is excellent agreement between 

the numerical values and analytical values for the acceleration, velocity and 

displacement. 
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REYNOLDS NUMBER and MOTION THROUGH A FLUID  

 
To characterize the motion of an object moving through a fluid, it is useful to 
define a dimensionless quantity called the Reynolds number NR 
 

 
2 F

R

F

R
N v





 
  
 

 

 

where the fluid is characterized by its viscosity F and density 
F . The effective 

radius of the object is R and its velocity is v. Different values of the Reynolds 
number NR determine the different regimes of flow in which different laws of the 
resistive force are valid. 
 

Reynolds number NR Resistive force 

0 to 10 Stokes’ law     6drag FF R v  

10 to 300 Transition region 

300 to 300 000 constant drag coefficient CD 

  21
2

~drag D FF C A v  

> 300 000 Some variation in drag coefficient CD with v 
Fdrag only roughly proportional to v2 
 

 
 
 

Low Reynolds Number (0 < NR < 10) 
 
For a small object moving through a fluid with a low velocity, the 
flow around the object is essentially laminar where the fluid flows 
in layers and there is no turbulence. In this situation, it is found 

experimentally that the viscous drag force dragF  acting on the 

object by the fluid is directly proportional to the velocity v of the 
object. For a small sphere of radius R, the drag force Fdrag is also 
directly proportional to the radius R. 
 

For a small sphere of radius R, the viscous drag force dragF is given by Stokes’ Law 

 

 viscous drag force  6drag FF R v       STOKES LAW 

 

where the drag force dragF  is always in the opposite direction to the velocity v. 

 

The quantity F is called the viscosity of the fluid [Pa.s  kg.m-1.s-1]. Viscosity is a 

measure of the frictional force acting on a fluid flowing over a solid surface.  
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For an object falling through a fluid, we make the assumption that there are 
three distinct forces acting on the object 
 
 

weight  GF m g  

 viscous drag force  6drag FF R v           STOKES’ LAW   

 buoyancy force  34
3buoy FF R g    

 

where in our frame of reference, down is taken as the positive direction. 
 
Newton’s Second Law applied to the falling object gives 
   

     34
3

6 F Fma m g R v R g      

 
The acceleration a is 
 

     34
3

6 / /F Fa g R m v R g m      

 
The terminal velocity vT (a = 0) of the object is 

  
 34

3

6

F

T

F

m g R g
v

R

 




  

The motion of tiny droplets of water falling through the air, tiny particles of rock 

settling under the sea and the sedimentation of red blood cells in blood plasma, 

the rise of oil drops in water are examples of the motion of objects moving 

through a fluid with low Reynolds numbers. 

We can use the finite difference method to numerically find the velocity v and 

displacement x of the object as functions of time.  

  
     1 2

1
2

k k k

k

dv t v t v t
a t

dt t

 




 


 

 

   
     

            

32 4
1 3

34
2 1 3

6 / /
2

2 6 / /

k k

k

k k k

v t v t
g R m v t R g m

t

v t v t t g R m v t R g m

  

  





 


  



    
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Example:  A small oil drop released in water will rise to the surface 

 mscript     mec_stokes.m   

Input parameters 

 radius of oil drop    R = 5x10-3  m 

 density of oil drop  = 900  kg.m-3 

 density of water F = 1000  kg.m-3  

 viscosity of water F = 0.1  Pa.s 
 max time tMax = 0.4  s 
 No. time steps N = 10000   
 
Output parameters 
 mass of oil drop m = 4.71x10-4  kg 
 terminal velocity |vT| = 0.054 m.s-1 
 time to reach vT t(vT) ~ 0.3  s  
  

Reynolds number is in the range from 0 to 10, hence Stokes’ Law  RF v  is 

valid. The main reason the oil drop rises is because of the buoyancy force, the 

viscous drag force plays only a minor role.  
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Example:  How do small water droplets fall? 

mscript     mec_stokes.m   

Input parameters 

 radius of water drop    R = 4x10-5  m 

 density of water drop  = 1000  kg.m-3 

 density of air F = 1.20  kg.m-3  

 viscosity of air F = 1.80x10-5  Pa.s 
 max time tMax = 1.0  s 
 No. time steps N = 10000   
 
Output parameters 
 mass of water drop         m = 2.7x10-10  kg 
 terminal velocity |vT| = 0.2 m.s-1 
 time to reach vT t(vT) ~ 0.1  s  
  

Reynolds number is in the range from 0 to 1, hence Stokes’ Law  RF v  is valid.  

