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Matlab Download Directory 

 

op_rs_rxy_01.m 
Calculation of the irradiance in a plane perpendicular to the optical axis for a 

uniformly illuminated rectangular aperture.  

 

  simpsonxy_coeff.m 
Function to calculate Simpson’s two-dimensional coefficients 

  fn_distancePQ.m 
Function to calculate distance between two points 

  turningPoints.m 
Function to find the zero crossings of a function and its maxima and minima 

 

op_rs_rxy_02.m 

Updated version of op_rs_rxy_01.m. Calculation of the irradiance in a plane 

perpendicular to the optical axis for a rectangular aperture. The irradiance is not 

scaled but calculated in W.m
-2

. The energy per second from the aperture to the 

observation screen is calculated and the energy per second within a circle of radius 

equal to the position of the first minima in the X direction in the observation screen is 

also calculated.  

 

simpson2d.m 
Function to calculate the value of a two-dimensional integral using the 

Simpson’s [2D] method. 

 
fn_distancePQ.m 
Function to calculate distance between two points 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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FRAUNHOFER DIFFRACTION – RECTANGULAR APERTURE 

 
We will consider the Fraunhofer diffraction patterns for a single rectangular aperture 

that is uniformly illuminated. The X and Y widths the rectangular aperture are ax and 

ay respectively. The irradiance distribution I is given by the product of two single slit 

functions 
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where I0 is a normalizing constant and the optical coordinates vPx and vPy are  
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and the angles 
x

  and 
y

  define the direction of the diffracted ray 
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The geometry for the diffraction pattern from a rectangular aperture is shown in figure 

(1). 

 
 

 Fig. 1.   Geometry for a rectangular aperture with dimensions ax x ay.  

The radial coordinates are scaled perpendicular distance from the optical 

axis. 
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The resulting diffraction pattern for the irradiance has lines of zeros when 
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 Fig. 1.   Photograph like image for the Fraunhofer diffraction pattern of a 

rectangular aperture  ay = 2 ax. 

 

However, a more versatile approach to study the diffraction from an aperture is to 

evaluate the Rayleigh-Sommerfeld diffraction integral of the first kind. No 

approximations need to be made and the irradiance can be calculated in the near and 

far fields in an XY plane and along the Z axis right. There is excellent agreement 

between the far field predictions of the Fraunhofer theory and the results of evaluating 

the Rayleigh-Sommerfeld diffraction integral. 
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RAYLEIGH DIFFRACTION INTEGRAL OF THE FIRST KIND 
 

The Rayleigh-Sommerfeld region includes the entire space to the right of the 

aperture. It is assumed that the Rayleigh-Sommerfeld diffraction integral of the first 

kind is valid throughout this space, right down to the aperture. There are no 

limitations on the maximum size of either the aperture or observation region, relative 

to the observation distance, because no approximations have been made. 

 

The Rayleigh-Sommerfeld diffraction integral of the first kind (RS1) can be expressed 

as 
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where EP is the electric field at the observation point P, EQ is the electric field within 

the aperture and rPQ is the distance from an aperture point Q to the point P. The 

double integral is over the area of the aperture SA. 

 

Approach 1 to evaluating The Diffraction Integral 

op_rs_rxy_01.m 

 

The double integral can be estimate numerically by a two-dimensional form of 

Simpson’s 1/3 rule. The electric field EP at the point P is computed by 
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where Smn are the Simpson’s two-dimensional coefficients and E0 is a normalizing 

constant. Each term in equation (2) can be expressed as a matrix of size N  N  and 

the matrices can be manipulated very easily in Matlab to give the estimate of the 

integral. The irradiance is proportional to the square of the magnitude of the electric 

field, hence the irradiance in the space beyond the aperture can be calculated by 
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where I0 is a normalizing constant and E
*
 is the complex conjugate of E. 

