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SCALAR DIFFRACTION INTEGRALS 

 

The integral theorem of Helmholtz and Kirchhoff 

 

 Kirchhoff boundary conditions 

 

 on aperture   SA        A( ) ( )E r E r    and   A( ) ( )E r E r     
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Rayleigh-Sommerfeld diffraction integral of the second kind 
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Rayleigh-Sommerfeld diffraction integral of the first kind 
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The Rayleigh-Sommerfeld region includes the entire space to the right of the 

aperture. It is assumed that the Rayleigh-Sommerfeld diffraction integral of the first 

kind is valid throughout this space, right down to the aperture. There are no 

limitations on the maximum size of either the aperture or observation region, relative 

to the observation distance, because no approximations have been made.  

 

 

THE INTEGRAL THEOREM OF HELMHOLTZ AND 

KIRCHHOFF 

 

The basic idea of the Huygens-Fresnel theory is that the light disturbance at a point 

P arises from the superposition of secondary waves that proceed from a surface 

situated between this point P and the light source. Kirchhoff formulated a sound 

mathematical basis for this principle based upon solutions of the homogeneous wave 

equation, where the value at an arbitrary point P in the field can be expressed in terms 

of the values of the solution and its first derivatives at all points on an arbitrary closed 

surface surrounding the point P. 

 

We consider strictly monochromatic scalar waves that are solutions of the wave 

equation 
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where ( , )E r t  is electric field (or monochromatic optical disturbance) and can be 

written as  
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Solutions of the wave equation for plane waves traveling the direction + r  and - r  are  

+ r  direction: 
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Solutions of the wave equation for spherical waves traveling the direction + r  and - r  

are  
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In vacuum, the space-dependent part then satisfies the Helmholtz equation 
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In problems involving boundaries it is often convenient to study the properties of the 

difference between two solutions of an equation rather than one of the solution alone, 

since the boundary conditions become simpler to handle. 

 

Take the origin at the observation point P, at which the electric field has the value 

E(0). The two wave fields, E( r ) the unknown field to be calculated and Et( r ) a trial 

solution of the Helmholtz equation satisfy the equation 
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at all points except at the origin r  = 0. Now, integrate (5) throughout a volume V 

bounded by a surface S and by Green’s theorem, the volume integral can be changed 

to a surface integral: 
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n  being the inward pointing normal to the surface S. We assume that both E( r ) and 

Et( r ) possess continuous first- and second-order partial derivatives within and on this 

surface. Because the integrand is zero in (5), the integrals in (6) are also zero. 

Furthermore, the volume containing P must be free of any sources of optical radiation 

(including secondary sources of reradiated or scattered light). 

 

Note: terms such as n  give the normal component of the gradient at the surface 

of integration. 

 

Consider a trial solution to be 
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which is a spherical wave radiating from the origin at P. This spherical wave ( )tE r  

plays the role of a mathematical auxiliary function – a “probe” which we use for 

investigating the optical field ( )E r . This is a virtual spherical wave and has nothing 

to do with any real spherical waves that act as the source functions.  

 

This trial function has a singularity at the point r = 0 and since Et( r ) was assumed to 

be continuous and differentiable, the point P must be excluded from the domain of 

integration in equation (6). This is done by surrounding P by a small sphere of radius 

 and taking the surface S to be divided into two parts, an arbitrary outer surface So 

and the small inner spherical surface Si of radius . 
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Therefore, the gradient of the trial function is 
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However, after we make the substitutions into of equations (7) and (8) into (6) we can 

take these waves to describe spherical waves which are radiated by elements of the 

surface S and which arrive at the point P at a distance r from dS.  

 

Therefore, (6) become 
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The contribution from Si can be evaluated directly, since over the small sphere of 

radius  we consider E()  to be constant and equal to E(0). The unit vector n  is 

parallel to  , so we have n = 1 and we can substitute 
2
d for dS where d is an 

element of the solid angle. Therefore, the integral over the inner surface can be 

written as 
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  (10) 

 

The value of the electric field at the observation point P is  

 

  
o

o
o2

S

ˆ e
( ) 1 e ( ) d 4 (0) 0

j k r
j k r

t ot

Er
E r j k r E E r n S E E

rr


 
     
 
 

  

 

   
o

2

S

1 e ˆ(0) ( ) 1 ( ) d
4

j k r

E E r j k r r r E r n S
r

 
     

 
  (10) 

  

Thus E(0) can be found if the values for E( r ) and ( )E r are known at all points on 

the outer surface surrounding the point P. This is one form of the integral theorem of 

Helmholtz and Kirchhoff. 

