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It is necessary to modify the mscripts and comment or uncomment lines of code to run 

the simulations with different input and output parameters. 

 

op_rs_fb_xy.m 
Calculation of the radiant flux density (irradiance) in a plane perpendicular to the 

optical axis for the radiant flux of convergent beam emitted from a circular aperture. It 

uses Method 3:  one-dimensional form of Simpson’s rule for the integration of the 

diffraction integral. This mscript is only valid for irradiance distributions that are 

circularly symmetrical about the optical axis (Z axis). 

 

op_rs_fb_z.m 
Calculation of the radiant flux density (irradiance) along the optical axis for the 

radiant flux of convergent beams emitted from a circular aperture. It uses Method 3: 

one-dimensional form of Simpson’s rule for the integration of the diffraction integral.   

 

op_rs_fb_xz.m 
Calculation of the irradiance in the meridional - XZ plane for the radiant flux of 

convergent beam emitted from a circular aperture.  It uses Method 3: one-dimensional 

form of Simpson’s rule for the integration of the diffraction integral.   

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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op_rs_fb_xxyyz.m 
Calculation of the radiant flux density (irradiance) in plane perpendicular to the 

optical axis for the radiant flux of a convergent beam emitted from a circular aperture 

for non-symmetrical cases and calculates the irradiance along the optical axis. It uses 

Method 3: one-dimensional form of Simpson’s rule for the integration of the 

diffraction integral. This mscript runs slower than the other scripts as you can’t make 

use of the circular symmetry when the source can be located off-axis. 

 

 

Function calls to: 

 

 simpson1d.m          (integration) 

 

fn_distancePQ.m    (calculates the distance between points P and Q) 

 

turningPoints.m      (finds the location of zeros, min and max of a function) 

 

 

Warning: The results of the integration may look OK but they may not be accurate if 

you have used insufficient number of partitions for the aperture space and observation 

space. It is best to check the convergence of the results as the number partitions is 

increased. Note: as the number of partitions increases, the calculation time rapidly 

increases. 
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RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF 

THE FIRST KIND 

 

The Rayleigh-Sommerfeld diffraction integral of the first kind states that the electric 

field EP at an observation point P can be expressed as 
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It is assumed that the Rayleigh-Sommerfeld diffraction integral of the first kind is 

valid throughout the space in front of the aperture, right down to the aperture itself. 

There are no limitations on the maximum size of either the aperture or observation 

region, relative to the observation distance, because no approximations have been 

made. 

 

The diffraction pattern can be given in terms of the irradiance distribution we   
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where 
0
 is the permittivity of free space, c is the speed of light in vacuum, n is the 

refractive index of the medium and EP is the peak value of the electric field at a point 

P in the observation space.  

 

The time rate of flow of radiant energy is the radiant flux WE where 
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S.I. UNITS  

Quantity S.I. unit 

distances m 

electric field V.m
-1

 

speed of light m.s
-1

 

permittivity of free space C
2
.N

-1
.m

-2
 

irradiance, radiant flux density  W.m
-2

 

time rate of radiance energy, radiant flux W or  J.s
-1
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IMAGE FORMATION AND ITS RELATIONSHIP TO 

DIFFRACTION AND ABERRATIONS 

 

The scalar theory of diffraction can be used to describe the formation of images and to 

account for the effects of aberrations that distort the image. Knowledge of the 

irradiance near the focal region is important for the performance of microscopes, 

telescopes and the focussing of lasers. 

 

In a Gaussian image forming system, light from an object is focused by a lens to form 

an image of the object. In this geometrical optics approach, light from each point on 

the object is focused to a point in the image plane. However, due to the finite size of 

the lens and aberration effects, the light from a point on the object can’t be focused to 

a point in the image plane. The image from each point on the object is smeared out 

reducing the resolution and degrading the quality of the image of the object. 

