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DOING PHYSICS WITH MATLAB 
 
A SIMULATION OF THE MOTION OF AN 
EARTH BOUND SATELLITE  
 
 

Download  Directory: Matlab  mscripts 

 

mec_satellite_gui.m 

The [2D] motion of a satellite around the Earth is computed from 

is initial position at or above the Earth’s surface and its initial 

velocity. A finite difference scheme is used to calculate the 

position, velocity and acceleration of the satellite at each time 

step from the gravitational force acting on it.  Since we are 

considering a [2D] problem, a vector quantity may be expressed 

as a complex function where the real part gives the X component 

and the Y component is given by the imaginary part. Thus, 

calculations can be done on a single complex variable rather than 

two variables which represents its components. A graphical 

interface is used to change the input parameters of the model.    
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SATELLITE MOTION  

 

Why do the planets and comets orbit around the Sun, the Moon 

around the Earth and satellites around the Earth? The motion of 

the planets was the principal problem Newton set out to solve 

and many historians consider the field to physics to start with his 

work. 

 

You drop a stone and it falls straight down because of gravity. 

When the stone is projected horizontally it falls in a curved path. 

The faster it is thrown, the wider the curved path becomes. If you 

throw it faster enough so that the curved path matches the 

curvature of the Earth, the stone will fall around the Earth rather 

than into it. It will become an Earth satellite.  

 

Rockets are very inefficient for putting objects into space because 

they must carry their own fuel. However, in future, it may be 

possible to launch an object from the Earth’s surface with 

sufficient velocity to put it into orbit using an electromagnetic 

launcher with only a small energy requirement of less than 10 

kWh.kg-1. Small cubes have already been accelerated at Los 

Alamos to speeds approaching the escape velocity from the Earth. 
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When spacecraft are sent to the distant planets, the slingshot 

effect is used where a big planet’s immense gravity gives them a 

boost by increasing their kinetic energy in an elastic collision with 

a moving planet. For example, a spacecraft is given a gravity boost 

by Jupiter in its journey to Saturn.  

 

In this simulation will be investigate the motion of a projectile 

launched from or near the Earth’s surface. After launch, the 

projectile can crash back into the earth, become an orbiting 

satellite or escape completely from the Earth. The simulation can 

be modified to study the motion of the planets or comets around 

the Sun.  
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Several simplifications are necessary in setting up the 

mathematical model used in the simulations: 

 

• The only force acting on the satellite (projectile) once it has 

been launched is the gravitational force exerted by the 

Earth.  

• The satellite acquires all its kinetic energy by its initial 

propulsion, there is no rocket or other energy sources to 

propel it after it launched. 

• The satellite moves in a plane. 

• The Earth is a stationary inertial frame of reference and the 

Earth is a perfect sphere. 

 

The gravitational force ( )F t  acting between a satellite of mass m 

and the Earth gives the equation of motion for the satellite  

 

 (1) 
3 2

( ) ( ) or
( ) ( )

E EG M m G M m
F t R t F

R t R t
     

 

from which its trajectory can be determined. The trajectory of the 

satellite is given by its position vector ( )R t  which points from the 

Earth (main focus) to the satellite. 
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The components of the position vector ( )R t  are ( )x t  and ( )y t . G is 

the Universal Gravitation Constant and ME is the mass of the 

Earth. The gravitational force is an example of an inverse-square 

law and is often referred to as a central force. 
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The Finite Difference Method for Calculating 

the Trajectory 

 

The acceleration ( )a t  and the velocity ( )v t  of the satellite are 

determined from the equation of motion 

 (2a)  
3 3

( ) ( ) ( ) ( )
( ) ( )

E EG M m G M
ma t R t a t R t

R t R t
       

 (2b) 

 2 2 2

3 3

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

E E
x y

G M x t G M y t
a t a t R t x t y t

R t R t
        

 

The numerical procedure adopted, is based on a half-step method 

and the smaller the time interval t  used the better the 

approximations. From the definitions of velocity and acceleration, 

at any time, t we have 

 (3)

( / 2) ( / 2) ( / 2) ( / 2)
( ) ( )x y

x t t x t t y t t y t t
v t v t

t t

         
 

 
  

 

 (4)

2 2

( ) 2 ( ) ( ) ( ) 2 ( ) ( )
( ) ( )x y

x t t x t x t t y t t y t y t t
a t a t

t t

           
 

 
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Therefore, the location of the satellite at time  t t   can be 

calculated directly from the location at the two previous time 

steps, t and  t t    

 (5a)         
2

3

( )
( ) 2 ( ) ( )

( )

EG M t x t
x t t x t x t t

R t


          

 (5b)         
2

3

( )
( ) 2 ( ) ( )

( )

EG M t y t
y t t y t y t t

R t


          

 

The kinetic energy ( )K t , gravitational potential energy, ( )GU t  and 

total energy, ( )E t  are given by  

 (6)      21
2

( ) ( ) ( ) ( ) ( ) ( )
( )

E
G G

G M m
K t mv t U t E t K t U t

R t
       

and the angular momentum L   for a satellite moving in the XY 

plane is  

 (7)

( ) ( ) ( ) ( )  ( ) ( ) - ( ) ( ) ( ) ( ) 0z y x x yL t R t mv t L t x t v t y t v t L t L t        

 

The angular momentum zL  is a remarkably sensitive parameter to 

any failure in the numerical procedure for solving central force 

problems.  
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You can keep track of the angular displacement z  of the satellite 

so that you know how many revolutions have been completed. 

From the definition of angular momentum, the change in angular 

position ( )z t  in each time step t  is 

 (8)     
2

( )
( )

( )
z

L t
t t

R t


 
   

 
  

 

The addition of the changes in angular position gives the total 

angular displacement z  (azimuthal position) of the satellite. 
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Analytical Analysis 

 

Circular orbits 

When a satellite is in a circular orbit about the Earth, it is in free 

fall but remains a constant distance above the Earth’s surface. The 

satellite must fall a distance equal to the distance the Earth falls 

away below the satellite due to the curvature of the Earth in any 

given time interval. 

 

Consider a satellite moving at a distance R from the center of the 

Earth with an orbital velocity, vorb that has its initial components 

of velocity as  

  v0x = vorb     and     v0y = 0  
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Let sy be the distance the circular orbit curves away from the 

tangent drawn from the point O in a distance sx as shown in figure 

1. 

 

 

 

 

 

 

 

 Fig. 1. Geometry and curvature of a circular orbit of radius R. 

 

From the geometry shown in figure 1, the fall distance sy is  

         

2

2
2 2

y x x
y y

x y

s s s
s R s

s R s R
   


  

 

Using the equations of uniform acceleration for the X and Y 

motion, and g is taken as the acceleration due to gravity at the 

distance R from the center of the Earth, the orbital velocity, vorb 

for a circular orbit can be determined from the time t to fall the 

distance sy 

 

+ X

+ Y

O
sx

sy





2R - sy
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2

21
2

2

x x
y

s s
s g t t

R g R
      

  x
x orb orb

s
s v t v

g R
    

 

 (9a) orbv g R    

 

The orbital velocity can also be calculated by equating the 

gravitational force to the centripetal force 

  
2

2 2 2

E orb EG M m mv GM
m g g

R R R
     

 

 (9b) E
orb

G M
v

R
   

 

where the mass of the Earth is ME = 5.981024 kg. Therefore, the 

greater the radius R of the circular orbit, the smaller the orbital 

velocity orbv . 
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The period T for the circular orbit is 

  2 orbR v T    

 (10) 
2

orb

R
T

v


   

 

Escape velocity 

The minimum velocity at which a projectile can be launched to 

escape the Earth’s gravitational field is called the escape velocity 

vesc. Assume that the work done by the Earth’s gravitational field 

on the projectile as it moves to an infinite distance from the Earth 

equals the change in kinetic energy. The initial velocity of the 

projectile is vesc and the final velocity is zero 

 

   Work done by gravitational field on projectile 

                                    =  Change in kinetic energy of projectile 

  21
22

0E
esc

R

G M
dr mv

r



     

  

 (11) 
2

2E
esc orb

G M
v v

R
    
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When the distance R is equal to the Earth’s radius, RE = 

6.4106 m, the orbital velocity is vorb = 7.9 km.s-1 and the period is 

T = 84 minutes (5.0103 s). In a time interval of t = 0.1 s the 

satellite falls a distance of sy = 50 mm and travels horizontally a 

distance sx = 790 m. The escape velocity for the projectile is 

vesc = 11 km.s-1. 
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Kepler’s Laws 

The laws of planetary motion were discovered by the German 

astronomer Johannes Kepler (1571 – 1630) from his 20 years 

processing astronomical data. These laws not only apply to 

planets but also to satellites. 

 

Kepler’s 1st law  

The path of each planet around the Sun is an ellipse with the Sun 

at the focus. For a satellite about the Earth, its trajectory will be 

an ellipse with the Earth at one focus.  

 

 

 

 

 

 

 

 

 

 Fig. 1. The path of a planet or a satellite in an orbit is an 

ellipse. 
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The equation of an ellipse with its centre at the Origin O(0,0) is 

        (12)            
2 2

2 2
1

x y

a b
    

 

An ellipse is defined as the locus of points, the sum of whose 

distances from the foci, F1 and F2 is equal to 2a.  

 

The maximum and minimum distances from the main focus are 

Rmax and Rmin respectively. The distance a is the semimajor axis 

and the distance b is the semiminor axis. The eccentricity e of an 

orbit is a dimensionless measurement of the elongation of the 

orbit (0  e  1)  

 (13)        
2 2

max min max min

2 2

R R a b R R
a e

a

  
          

 

The point of closest approach a satellite makes with the Earth (-

R = Rmin) is known as the perigee (perihelion for a planet orbiting 

the Sun) and the point where the distance is greatest (R = Rmax) is 

called the apogee (aphelion). For a circular orbit, Rmax = Rmin, 

a = b and e = 0. The most extreme orbit corresponds to Rmin = 0, 

Rmax = 2a and e =1. 
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Kepler’s 2nd law 

The radius vector from the Sun to the planet sweeps out equal 

area in equal time intervals. For our satellite, equal areas are 

swept out in equal time intervals by the radius vector from the 

Earth.  

 

This law is a consequence of the law of conservation of angular 

momentum, constantL . In figure 2, the area of each triangle (for a 

small time interval t) can be expressed as 

 (14)

   1 1
1 1 1 2 2 2 1 1 2 2 1 22 2t t t tA v t r A v t r L mv r mv r A A          

 

where vt is the tangential velocity. When a satellite moves in 

ellipse (e  0), R is continually changing, therefore, when the 

satellite moves close to the Earth it must speed up and as it gets 

further away from the Earth it must slow down (vt R = constant). 
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 Fig. 2. Law of conservation of angular momentum: equal 

areas are swept out in equal time intervals. 

 

 

Kepler’s 3rd law 

The square of the period of revolution of the planet’s (satellite) 

orbit is proportional to the cube of the orbit’s semimajor axis. 

 

The 3rd law is a consequence of the gravitational force. For a 

satellite around the Earth, 

 Gravitational force = centripetal force 

 
2

2
2E t

t

G M m mv
a v T

aa
    

 

 (15)         
2

2 34

E

T a
G M


   
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Types of orbits 

The type of obit can be determined from the sign of the total 

energy, E 

 (16)        21
2

E
G

G M m
E K U mv

R
      

 

0 0E R v     Gives a hyperbolic orbit that never closes. 

E = 0  The projectile starts at infinity with zero 

speed and then swings past the Earth (or 

Sun) in a parabolic orbit and slows down 

as it moves back to infinity, ending up 

with zero velocity. 

E < 0  R can not become to large because the 

velocity would become negative. The 

projectile moves in an elliptical path 

around the Earth (or Sun). 

 

For a circular orbit, the total energy is negative and equal to one-

half the gravitational potential energy 

 (17)   

          21 1 1
2 2 2

E E E
orb G G

G M G M G M
v K mv U E U

R R R
          
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Sample Results 

There is an excellent agreement between the analytical values 

and the numerical values. This can easily be checked by evaluating 

the analytical values in the Command Window. 

 

Circular Orbit 

Input Parameters 

   launch velocity, v_0    =  5591.0  m/s   

   launch radius, R_0      =  2.00  ---   

   launch latitude         =  0.0  deg   

   launch angle            =  90.0 deg   

   simulation time, tamx   =  14340.0  s   

Output Parameters at end of simulation 

  Displacement vector: magnitude R =  2.00    

  Displacement vector: direction theta_R =  -0.00  deg   

   R_x =  2.00    

   R_y =  -0.00    

Velocity vector: magnitude v =  5591.03  m/s   

Velocity vector: direction theta_v =  89.82  deg   

   v_x =  17.82  m/s   

   v_y =  5591.00  m/s   

Acceleration vector: magnitude a =  1.22  m/s^2   

Acceleration vector: direction theta_a =  179.64  deg   

   a_x =  -1.22  m/s^2   

   a_y =  0.01  m/s^2   

   

KE/m =  1.56e+07  J/kg   

UG/m =  -3.13e+07  J/kg   

E/m  =  -1.56e+07  J/kg 
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Elliptical Orbit 

Input Parameters 

   launch velocity, v_0    =  7000.0  m/s   

   launch radius, R_0      =  2.00  ---   

   launch latitude         =  0.0  deg   

   launch angle            =  90.0 deg   

   simulation time, tamx   =  50000.0  s   

    

Output Parameters at end of simulation 

  Displacement vector: magnitude R =  2.02    

  Displacement vector: direction theta_R =  -13.68  deg   

   R_x =  1.96    

   R_y =  -0.48    

   

Velocity vector: magnitude v =  6949.14  m/s   

Velocity vector: direction theta_v =  80.77  deg   

   v_x =  1115.04  m/s   

   v_y =  6859.09  m/s   

   