 

This theorem expresses E(0) in terms of both E( r ) and E( r ). It may, however be 

shown that from the theory of Green’s functions, that either E( r ) or E( r ) on So are 

sufficient to specify E(0) at every point P with So.  

 

In applying the integral theorem of Helmholtz and Kirchhoff to diffraction problems, 

the surface So is divided into three: 1) the diffraction aperture (opening) SA, 2) the 

screen blocking the radiation SB, and 3) since the surface must be closed, we must 

include a mathematical surface S of radius R centre about the point P, so that when 

R    the integral over the integral in (10) will approach zero or R is chosen so large 

there is insufficient time for a contribution from this surface to have reached the point 

P. 
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It remains to integrate (10) over SA + SB. However, the actual field and its gradient 

over the surface are almost impossible to determine except in the simplest cases 

because for real physical apertures will partially absorb, reflect and scatter the 

incident radiation. 

 

The first approximation to make in integrating (10) is to ignore the real boundary 

values and apply the so-called Kirchhoff boundary conditions and are the basis of 

Kirchhoff’s diffraction theory. These replace the actual field in the presence of the 

aperture by the incident field for the open aperture A ( )E r and by zero elsewhere: 

 

 Kirchhoff boundary conditions: 

 

 on SB   ( ) 0E r     and   ( ) 0E r   (11a)  

 

 on SA   A( ) ( )E r E r    and   A( ) ( )E r E r    (11b) 

 

Then (10) becomes 

 

   
A

A A2
S

1 e ˆ(0) ( ) 1 ( ) d
4

jkr

E E r jkr r r E r n S
r

 
    

 
 

  (12) 

 

The Kirchhoff boundary conditions are an approximation, since at the edge of the 

opening, the amplitude of the wave does not suddenly jump from a finite value to 

zero. The approximation is better when the aperture is large compared to the 

wavelength. 
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Strictly speaking the boundary conditions (11) are mathematically inadmissible. A 

theorem in Riemann’s theory of functions implies that if the value of a function and 

its first derivative vanish along a segment then the function vanishes everywhere, in 

fact the assumed boundary conditions even contradict each other and if we would 

calculate the value at P on the surface S, the boundary conditions would not be 

reproduced. 

 

In principle, a scalar approach can be performed for each component of the vector 

wave, but in practice this is rarely necessary. We can assume that the radiation from 

the opening is much larger than from the blocking screen. Also, well into the opening, 

all possible directions of polarization are possible for the radiation. Often, edge effects 

are only predominant in a region within less than a wavelength from the edges. 

Therefore, in most practical applications the use of a scalar approach is justified. 

However, in the scalar approach, all information about the polarization of the wave is 

lost. 
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GREEN’S FUNCTION 

A SIMPLIFIED FORMULATION OF HUYGENS’S PRINCIPLE 

 

Rayleigh-Sommerfeld diffraction integral of the first kind 

 

Rayleigh-Sommerfeld diffraction integral of the second kind 

 

The mathematical contradiction posed by the Kirchhoff boundary conditions can be 

avoided by substituting for the trial spherical wave function ( )tE r given by (7) by the 

Green’s function G belonging to the surface surrounding the point P. This function is 

defined by the following conditions: 

 within the volume V 2 2
0G k G    (13a) 

 

 on SB   G = 0  (13b) 

 

 as r  0  G   t ( )E r  (13c) 

 

 as r    ( ) 0r G n j k G    (13d) 

 

as before, r is the distance from the point P and (13d) is called the radiation condition. 

G has a singularity only at the point P (r = 0) and is continuous everywhere else 

within the volume V. G differs from ( )tE r because of the additional condition (13b). 

As a result of this condition the term containing the term ( )E r in equation (9) 

vanishes and therefore (9) simplifies to 
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Now, we need to specify only the boundary values of ( )E r and not its gradient. This 

approach has the practical advantage of leading to the simpler form of the integral as 

given in (14) as compared to (12).  

 

This approach again is only an approximation and is valid for sufficiently small 

wavelengths. The real field does not vanish completely behind the blocking screen, 

nor is the field entirely unaffected by the presence of the screen, at least not within 

distances of the order of magnitude of a wavelength from the edge of the screen. 

 

However, the applicability of the Green’s function method is restricted to the special 

case of a plane screen, for this is the only case for which the Green’s function can be 

conveniently expressed. 

 

  



 9 

Note: The wavelength  is really only defined for plane monochromatic waves and 

can lose its significance in wave types encountered in diffraction. However, we can 

always interpret  as the length 2 c / which is defined for all monochromatic 

radiation processes and which for plane waves is identical with the actual 

wavelength. 

 

 

The method of images is used to determine the appropriate Green’s function.   

 

 

 

Construction of the Green’s function for a plane screen 

 

 

We construct the mirror image S of the point P with respect to the plane of the screen 

z = 0. For an arbitrary point Q(xq, yq, zq) where zq > 0, we form the Green’s function 
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If we now place Q on the screen, we have 
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Substituting (19) and (20) into (14) we obtain and we can integrate over the area SA. 
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(21) is known as the Rayleigh-Sommerfeld diffraction integral of the first kind. 

 

 

If we make the approximation that k r >> 1 then 
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then (21) can be written as 
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This expression (22) is equivalent to Huygens’s principle – a light wave falling on an 

aperture propagates as if every element dS emitted a spherical wave, the amplitude 

and phase of which are given by that of the incident wave. The factor cos relates to 

Lambert’s law of surface brightness. 

 

Instead of the Green’s function (15) which satisfies the boundary conditions (13) in 

which G = 0 at z = 0, we now form  
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This is a function which satisfies the boundary condition G/z = 0 at z = 0. 

 

As a result of this condition the term containing the term ( )E r in equation (9) 

vanishes and therefore (9) simplifies to 
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Now, we need to specify only the boundary values of ( )E r and not the value of 

( )E r . 

If we substitute the values of the Green’s function on the plane z = 0 we obtain 
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(25) is known as the Rayleigh-Sommerfeld diffraction integral of the second kind. 

  

The Rayleigh-Sommerfeld region – the entire space to the right of the aperture. It is 

assumed that the Rayleigh-Sommerfeld diffraction integrals are valid throughout this 

space, right down to the aperture. There are no limitations on the maximum size of 

either the aperture or observation region, relative to the observation distance, because 

no approximations have been made. 

 

The Fresnel region (near field) – that portion of the Rayleigh-Sommerfeld region 

within which the Fresnel conditions are satisfied. Both the input and output signals are 

restricted to regions lying near the z axis, i.e., the lateral dimensions of which are 

much smaller than the separation between the input and output planes. 

 

 1 2pqz L L    (26) 

 

where L1 and L2 are the maximum lateral extents of the aperture and observation 

planes respective. Also it is assumed that 
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Conditions (26) and (27) are sometimes known as the Fresnel conditions. 
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The Fraunhofer region (far field) – that portion of the Fresnel region within which 

the Fraunhofer condition is satisfied  
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In the Fraunhofer region the size of the diffraction pattern increases with increasing 

distance but its shape is invariant.  

 

The Rayleigh distance  dRL 
 

The Rayleigh distance in optics is the axial distance from a radiating aperture to a 

point an observation point P at which the path difference between the axial ray and an 

edge ray is λ / 4. A good approximation of the Rayleigh Distance 
RL

d  is 
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4
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a
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where a is the radius of the aperture. Rayleigh distance is also a distance beyond 

which the distribution of the diffracted light energy no longer changes according to 

the distance zP from the aperture.  

 

 zP  <  dRL           Fresnel diffraction 

 

 zP  >  dRL           Fraunhofer diffraction. 

 

If we consider a circular aperture of radius a, then much of the energy passing through 

the aperture is diffracted through an angle of the order / a  from its original 

propagation direction. When we have travelled a distance 
RL

d from the aperture, 

about half of the energy passing through the opening will have left the cylinder made 

by the geometric shadow if /
RL

a d  . Putting these formulae together, we see that 

the majority of the propagating energy in the "far field region" at a distance greater 

than the Rayleigh distance 2
4 /

RL
d a  will be diffracted energy. In this region then, 

the polar radiation pattern consists of diffracted energy only, and the angular 

distribution of propagating energy will then no longer depend on the distance from the 

aperture. 

 

  

 

 