In the upper atmosphere, water vapour condenses on hygroscopic nuclei            

(~ 1010 / m3   radii ~ 10-7 m) forming water droplets whose radii range from about     

4x10-6  m to 4x10-5 m. For R <  4x10-5 m, the water droplets very quickly each 

their very low values of terminal speed vT < 0.2 m.s-1. Because of the very small 

values of the terminal speeds of the water droplets, they can be kept afloat by 

vertical air currents. The aggregation of suspended water droplets forms clouds 

or near ground level water droplets forms fogs. 
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In this example, the buoyance force acting on water droplets is insignificant. 

 

Stokes’ law is not valid for raindrops. A raindrop of only 1 mm in radius has a 

terminal velocity that is very large  vT ~ 120 m.s-1 and NR ~ 10 000. 
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Intermediate Reynolds Number (300 < NR < 300 000) 
 
For large fast moving objects such as cars, aeroplanes, cricket balls, baseballs, 
hailstones, and skydivers, the drag force to a good approximation varies with the 

square of its speed. The drag force dragF can be written as 

 

   21
2drag D FF C A v  

 

 A     effective cross-sectional area of object   [m2] 

 F   density of fluid  [kg.m-3] 

 CD    drag coefficient [dimensionless] 
            
For objects of a define shape such as spheres, the drag coefficient is nearly 
constant over a wide range of speeds and sizes. 
 
For larger Reynold numbers, the turbulence 
associated with the motion of the object 
through the fluid is mainly responsible for the 
frictional retarding force on the object as it 
moves through the fluid. This is the reason why 
the resistive force depends upon v2 and it is 
much greater than the resistive force for 
laminar flow where the resistive force depends 
upon v. 
 

 
 
For an object falling through a fluid, we make the assumption that there are two 
distinct forces acting on the object. The buoyant force can be assumed to be 
negligible. 
 

weight  GF m g  

 drag force   21
2drag D FF C A v           

  
 

where in our frame of reference, down is taken as the positive direction. 
 
Newton’s Second Law applied to the falling object gives 
   

    21
2 D F

v
ma m g C A v

v


 
   

 
 

 
The acceleration a is 

    21
2

/D F

v
a g C A m v

v


 
   

 
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The terminal velocity vT (a = 0) of the object is 

  
2

T

D F

m g
v

C A
  

We can use the finite difference method to numerically find the velocity v and 

displacement x of the object as functions of time.  

  
     1 2

1
2

k k k

k

dv t v t v t
a t

dt t

 
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 


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k

k

k k D F

k
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t v t
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v t v t t g C A m v

v t





 









 
   

   

  
     

 
   

 

 

 

Example     Falling raindrops 

mscript     mec_drag.m   

Input parameters 

 radius of raindrop    R = 5.00x10-3  m    (big raindrop) 

 density of water drop  = 1000  kg.m-3 

 drag coefficient CD = 0.500 

 density of air F = 1.20  kg.m-3  

 viscosity of air F = 1.80x10-5  Pa.s 
 max time tMax = 6.00  s 
 No. time steps N = 10000   
 
Output parameters 
 mass of raindrop         m = 5.24x10-4  kg 
 cross-sectional area A = 7.85x10-5  m2 
 terminal velocity |vT| = 14.8 m.s-1 
 time to reach vT t(vT) ~ 4  s  
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Our model in assuming 2

dragF v  should be OK since the Reynolds number 

varies from zero to about 10 000. 

