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DOING PHYSICS WITH MATLAB 

 

NUMERICAL ANALYSIS OF OPTICAL AND 

ELECTROMAGNETIC PHENOMENA 

MODELLING THE BEHAVIOUR OF 

GAUSSIAN BEAMS 

(PARAXIAL REGIME) 

Matlab Script Download Directory 

op_beams_001.m 

The Script is used to model the behaviour of a Gaussian beam 

propagating in the Z direction with spherical wavefronts in the 

paraxial region. The beam is specified by its wavelength (visible part 

of the electromagnetic spectrum), power and the value of its waist. 

Also, the XY and XZ planes for the irradiance calculations and plots 

are also specified in the INPUT Section of the Script. The following 

parameters are computed in the CALCULATION Section of the Script: 

the Z axis grid,  z  [m]; Rayleigh range,  Rz  [m]; the ratio, 

_ /R Rz z z z= ; beam divergence angle,  ; beam spot size, w [m]; 

Gouy phase angle,  ; axial irradiance ( 0x y= = ), zS ; radial 

irradiance (XY plane at Pz ), rS  and XYS ; irradiance displayed in XZ 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts/
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plane, ZXS ; phase,  . The calculation outputs are displayed in a 

series of Figure Windows.  For different simulations, most of the 

parameters only need to be changed in the INPUT Section of the 

Script. The Script calls ColorCode.m which assigns the color of a plot 

to the wavelength color. 

 

INTRODUCTION 

Lasers are widely used in many fields today. Having a mathematical 

description of laser light is essential. The light emitted from a laser is 

composed of a narrow band of wavelengths, such that we can 

assume the light is monochromatic. The light emitted from the laser 

is usually collimated as it propagates in a straight line as a narrow 

beam. As a starting point, we will assume the beam to be 

unpolarized and the light intensity to have a Gaussian profile in any 

plane that is normal to the direction of propagation. This mode is 

referred to as the TEM00 mode and it describes the output of most 

lasers. 
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Fig. 1.   Red light emitted from a HeNe laser. The light is 

seen due to scattering. The light propagates as a 

collimated beam in a straight line with slight divergence in 

its cross-section. 

 

 The light emitted from a laser can be modelled by solving the [3D] 

scalar wave equation for the electric field ( ), , ,E x y z t   

        (1)        ( )
( )2

2

2 2

, , ,1
, , , 0

E x y z t
E x y z t

c t


 − =


 

 

We will assume that a monochromatic beam with a circular cross-

section propagates in free spaces and that the electric field can be 

expressed as a product of its spatial part and time dependent part 

       (2)       

( ) ( ), , , , , 2 2 /
i t

SE x y z t E x y z e c f k f k
      −

= = = = =  
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Substitution of equation 2 into equation 1 gives the Helmholtz 

equation 

       (3)        ( ) ( )2 2
, , , , 0S SE x y z k E x y z + =  

 

We will only consider the solution for a wave propagating in the Z 

direction where 

       (4)        ( ) ( ), , , ,
i k z

S XYE x y z E x y z e=  

 

The term i k z
e  accounts for the wave oscillation along the 

propagation direction. 

Substitution of equation 4 into equation 3 gives 

        (5)        
2 2 2

2 2 2
2 0XY XY XY XYE E E E
ik

xx y z

   
+ + + =

  
 

 

We will assume that there is a slow decrease in the amplitude of the 

wave as the wave propagates in the Z direction and only consider the 

wave far from the origin but close to the 
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Z axis such that x z  and y z . Thus, we can say that ( ), ,XYE x y z  

varies slowly with z, and thus we can neglect the term 
2

2

XYE

z




.  

Therefore, the wave equation can be expressed as 

        (6)       
2 2

2 2
2 0XY XY XYE E E

i k
xx y

  
+ + =

 
 

 

This is known as the paraxial wave equation. Without going into all 

the mathematical details, a solution to paraxial wave equation is 

        (7)        

( )

( )( ) ( )

2 2
0

0 2

2 2

, , , exp

exp exp exp
2

w x y
E x y z t E

w w

x y
i k z t i k i

R
 

 + 
= −  

   

  +
− −   

  

 

 

where 0E  is the amplitude of the wave and 0w  is the beam waist.   

( )w z  is the radius of the beam at position z at which the amplitude 

has decreased by the factor 1/e from its axial value or where the 

irradiance is 1/e2 of its axial value. ( )w z  is known as the beam spot.  
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( )R z  is the radius of curvature of the wavefront (surface that 

contains all points of the wave that have the same phase) at position 

z.  As the beam propagates in the +Z direction, the width of the beam 

expands, and this is measured by the beam spot as it increases with 

z. For the expanding beam, its wavefront must have a spherical 

shape because a wave always propagates in a direction 

perpendicular to its wavefront. 

 

( )z  is the Gouy phase. 

Rz  is the Rayleigh range 

        (8)        2
0 /Rz w =  

 

The paraxial approximation is only valid when 0w   and is not 

accurate for strongly diverging beams. 
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We can better understand the solution of the scalar paraxial wave 

equation by running the Script op_beams_001.m with the following 

input parameters: 

% INPUTS ============================================================== 

  
% Max power transmitted in beam  [W] 
P0 = 1e-3; 

  
% beam waist  [m] 
w0 = 0.5e-3; 

  
% wavelength  [m] 
wL = 632.8e-9; 

  
% Length of Z domain in multiples of zR :  z = nZ * zR 
nZ = 5; 

  
% Number of grid points in calculations  (must be an odd number) 
N = 501; 

  
% Z position of XY plane for radial irradiance plots:  zPR = zP / zR 
%   [e,g,  zPR = 0, 1, 2, ... ] 
zPR = 4; 

  
% Max radial distance for radial irradiance plot: Rmax = nR * w0 
nR = 5; 

 

 

All the figures in this document where created using the script 

op_beams_001.m. 

 

( )w zBeam spot  

At position z along the axis, the beam spot ( )w z  parameters is given 

by 

        (9)       2 2
0( ) 1 / Rw z w z z= +  



8 
 

 

 

        Fig. 2.   Beam spot w as a function of position z. 

When z = 0, we have 0( 0)w z w= = . This the smallest value that 

( )w z  can have. Thus, z = 0 is a special point in the propagation of the 

beam. For z > 0 the beam spot increases. Also, in the negative Z 

direction the beam spot also increases. When the beam is focused by 

a lens there is always a minimum width of the beam at the focal 

point such that the beam spot is equal to the value of the waist 

0( )w z w= . 

 

It is important to note that the Raleigh range is an indicator of the 

divergence of the beam. When Rz z=  we have 0( ) 2Rw z z w= = . 
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This is a turning point in the propagation of the light as the beam 

spot makes the transition from being nearly constant to increasing 

linearly as shown in figure 2.  

 

When Rz z  the ray description of the propagation of the light 

breaks down as the beam spot slowly increases. When Rz z , the 

beam spot expands linearly as  

        (10)         

( ) 2
0 0 0( ) / /

R

R R R

z
z z w z z w z z w z w


 


 = = = =  

where   is the limiting value of the divergence and is called the 

divergence angle of the beam.  The magenta line in figure 2 shows 

the divergence of the beam for ( )w z z= .  

        (11)        
0w





=  

  

Note: the smaller the value of Rz  the quicker the beam will expand 

in a linear manner and the smaller the value of the waist, the larger 

the divergence angle of the beam. Because the divergence is 

inversely proportional to the spot size, for a given wavelength  , a 

Gaussian beam that is focused to a small spot diverges rapidly as it 

propagates away from the focus. Conversely, to minimize the 
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divergence of a laser beam in the far field (and increase its peak 

intensity at large distances) it must have a large cross-section ( 0w ) at 

the waist and thus a large diameter where it is launched, since 

0( )w z w . This relationship between beam width and divergence is a 

fundamental characteristic of diffraction, and of the Fourier 

transform which describes Fraunhofer diffraction. Since the Gaussian 

beam model uses the paraxial approximation, it fails when 

wavefronts are tilted by more than about 30° from the axis of the 

beam. From the above expression for divergence, this means the 

Gaussian beam model is only accurate for beams with waists where 

2
0 6 /w   . 

 

The shape of a Gaussian beam of a given wavelength   is governed 

solely by one parameter, the 0wbeam waist . This is a measure of the 

beam size at the point of its focus ( 0z = ) and corresponds to the 

smallest value of the beam spot parameter. From waist 0w , other 

parameters describing the beam geometry are determined, such as, 

the Rayleigh range Rz  and asymptotic beam divergence  . 
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Radius of curvature of the wavefront     ( )R z   

        (12)        2
( ) /RR z z z z= +   

The phase term in equation (7)  

                    
2 2 2

2 2 2
exp exp

2 2

x y r
i k i k r x y

R R

      +
= = +         

      

         

 

gives the curvature of the wavefront which is spherical with radius 

.  Figure 3 shows the variation in the radius of curvature ( )R z  as 

a function of z. 

 

        Fig.3.   Radius of curvature of the wavefront as a function of z. 

( )R z
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When z = 0 we have ( 0)R z = =  , the wavefront is a plane wave and 

at this point all parts of the wave are moving in the same direction.  

 

When Rz z , then ( )R z z . The wavefront is a nearly a spherical 

surface traveling away from z = 0. This is the geometric optics limit. 

When we focus a beam of light we expect the light rays to go in 

straight lines to and from the focal point (z = 0). This is correct if 

Rz z . For Rz z , the wave aspect of the light applies.  

 

When Rz z=  then ( ) 2 RR z zR z= =  which is the minimum value of 

the radius of curvature and corresponds to the turning point 

between ray-optics and wave-optics. 

 

( )zGouy phase        

         (13)        1
( ) tan

R

z
z

z
 −  

=  
 

 

 

The Gouy phase slightly shifts the phase of the wavefront of the 

wave as a whole. For a focused beam, the dependence of the Gouy 

phase as a function of z is displayed in figure 4. 
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        Fig.4.   Goy phase plot for a focused Gaussian beam. 

 

As z →  the Gouy phase asymptotes to ( ) / 2z =  . Thus, only a 

 phase shift occurs from z = −  to z = + . This results in inversion 

of a signal that has passed through the waist ( )0( 0)w z w= = , that 

corresponds to the inversion obtained with the ray-tracing 

approximation (Geometrical Optics). 

 The most rapid change in phase occurs in the region from Rz z= − to 

Rz z= +  and when Rz z= − , then ( ) / 4Rz z = − = −  and Rz z= + , 

then ( ) / 4Rz z = + = + .  The Gouy phase shift along the beam 

remains within the range / 2  (for a fundamental Gaussian beam) 

and is not observable in most experiments. However, it is of 
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theoretical importance and takes on a greater range for higher-order 

Gaussian modes.  

 

ENERGY: Irradiance (Intensity)   S(r, z)  and power P(z) 

The irradiance (intensity) S is the time average flow of energy per 

unit time per unit area [W.m-2]. The irradiance S can be calculated 

from the electric field E of the wave from equation 14 

        (14)        
20

2

c
S E

 
=  
 

 

 

The symbol S is used for the irradiance in the Script and notes and 

not the more commonly used letter I. c is the speed of light and 0  is 

the permittivity of free space.  

 

For our propagating Gaussian beam, the electric field E is given by 

equation 7, so the irradiance S is 

        (15A)        
2 2 2

2 0 0
0 2

( , , ) exp 2
2

c w x y
S x y z E

w w

   +   
= −     

       

 

 or 
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        (15B)         

2 2
2 2 20 0

0 2
( , ) exp 2

2

c w r
S r z E r x y

w w

      
= − = +     

       

 

 

        (9)         2 2
0( ) 1 / Rw z w z z= +  

 

The maximum irradiance occurs at the location ( )0, 0r z= =  where 

        (15C)        20
max 0

2

c
S E

 
=  
 

  

 

The variation of the intensity along the Z axis ( )0r =  is given by 

        (15D)        

2

2 20 0 0
0 0 2 2

1
( ) (0, )

2 2 1 /
z

R

c w c
S z S z E E

w z z

        
= = =       

+       
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Figure 5 shows a plot of the axial irradiance Sz as a function of z. 

 

Fig. 5.     Axial irradiance zS  as a function of position z along 

the axis of the beam. The maximum value of the irradiance 

from equation 15C is  3 -2
max 2.547 10 W.mS

−
=  . Note, at 

Rz z=  the on-axis irradiance is one-half the maximum 

irradiance at the waist ( )0z = : max( ) / 2RS z S= .   

 

When ( )2 2 2 2
1 / /R R Rz z z z z z+  , then 

2

1
( )zS z

z
  and 

1
( 0, )E r z

z
=  . Therefore, the amplitude of the wave decreases with 

increasing z in the same manner as a spherical wave.    
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The radial irradiance Sr is the variation in the irradiance in the XY 

plane located at position z. and typical plots are shown in figure 6. 

        (15E)        

2 2
2 0 0

0 2
( ) ( , ) exp 2 fixed

2
r

c w r
S r S r z E z

w w

      
= = −     

       
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Fig. 6.    The variation in the radial irradiance S at two z 

positions along the axis. The profile of the plots are also a 
Gaussian function as is the amplitude of the wave. 

 

Figure 7 shows the radial irradiance Sr as a [3D] plot and as image 

that may be viewed on a screen for the same two z positions as in 

figure 6. 
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20 
 

 

 

     Fig. 7.   Beam profile: Radial irradiance Sr.  
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Figure 8 shows the beam in the XZ plane and how the beam diverges 

and how its intensity decreases with increasing z distance from the 

waist at z = 0. 

 

Fig. 8.   Profile of the beam in the XZ plane. The yellow 

lines show the beam spot as shown in figure 2.    

 

 

The power P transmitted through a circular disk of radius rP in an XY 

plane at position zP is  

                       ( )
0

( ) ( , ) 2
Pr

P z S z r r dr=   

 

                        

2 2
2 2 20 0

0 2
( , ) exp 2

2

c w r
S r z E r x y

w w

      
= − = +     

       
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                       ( )
2 2

2 0 0
0 20

( ) exp 2 2
2

Pr c w r
P z E r dr

w w




     
= −     

       
  

 

                        ( )
2 2

2 0
0 0 20

2
( ) exp

Prw r
P z E c r dr

w w
 

 − 
=   

   
  

 

                         ( )
2 2 2

2 0
0 0 2

0

2
( ) exp

4

Pr

w w r
P z E c

w w
 

    − 
= −      

       

 

 

                          
2 2

2 0 0
0 2

2
( ) 1 exp

4

Pc w r
P z E

w

      −
= −       

    

 

 

        (16A)        
2

0 2

2
( ) 1 exp PrP z P

w

  −
= −   

  

 

 

When Pr →  then 0( )P z P→   
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        (16B)        
2

2 0 0
0 0

4

c w
P E

  
=   

 

               total power transmitted 

by the beam 

  

If we know the total power 0P  transmitted by the beam, we can then 

calculate the electric field amplitude 0E  and the maximum irradiance  

of the beam 0S  

        (17A)        0
0 2

0 0

4 P
E

c w 
=  

 

        (17B)         
0

2

0

2

max

P

w
S


=         

 

Figure 9 shows the percentage power that would pass through a 

circular aperture of varying radius placed perpendicular to the beam 

at the beam waist.  
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Fig. 9.   The percentage power that would pass through a 

circular aperture of varying radius placed perpendicular to 

the beam at the beam waist. 86% of the light passes 

through the aperture when the radius of the aperture is 

equal to the beam waist. 

 

 

Phase of the wave   

We can examine the change of phase of the wave along the 

time Z axis from equation 7 when 0t =  and 0r = . 

(7) 

( ) ( )( ) ( )
2 2

0
0 2

, , exp exp exp exp
2

w r r
E r z t E i k z t i k i

w Rw
 

     
= − − −             
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(18)       
( )

( ) ( )( )

0
2

1

1
( ) 0, ,0

1 ( / )

exp / tan /R R

E z E z E
z zR

i k z z zR z z



−

 
 = =
 + 

 −
 

  

 

The phase of the wave can be found using the Matlab 

command angle 

   % phase of the wave along the Z axis 

    E_chi = E0 .* (1./sqrt(1+z_zR.^2)) .* exp(1i*(k.*zR.*z_zR - 

atan(z_zR))); 

    chi = angle(E_chi); 

 

The phase along the Z axis is displayed in figure 10.  

 

 

Fig.10.  Phase in the electric field along the Z axis of the 

beam.  ??? not sure if the graph is correct – get very rapid 

changes ??? 
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You can easily change any of the parameters and immediately see 

the resulting changes. For example: wavelength for blue light 

480 nm =  
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      Fig. 11.  Beam profile plots for blue light  480 nm = . 

   

              