 

  

http://www.physics.usyd.edu.au/teach_res/mp/doc/math_integration_2D.pdf
http://www.physics.usyd.edu.au/teach_res/mp/doc/math_integration_2D.pdf
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Approach 2 to evaluating The Diffraction Integral 

 op_rs_rxy_02.m 
 

Instead of using arbitrary units for electric field and irradiance we can perform all 

calculations in S.I. units.  

 

The irradiance or more generally the term intensity has S.I. units of W.m
-2

. Another 

way of thinking about the irradiance is to use the term energy density as an 

alternative. The use of the letter I can be misleading, therefore, we will use the symbol 

u to represent the irradiance or energy density.  

 

The irradiance or energy density u of a monochromatic light wave in matter is given 

in terms of its electric field E by 
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n is the refractive index of the medium, c is the speed of light in vacuum and 0 is 

the permittivity of free space. This formula assumes that the magnetic susceptibility is 

negligible, i.e. 1
r

   where 
r

  is the magnetic permeability of the light transmitting 

media. This assumption is typically valid in transparent media in the optical frequency 

range. 

 

At a point Q in the aperture plane, the energy density is given by the symbol uQ and in 

the observation plane at a point P the symbol used is uP. The energy transferred U 

from the aperture plane to observation plane per second is found by integrating the 

energy density with respect to an area 
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The energy per second radiated from the aperture is 
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The energy per second reaching an area SP of the observation plane is 

 

 (8c) 
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                                                                observation plane 

 

In the mscript  op_rs_rxy_02.m for the aperture, the dimensions ax and ay are 

specified [m] and the energy density uQ [W.m
-2

]. Hence, the electric field EQ within 

the aperture is 
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The integral to find the electric EP at a point P in the observation plane is  
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where EQ is given by equation (9) and the integral is computed using a two-

dimensional form of Simposn’s 1/3 rule. 

 

The integrals given in equations (8) are also computed using the two-dimensional 

form of Simpson’s 1/3 rule. 

 

Once EP is known, the energy density uP is calculated from equation (7) and energy 

UP from equation (8c). 

 

 

 

  

http://www.physics.usyd.edu.au/teach_res/mp/doc/math_integration_2D.pdf
http://www.physics.usyd.edu.au/teach_res/mp/doc/math_integration_2D.pdf
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SIMULATIONS     op_rs_rxy_01.m 

 

Rectangular aperture (far field) 

 

Input parameters 

 
nP = 495;              % observation points for P  must be ODD 
nQ = 147;           % aperture points for Q  must be ODD 
  
wL = 632.8e-9;   % wavelength [m] 
  
aQx = 1e-4;          % defines aperture size  [m] 
aQy = 2e-4;  
  
aP = 30e-3;          % defines size of observation space  [m] 
  
zQ = 0; zP = 1;      % z distance between aperture plan and  
                          observation plane [m] 

 
 Fig. 2. Irradiance patterns in the along the X and Y axes.  The maximum 

irradiance has been normalized to 1.  The bottom curves use a log scale for 

the irradiance   10
10log

dB
I I .  
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Figures (2) and (3) shows the irradiance for a rectangular aperture with ay = 2 ax. The 

diffraction pattern is characterized by a strong central maximum and very weak peaks 

of decreasing magnitude away from the optical axis. The separation of the dark bands 

along the Y axes is narrower than along the X axis.  Figure (3) shows photograph like 

images of the diffraction pattern. The irradiance is scaled to represent the different 

exposure times.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Photograph like images for the diffraction patterns for a 

rectangular aperture. The image on the right is scaled to represent a 

longer exposure time. 

 

 

In Tables 2 and 3 are listed values of the first few maxima and zeros of the diffraction 

pattern that were calculated using  op_rs_rxy_01.m  and the function 

turningPoints.m. The function returns the values of indexMax and indexMin. Then in 

the Command Window the values of the radial coordinates for the peaks and zeros 

can be displayed. 

 

  

The theoretical values are for the zero crossing and minima and maxima of the 

function  
22

sin /
m

y x x  which gives the Fraunhofer diffraction pattern for a single 

slit.   

  

         Table 2.   Relative irradiances of the maxima of the diffraction pattern.  

 

 

 

 

 

 

          

  

Table 3.   Zeros in the irradiance for the diffraction pattern 

peaks central 1
st
 2

nd
 3

rd
 4

th
 

theory 0  1.429  2.462  3.470  4.478 

vP /   0  1.440  2.457  3.473  4.470 

theory 1.0000 0.0472 0.0165 0.0083 0.0050 

I/Io 1.0000 0.0471 0.0165 0.0083 0.0050 
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How finding the zero crossings (indexMin) and maxima (indexMax) in the Command 

Window where indexMin gives the position in an array for the zeros and indexMax 

gives the position in arrays for the maxima. Note the Matlab variable for the 

irradiance is WP. 

 

Type in the Command Window: 

 

 yData = WP(indexyP,:); 

 xData = xP(indexyP,:) ; 

 [indexMin indexMax] = turningPoints(xData,yData); 

  

 indexMin      24    55    86   117   179   210   241   272 
 

 vPx(indexyP, indexMin)./pi       

 

   -3.9910   -2.9937   -1.9960   -0.9981    0.9981    1.9960    2.9937    3.9910 
 

 

 indexMax      9    40    72   104   148   192   224   256   287 
 

 vPx(indexyP, indexMax)./pi     

 

   -4.470   -3.473   -2.457   -1.4440    0.0000    1.4440    2.457    3.473    4.470 
 

 WP(indexyP, indexMax)       

 

    0.0050    0.0083    0.0165    0.0471    1.0000    0.0471    0.0165    0.0083    0.0050 
 
In a figure Window you can use the Data Cursor to find values for the zero crossings 

and maxima. 

 

There is excellent agreement between the predictions of the Fraunhofer approximation 

and the calculations performed by evaluating the Rayleigh-Sommerfeld diffraction 

integral. 

 

 

  

  

zeros 1
st
 2

nd
 3

rd
 4

th
 

theory  1  2  3  4 

vP /   0.9981  1.9960  2.9937  3.9910 
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Diffraction pattern in near field 

 

 
 

 
Fig. 4.   Diffraction pattern from a rectangular aperture. Observation 

plane close to aperture plane  zP = 100 and observation plane 

dimensions 10x10. 
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Diffraction – single slit 

 

 slit dimensions     ax = 1x10
-4

  m      ay = 1x10
-6

 m 

 
 

 
 

Fig. 5.   Diffraction pattern from a single slit. 
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Diffraction – square aperture 

 

 slit dimensions     ax = 1x10
-4

  m      ay = 1x10
-4

 m 

 
 

             
 

Fig. 6.   Diffraction pattern from a square aperture with different scaling 

for the irradiance. 
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SIMULATIONS     op_rs_rxy_02.m 

 

The parameters for the aperture and observation planes are all changed within the 

mscript. After the program is run, a summary of the input and output parameters is 

shown in the Command Window.  

 

Table 1: Parameter summary  [SI units] 

 

wavelength [m]  =  6.33e-07  

nQ  =  099  

nP  =  201  

   

Aperature Space 

X width [m] =  1.000e-04  

Y width [m]  =  2.000e-04  

energy density [W/m2] uQmax  =  1.000e-03  

energy from aperture [J/s]   UQ(theory) = 2.000e-11  

energy from aperture [J/s]   UQ(calculated) = 2.000e-11  

   

Observation Space 

X width [m] =  4.000e-02  

Y width [m]  =  4.000e-02  

distance aperture to observation plane [m]   zP = 1.000e+00  

Fraunhofer: position of 1st min in X direction [m]  =  6.328e-03  

Fraunhofer: position of 1st min in Y direction [m]  =  3.164e-03  

 

max energy density  [W./m2]   uPmax = 9.987e-07     

energy to aperture [J/s]   UP = 1.902e-11  

    

percentage energy enclosed within circle of radius (vPx = 3.14159)  = 99.5  

    

Elapsed time is 40.470176 seconds. 
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Fig. 7.   The variation on the energy density along the X and Y directions. The 
plot was created in Matlab version 2014b which has improved graphics 
compared to earlier versions. 

 

 
Fig. 8.   Black and white photograph like time exposure of the 
diffraction pattern. The yellow circle has a radius equal to the position 
of the first zero along the X axis. 99.5% of the energy incident upon the 
observation screen is concentrated within this circle. 
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Fig. 9.   A Matlab surf style plot showing the energy density in the XY 
observation plane. 

 
Investigations 

 
In the Fraunhofer region (far field) the inverse square law applies. This can be tested 

by doubling the aperture plane to the observation plane distance and noting that the 

maximum energy density at a point on the Z axis decreases by a factor of 4. For 

example using the data as shown in Table 1 and only varying the distance zP: 

  

zP1 = 1 

 energy density     uPmax1 = 9.987x10
-7

  W.m
-2

   

                1
st
 min     x1min = 6.328x10

-3
  m     y1min = 3.164x10

-3
  m 

zP2 = 2 

                energy density     uPmax2 = 2.3497x10
-7

  W.m
-2

   

                1
st
 min     x2min = 12.66x10

-3
  m     y2min = 6.328x10

-3
  m 

zP2 / zP1 = 2 

                uPmax2 / uPmax1 = 1/4      inverse square law satisfied 

    x2min / x1min = 2.0         y2min / y1min = 2.0           pattern is wider 

 

 



Doing Physics with Matlab     op_rs1_rxy_01.docx 16 

 

 

Fig.  10.  Fraunhofer diffraction: upper plot  zP = 1.0  m and lower plot  
zP = 2.0 m. As the aperture to observation plane distance increases the 
energy density distribution shape does not change but becomes wider 
and flatter. 
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Next, we can consider the effect of halving the area of the aperture by changing the 

width ay in the Y direction from 2x10
-4

  m to 1.0x10
-4

  m. 

Width ay1 = 2x10-4  m       ay2 = 1x10-2  m 

 Energy transferred from aperture to observation plane 

  UQ1 = 2.0x10-11  J.s-1     UQ2 = 1.0x10-11  J.s-1 

  UQ2 / UQ1 = 0.50 

 Maximum energy density in observation plane  

uPmax1 = 9.987x10-7  W.m-2     uPmax2 = 2.497x10-7  W.m-2 

uPmax2 / uPmax1 = 0.25   

 

The effect of doubling the area of the aperture results in a doubling of the energy 

transferred from the aperture to the observation plane and a four-fold increase in the 

energy density.  

 

Fresnel Diffraction     Fraunhofer Diffraction 

 

Fraunhofer diffraction is only valid in the far field. There is a transition from 

Fraunhofer diffraction to Fresnel diffraction as the distance between the aperture and 

observation planes decreases. The distance dividing the two regimes is known as the 

Rayleigh distance 
RL

d  

  
2

RL

a
d


        where a is the maximum of ax and ay 

 

 Fraunhofer diffraction  (far field)       zP  >  dRL 

 

 Fresnel diffraction  (near field)          zP  <  dRL  

 

For an aperture ax = ay = 1.0x10
-4

  m and wavelength    = 6.33x10
-7

  m, the Rayleigh 

distance is 

  
RL

d = 1.58x10
-2

  m 

 

The mscript  op_rs_rxy_02.m  can be run a few times to investigate the transition 

regime when zP ~ dRL by changing the values for zP, xP and yP in the mscript. 

 

 

 

 

 

 

 

 

 



Doing Physics with Matlab     op_rs1_rxy_01.docx 18 

 

Rayleigh distance   dRL  =  0.0158  m 
 

 

 

 

 
 

  

  
 

  

 

 

  

 

 