Acceleration vector: magnitude a =  1.19  m/s^2   

Acceleration vector: direction theta_a =  164.78  deg   

   a_x =  -1.15  m/s^2   

   a_y =  0.31  m/s^2   

   

KE/m =  2.41e+07  J/kg   

UG/m =  -3.09e+07  J/kg   

E/m  =  -6.79e+06  J/kg   
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Escape 
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http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm  27 

Geosynchronous satellite 
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Possible Investigations and Questions 

 

Inspect and run the m-script mec_satellite_gui.m so that you are 

familiar with what the program and the code does. For a range of 

input parameters, view the output values and plots and identify 

how they relate to each other and to the motion of the satellite.  

 

Each time you run a simulation, check: (1) the total energy and 

angular momentum are conserved and (2) an elliptical orbit is 

closed when the satellite has completed more than one revolution. 

If these conditions are not satisfied, increase in the number of time 

steps. 

 

Run the program with the default values.  

 

1 Describe the motion of the planet. 

 

2 Check the predictions of the simulations are valid by 

considering the conservation of the total energy and the 

angular momentum. Is Kepler’s 2nd law satisfied? 
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3 Test that the orbit is an ellipse by measuring the distances d1 

and d2 from each focus to a point on the ellipse. 

 Is d1 + d2 = 2a? At the end of the simulation, what are the 

directions of the radius vector, acceleration and force? Is the 

gravitational force acting on the satellite directed towards the 

center of the Earth? Is Kepler’s 1st law satisfied? 

 

4 From the plot of the orbit, measure the values of the 

semimajor axis a, semiminor axis b and the eccentricity e and 

compare with the output parameters.  

 

5 How do the motion and energy plots relate to the motion of 

the satellite? How are the velocity and position at the apogee 

and perigee related? What is the significance of the total 

energy being negative? How do changes in the velocity and 

radius relate to each other? 

  

6 Adjust the maximum simulation time to give one revolution. 

What is the period? How does this agree with the value 

calculated using equation (15). Is Kepler’s 3rd law satisfied? 
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7 Does this orbit give a “zero-g environment”? 

 

Adjust the input parameters to give a circular orbit with more 

than one complete revolution. Compare the numerical predictions 

with the analytical predictions. 

 

8 State the criteria you used to test that the orbit was circular? 

(Check: a, b, e, R, v, vorb, E/UG, launch angle) and verify that 

each criteria is satisfied. 

 

Start with the parameters for a circular orbit with vcir = vorb.  

 

9 What is the shape of the orbit for initial velocities slightly 

lower than vcir? What is the path of the projectile for initial 

velocities much less than vcir? What is the shape of the orbit 

for initial velocities slightly higher than vcir? What is the path 

of the projectile for initial velocities much greater than vcir? 

What are the escape velocity vesc and the corresponding value 

of the total energy E? How does this agree with the analytical 

prediction? For which cases is Kepler’s 3rd law satisfied?  
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Geostationary satellites 

10  Adjust the input parameters to simulate a satellite so that in 

its orbit it remains in the same place relative to the Earth. This 

is called a geostationary orbit. Does your orbit agree with the 

predictions using Kepler’s 3rd law?  

  

Other investigations 

 

11 Investigate launching a satellite at different latitudes and 

launch angles. Comment on the output parameters and the 

trajectory of the satellite. 

 

12 Investigate launching your projectile vertically. How does the 

height reached by the satellite vary as a function of launch 

velocity? How do your results compare with the analytical 

predictions using the principle: the work done by the 

gravitational force on the projectile equals the change in its 

kinetic energy? What initial energy is required to launch a 

projectile vertically so that it reaches a height that is twice the 

Earth’s radius. 
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13 Reduce the number of time steps until the simulation results 

are no longer valid (non-conservation of total energy and 

linear momentum, or orbit not a closed ellipse). What is this 

value of the time step? 

 

14 Investigate the trajectory of a satellite if the gravitational 

force was not exactly an inverse square law but varied as 1/Rn 

where n  2. Comment on the output parameters and the 

trajectory of the satellite. The orbit of the planet Mercury 

precesses by about 0.1o per century. What is meant by the 

term precession and how does it relate to n  2, and so why 

does the orbit of Mercury precess.  

 

15 Change an m-script to create a simulation for the motion of 

the planets or comets around the Sun. 

 

16 Create a simulation of the sling-slot effect by giving either the 

Earth or the Sun a small constant velocity. 

 

17 Simulate an orbit in which the total energy is zero, E = 0. 

Comment on the output parameters and trajectory of the 

orbit. If a satellite were in a parabolic orbit, would it return? 
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