 

A raindrop could fall a distance ~ 5000 m. With no frictional forces acting the 

raindrops would reach the ground with speeds ~ 300 m.s-1 (> 1000 km.s-1) !!! This 

does not happen. Raindrops quickly each their terminal speed within seconds 

and reach the ground at speeds < 20 m.s-1. 
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Example     A falling table tennis ball 

mscript     mec_drag.m      mec_tt_ball.m  

We can model a table tennis ball falling from rest using the numerical approach 

where the resistive force or drag force is  

   21
2drag D FF C A v  

Input parameters 

 radius of table tennis ball    R = 20.0x10-3  m     
 mass of table tennis ball m = 12.70x10-3  kg         

                                                                                                                             mass entered and not calculated from density 

 drag coefficient CD = 0.445 

 density of air F = 1.225  kg.m-3  

 viscosity of air F = 1.789x10-5  Pa.s 
 max time tMax = 3.00  s 
 No. time steps N = 10000   
 
Output parameters 
 
 cross-sectional area  A = 1.26x10-3   m2 
 terminal velocity  |vT| = 8.79 m.s-1 
 time to reach vT  t(vT) ~ 2.5  s  

distance to reach vT  x(vT) ~ 17  m  
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Our model in assuming 2

dragF v  should be OK since the Reynolds number is 

mostly in the range from 300 to 300 000. 
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But, how good is our model? 

We can test our model against experimental data. The data for the fall of a table 

tennis ball was taken from a paper by French. The data for time and displacement 

of the falling table tennis ball was stored in the mscript mec_tt_ball.m and this 

mscript was used to compare the video measurements with our displacements / 

time predictions using the finite difference approximation to solve the equation of 

motion. The following plot shows the French data and the theoretical values for 

the displacement as functions of time. 

 

 

 

The agreement between our model’s predictions and the actual measured values 

is very good. 
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Example     A falling steel ball 

mscript     mec_drag.m       

We can model a steel ball with a radius identical to that of a table tennis ball 

falling from rest using the numerical approach where the resistive force or drag 

force is  

   21
2drag D FF C A v  

We can then compare the fall of the steel ball with that of the table tennis ball. 

Input parameters 

 radius of steel ball    R = 20.0x10-3  m     

 density of steel ball  = 7800  kg.m-3  
     mass of table tennis ball m = 12.70x10-3  kg 

 drag coefficient CD = 0.445 

 density of air F = 1.225  kg.m-3  

 viscosity of air F = 1.789x10-5  Pa.s 
 max time tMax = 3.00  s 
 No. time steps N = 10000   
 
 

Output parameters table tennis ball steel ball free fall 
Fdrag = 0 

terminal velocity vT  [m.s-1] 8.79 86  
t = 3.00 s    a  [m.s-2] 0.049 8.75 9.80 

t = 3.00 s    x  [m] 20.9 43.3 44.1 

t = 3.00 s    v  [m.s-1]  8.77 28.3 29.4 

t = 3.00 s    Reynolds number  NR 2.4x104 7.8x104  

 
It is “true” that heavier objects do fall faster than lighter ones. 
  

  
                                         table tennis ball      steel ball 
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Example     A falling skydiver 

mscript     mec_drag.m       

We can model a falling skydiver falling from rest 

using the numerical approach where the resistive 

force or drag force is  

   21
2drag D FF C A v  

Input parameters 
 radius (estimate) R = 0.500  m     
 mass m = 70  kg         

                                                                                                                             mass entered and not calculated from density 

 drag coefficient CD = 0.5 

 density of air F = 1.225  kg.m-3  

 viscosity of air F = 1.789x10-5  Pa.s 
 max time tMax = 20.00  s 
 No. time steps N = 10000   
 
Output parameters 
 cross-sectional area  A = 0.7854   m2 
 terminal velocity  |vT| = 54  m.s-1 = 192  km.h-1 

 time to reach vT  t(vT) ~ 18  s  
distance to reach vT  x(vT) ~ 760  m  

 

  
 
 
You can investigate how the skydiver can control their speed of fall by varying 

their effective cross-sectional area. 

 

   

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm

