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RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF THE 

FIRST KIND 
 

The Rayleigh-Sommerfeld region includes the entire space to the right of the 

aperture. It is assumed that the Rayleigh-Sommerfeld diffraction integral of the first 

kind is valid throughout this space, right down to the aperture. There are no 

limitations on the maximum size of either the aperture or observation region, relative 

to the observation distance, because no approximations have been made. The 

Rayleigh-Sommerfeld diffraction integral of the first kind (RS1) can be expressed as 
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where EP is the electric field at the observation point P, EQ is the electric field within 

the aperture and rPQ is the distance from an aperture point Q to the observation point 

P. The double integral is over the area of the aperture SA. The aperture is illuminated 

with a monochromatic wave of wavelength  and wave number k  2 /k    and 

1j   .  

 

 

 

Some of the ways in which Simpson’s rule can be used to compute the value of the 

electric field EP given by equation (1) are discussed below. 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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1. Two-dimensional form of Simpson’s 1/3 rule using 

Simpson’s [2D] coefficients 

 

The double integral given in equation (1) can be estimated numerically by a two-

dimensional form of Simpson’s 1/3 rule.  

 

The aperture space is partitioned into a grid of NN points where N must be an odd 

number. The electric field EP at a point P on an observation screen is approximated by 
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where E0 is a normalizing constant. Each term in equation (2) can be expressed as a 

matrix of size NN and the matrices can be manipulated very easily in Matlab to give 

the estimate of the integral of equation (1). Then equation (2) is evaluated for each 

observation point P. 

 

 

 
Fig.1.   Cartesian and polar grid patterns for the aperture space. 

 

The position of the aperture grid points can be given in Cartesian coordinates or in 

polar coordinates.  For each grid point Q in the aperture, values are specified for: 

 

 Cartesian coordinates (xQ, yQ, zQ) and/or polar coordinates (Q, Q) 

 

 
0 cos sin

Q Q Q Q Q Q Q
z x y     

 
 

The coordinates of each point Q are given in a square matrix NN using the Matlab 

command meshgrid. The distance rPQ between an aperture point Q(xQ, yQ, zQ) and an 

observation point  P(xP, yP, zP) is calculated using the function  fn_distancePQ.m . A 

square matrix NN for is constructed for the NN distances from a point P to the NN 

aperture points.  

 Electric field  EQ is assumed to be uniform in the aperture and is given by a 

square matrix NN.  



Doing Physics with Matlab     op_rs1.docx 3 

 

 Simpson’s two-dimensional coefficients Smn are given by a square matrix NN 

called the Simpson Matrix S. The Simpson matrix S for N = 5 is  

 

  

 

 

 

 

 

The coefficients are calculated using the function  simpsonxy_coeff(N).m where N 

must be an odd integer . 

 

The irradiance I is proportional to the square of the magnitude of the electric field, 

hence the irradiance in the space beyond the aperture can be calculated from 
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where I0 is a normalizing constant and E
*
 is the complex conjugate of E. 

 

In this calculation, the values of the electric field and irradiance are in arbitrary units. 

 

The irradiance is also known as the intensity or energy density. The term irradiance 

and the term energy density will often be used interchangeably. The symbol I is 

inconvenient to use. The symbol uP will often be used for the energy density or 

irradiance  (I  uP). 

 

Examples of Matlab mscripts using Method 1 

 

 Circular aperture           op_rs1_circular_01.m 

 

 Rectangular aperture     op_rs_rxy_01.m 

     

  

1 x 1 = 1 4 x 1 =   4 2x1 = 2 4x1 =  4 1x1 = 1 

1 x 4 = 4 4 x 4 = 16 2x4 = 4 4x4 = 16 1x4 = 1 

1 x 2 = 8 4 x 2 =   8 2x2 = 4 4x2=   8 1x2 = 1 

1 x 4 = 4 4 x 4 = 16 2x4 = 4 4x4 = 16 1x4 = 1 

1 x 1 = 1 4 x 1 =   4 2x1 = 2 4x1 =   4 1x1 = 1 
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2. Two-dimensional form of Simpson’s 1/3 rule 

 

The Rayleigh-Sommerfeld diffraction integral given by equation (1) 
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can be integrated over the aperture space using either Cartesian or polar coordinates 
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The integral is estimated numerically using a two-dimensional form of Simpson’s 1/3 

rule using the mscript   simpson2d.m . 

 

For example, the Matlab statement to calculate the electric field EP given by equation 

(4a) at a point P which is given specified by the indices (c1, c2) is 

 

     EP(c1,c2) = simpson2d(MP,xQmin,xQmax,yQmin,yQmax) ./(2*pi) ; 
 

where MP is NN matrix representing the integrand. 

 

 

In the first method described above, arbitrary units for electric field and irradiance 

were used. However, using this second method, SI units can be used all parameters  

 

The irradiance or more generally the term intensity has S.I. units of W.m
-2

. Another 

way of thinking about the irradiance is to use the term energy density as an 

alternative. The use of the letter I can be misleading, therefore, we will use the symbol 

u to represent the irradiance or energy density.  

 

The irradiance or energy density u of a monochromatic light wave in matter is given 

in terms of its electric field E by 
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where n is the refractive index of the medium, c is the speed of light in vacuum and 

0 is the permittivity of free space. This formula assumes that the magnetic 

susceptibility is negligible, i.e. 1
r

   where 
r

  is the magnetic permeability of the 

light transmitting media. This assumption is typically valid in transparent media in the 

optical frequency range. 
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At a point Q in the aperture plane, the energy density is given by the symbol uQ and in 

the observation plane at a point P the symbol used is uP. The energy transferred U 

from the aperture plane to observation plane per second is found by integrating the 

energy density with respect to an area 

 

 (6a) 
S

U u dS                 [W or J/s] 

 

The energy per second radiated from the aperture is 

 

 (6b) 
Q

Q Q
S

U u dS                   integration over the area of the aperture 

 

The energy per second reaching an area SP of the observation plane is 

 

 (8c) 
P

P P
S

U u dS                   integration over the area element of the 

                                                                observation plane 

 

For uniform illumination of the aperture, the energy density is specified first. Then the 

value of the electric field EQ at each grid point is assigned. The aperture shape can be 

modified by setting certain values of EQ to zero, as illustrated in the code for a circular 

aperture with radius a using a Cartesian grid 

 

uQmax = 1e-3;                  % incident energy density  [W.m^-2] 
cL = 2.99792458e8;          % speed of light 
eps0 = 8.854187e-12;     % permittivity of free space 
nR = 1;                                % refractive index 
EQmax = sqrt(2*uQmax/(cL*nR*eps0));  
EQ = EQmax .* ones(nQ,nQ);  
EQ(rQ > a) = 0; 

 

  

Examples of Matlab mscripts using Method 1 

 

 Circular aperture           op_rs1_xy_circle.m    (uses Cartesian coordinates) 

 

 

  



Doing Physics with Matlab     op_rs1.docx 6 

3. One-dimensional form of Simpson’s 1/3 rule 

 

The Rayleigh-Sommerfeld diffraction integral given by equation (1) 
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can be integrated over the aperture polar coordinates 
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On most occasions it is better to use polar coordinates than Cartesian coordinates 

because most apertures of interest are circular in shape. For polar coordinates 

specifying the aperture points Q, Methods 1 and 2 use the polar grid pattern as shown 

in figure (1).  With this pattern, the grid density decreases as the radial distance from 

the origin increases.  To overcome this problem, the aperture can be divided into a set 

of rings of equal width. Each ring is assigned a set number of grid points and the 

number of grid points assigned increases as the radius of the rings increase.   

 

Consider the integration of the function f(x, y) over a circle 

 

  ,
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The circle is divided into N rings of equal width dr with the c
th

 ring having n(c) gird 

points. 

 

The integration for each ring is now reduced to a one-dimensional integration. For the 

c
th

 ring, the value of the integral is 
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The total integral A is found by summing the contributions of each ring Aring 
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The code from the mscript  op_rs_circle_rings.m  below gives an example of how 

Method 3 can be implemented for a circular aperture. 
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% =================================================================== 
%    Computing the Rayleigh-Sommerfeld 1 Diffraction Integral by Method 3 
%    EP along the X axis   [V/m] 
%    nP grid points for P 
%    nR is the number of rings 
%    n is the number of grid points for a given ring  
%    uP energy density (irradiance) along the X axis  [W/m^2] 
 
for cP = 1 : nP 
   for cQ = 1 : nR 
      t = linspace(0,2*pi,n(cQ));  
      xQ = r(cQ) .* cos(t); 
      yQ = r(cQ) .* sin(t); 
      unit = ones(1,n(cQ)); 
      rPQ = fn_distancePQ(xP(cP),yP,zP,xQ,yQ,zQ); 
      rPQ3 = rPQ .* rPQ .* rPQ; 
      kk = ik .* rPQ; 
      MP1 = exp(kk); 
      MP1 = MP1 ./ rPQ3; 
      MP2 = zP .* (ik .* rPQ - unit); 
       
      f = EQmax .* MP1 .* MP2; 
       
      A(cQ) = r(cQ) * simpson1d(f,0,2*pi); 
   end 
     EP(cP) = dr * sum(A) / (2*pi); 
end 
  
uP = (cL*nRI*eps0/2) .* abs(EP).^2; 
 

 

Examples of Matlab mscripts using Method 3 

 

 Circular aperture           op_rs_circle_rings.m     
 

  

 

 

 

 

  

 

 

 

 