 

It is possible to calculate the three-dimensional radiant flux density (irradiance) 

pattern in the image (observation) space for the light coming from a point source 

object. This calculation provides details of the smearing out of the image of the point 

source. This calculation forms part of the Abbey theory of image formation, where the 

electric field in the image space is found using the Fresnel-Kirchhoff diffraction 

integral. But many approximations and much algebra are needed to find the electric 

field and the results are only applicable to special situations. 

 

A much easier way to calculate the electric field in the image space and without all 

the algebra and approximations is to simply use the Rayleigh-Sommerfeld diffraction 

integral of the first kind (RS1) as given in equation (1) and finding the electric field by 

numerical integration using Simpson’s rule.  

 

Figure (1) shows a simple arrangement for the focusing of a point source by a lens. 

The image is also just a point. We can discuss the electric field from a single point 

and then obtain the electric field distribution at the image by a coherent superposition 

of all the point sources. The object distance d1, the image distance d2 and the focal 

length of the lens f are connected by the thin lens equation 
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A focused beam of monochromatic radiation (wavelength  and propagation constant 

2 /k   ) from a lens is modelled by considering the convergence of spherical 

waves to the geometrical focus of the lens. If the point source is located at an infinite 

from the aperture, then the focal plane and image plane coincide and the image is 

formed in the focal plane. 
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For the point source where 
1

d  , we replace the focussing action of the lens by 

considering the convergence of spherical wavefronts from a circular aperture to a 

focus point at the position of the focal plane. The point source S(xS, yS, zS) is now 

located at the geometrical focus of the converging spherical waves and at a distance 

rOS from the origin O located at the centre of the aperture as shown in figures  (2) and 

(3). 

 

The electric field EQ of strength ES at an aperture point Q(xQ, yQ, 0) at a distance rQS 

from the source point S is given by  
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Fig. 1.   Gaussian optical system for the focussing action of a lens for a 

point source. 

 

 

For spherical waves shown in figure (2), the radiant flux would always be confined to 

a cone and so the radiant flux density would be infinite at the focus point. This can’t 

happen, the energy carried by the wave must spread so the focal point must have some 

finite size. This phenomenon is called diffraction, that is, diffraction results from the 

limitations of the size of the wave surface emerging through the finite exit pupil of the 

aperture. Also, aberrations reduce the central radiant flux density with more energy 

being in the outer rings and the diffraction pattern may no longer be symmetrical about 

the optical axis, hence, aberrations cause a further spreading of the image of the point 

source. The total image field plane is a superposition of all the individual diffraction 

patterns when the proper accounting is done for the relative phases. 
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 Fig. 2.   Spherical waves from a circular aperture converge to a focal point. 

 

 

The electric field EP at a point P(xP, yP, zP) in the image space is calculated from the 

RS1 diffraction integral given by equation (5) 
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where rQS is the distance from an aperture point Q to the source point S and rQP is the 

distance from the aperture point Q to an observation point P. The term T is the 

transmission function for a filter to modify the electric field within the pupil or an 

aberration factor of the form exp(- j k  ) where  is a function of the optical path 

differences between the spherical wavefront emerging from the aperture and the 

aberrated wavefront. If there is no mask or zero aberration effects then T = 1. The 

geometry for the calculation is shown in figure (3). 

 

The three-dimensional radiant flux density (irradiance) in the vicinity of the focal 

region is calculated from equation (2) 
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Fig. 3.   Geometry for the calculation of EP for the spherical waves 

emitted from the circular aperture to the focal point S. 

 

The numerical aperture N.A. of an optical system is a dimensionless number that 

characterizes the range of angles over which the system can accept or emit light 

(figure 3). In most areas of optics, and especially in microscopy, the numerical 

aperture of an optical system such as an objective lens is defined by 
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where the refractive index is n = 1 will only be considered and  is the half-aperture 

angle of the maximum cone of light that can enter or exit the lens. In general, this is 

the angle of the real marginal ray in the system. Most approximation methods for 

calculating the irradiance in the focal region assume that the numerical aperture N.A. 

is small and the radius of the aperture is much greater than the wavelength 

 

 (7) (N.A.)
2 

 <<  1   or   a
2 

/ f 
2
  <<  1   and    a  >>   

 

By the direct numerical integration of diffraction integrals, these limitations are not so 

restrictive.  
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The irradiance in the focal region depends upon the wavelength , aperture radius a, 

and the focal distance f = zS. To characterize the focusing geometry, the Fresnel 

number NF is defined by 
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The Fresnel number can be thought of as the number of Fresnel zones that fill the 

aperture when the aperture is viewed from the geometrical focus.  The wave field near 

the geometrical focus region depends upon the Fresnel number. 

 

For calculating the irradiance it is useful to define two optical coordinates for the axial 

and radial directions 
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For low numerical apertures (N.A.)
2
  << 1, the Fresnel number NF is an excellent 

parameter in describing the structure of the focal region. Low N.A. focusing system 

corresponds to the Fraunhofer region and it can be shown that the axial and radial 

irradiance distributions are described by simple analytical expressions 
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Equations (11) and (12) can be derived from the Fresnel-Kirchhoff diffraction integral 

using the Debye parabolic approximation where spherical wavefronts are replaced by 

paraboloids in paraxial systems.  Equations (11) and (12) imply that in the 

neighbourhood of the focal region, the irradiance distribution is symmetrical about the 

focal plane with the maximum irradiance occurring at the geometrical focus.  
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The zeros along the optical axis occur at 

 

(13)  uP / 4 = 1, 2, 3,  … 

 

The irradiance distribution in the focal plane is the familiar Airy disk pattern where J1 

is the Bessel function of the first kind and the zeros in the radial direction occur at 

 

 (14) vP /  = 1.220, 2.233, 3.238, … 

 

Equations (11) to (14) describe the Fraunhofer diffraction in the focal region. 
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AXIAL IRRADIANCE DISTRIBUTION 

 

The irradiance distribution along the optical axis in a region near the focal plane at 

z = zS is calculated numerically using the mscript  op_rs_fb_z.m  for  optical systems 

with different Fresnel numbers. 

 

Simulation 1: Large Fresnel Number NF = 1580 

 

Table 1 gives a summary of the input parameters used in the simulation. The 

execution time for the mscript was about 10 seconds. 

 

Table 1.   Input parameters for NF = 1580 

 

 wavelength     =  6.32810
-7

  m  

 

Partitions 

 inner ring n1  =  201 

 outer inner ring n2  =  801  

 rings nR  =  201  

     nQ  =  101003  

     nP  =  509  

   Source   

     xS  =  0  m  

     yS  =  0  m  

     zS  =  0.100  m  

     focal length  f  =  0.100  m  

    

 Aperture space 

     radius of aperture  a  =  0.010  m  

     Fresnel Number  NF  =  1580    

     Numerical Aperture  N.A.  =  0.100    

 

 Observation space   P 

  max distance from focal plane  | zP – zS |max = 0.85010
-3

  m 

 

 

Figures (4) and (5) show the graphical output for the variation in irradiance along the 

optical axis. Tables 2 gives a summary of the positions of the zeros in the irradiance 

distribution and Table 3 a summary of the positions of the peaks and their relative 

strengths.   
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 Fig. 4.   The axial irradiance near the focal point.   

                = 632.8 nm   a = 0.01 m   f = 0.1 m   NF = 1580   N.A. = 0.10 

 

 

Fig. 5.   The axial irradiance near the focal point. 

 The blue curve is the numerical calculation (N) and the red curve (A) is 

calculated using equation (11).  

                = 632.8 nm   a = 0.01 m   f = 0.1 m   NF = 1580   N.A. = 0.10 
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The mscript  turningPoint.m  can be used to find the positions of the zero and 

positions and values of the peaks in the irradiance distribution. 

 

Table 2: Zeros
*
 in the irradiance distribution  

     N   RS1 Numerical calculation     A Analytical calculation (equation 11) 

N -15.97 -11.95 -8.04 -4.02 4.02 8.04 12.06 16.08 

A -15.97 -11.95 -8.04 -4.02 4.02 8.04 11.95 15.97 
*
  The slight discrepancies in the values compared with the exact values of 4, 8, 

12, … is due to the partitioning of the Z axis in the calculations: 

grid spacing  zP = 3.3510
-6

  m and uP = 0.1. 

 

 

Table 3: Positions and relative values for the peak in the irradiance distribution   

     N   RS1 Numerical calculation     A Analytical calculation (equation 11) 

N uP -17.88 -13.86 -9.84 -5.71 0 5.71 9.94 13.96 18.09 

N 

peaks 
0.0051 0.0084 0.0166 0.0474 1.000 0.0470 0.0164 0.0083 0.0050 

A uP -17.88 -13.86 -9.84 -5.71 0 5.71 9.84 13.86 17.88 

A 

peaks 
0.0050 0.0083 0.0165 0.0472 1.000 0.0472 0.0165 0.0083 0.0050 

 

 

The figures (4) and (5) and the results given in Tables 2 and 3 clearly demonstrate the 

excellent agreement between the numerical computation of RS1 diffraction integral 

and the predictions using the Debye approximation (a >>  and a
2 

/  f >> 1 or Fresnel 

number NF >> 1) . The irradiance distribution is characteristic of the Fraunhofer 

pattern and is symmetrical about the focal point. 
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Simulation 2: Intermediate Fresnel Number NF = 316 

 

Table 4 gives a summary of the input parameters used in the simulation. The 

execution time for the mscript was about 10 seconds. The only changes to the 

parameters used in Simulation 1 were the focal length f or axial position of the source 

zS and the range of zP values. The focal length f was increased from 0.1 m to 0.5 m to 

reduce the value of the Fresnel number NF.   

 

Table 4.   Input parameters for NF = 316 

 

 wavelength     =  6.32810
-7

  m  

 

Partitions 

 inner ring n1  =  201 

 outer inner ring n2  =  801  

 rings nR  =  201  

     nQ  =  101003  

     nP  =  509  

    

 Source   S   

     xS  =  0  m  

     yS  =  0  m  

     zS  =  0.500  m  

     focal length  f  =  0.500  m  

    

 Aperture space   Q 

     radius of aperture  a  =  0.010  m  

     Fresnel Number  NF  =  1580    

     Numerical Aperture  N.A.  =  0.020    

  

 Observation space   P 

  max distance from focal plane  | zP – zS |max = 0.018  m 

 

 

Figures (6) and (7) show the graphical output for the variation in irradiance along the 

optical axis. Tables 5 gives a summary of the positions of the zeros in the irradiance 

distribution and Table 6 a summary of the positions of the peaks and their relative 

strengths.   
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 Fig. 6.   The axial irradiance near the focal point.   

                = 632.8 nm   a = 0.01 m   f = 0.5 m   NF = 316   N.A. = 0.020 

 

 

 
 Fig. 7.   The axial irradiance near the focal point. 

 The blue curve is the numerical calculation (N) and the red curve (A) is 

calculated using equation (11).  

                = 632.8 nm   a = 0.01 m   f = 0.5 m   NF = 316   N.A. = 0.020 
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The mscript  turningPoint.m  can be used to find the positions of the zero and 

positions and values of the peaks in the irradiance distribution. 

 

Table 5: Zeros
*
 in the irradiance distribution  

     N   RS1 Numerical calculation     A Analytical calculation (equation 11) 

N -15.50 -11.74 -7.88 -3.94 4.03 8.06 12.18 16.31 

A -16.04 -12.01 -7.97 -4.03 4.03 7.97 12.01 16.04 
*
  The slight discrepancies in the values compared with the exact values of 4, 8, 

12, … is due to the partitioning of the Z axis in the calculations: 

grid spacing  zP = 3.3510
-6

  m and uP = 0.1. 

 

 

Table 6: Positions and relative values for the peak in the irradiance distribution   

     N   RS1 Numerical calculation     A Analytical calculation (equation 11) 

N uP -17.38 -13.53 -9.68 -5.64 0 5.73 9.95 14.16 18.37 

N 

peaks 
0.0053 0.0087 0.0170 0.0481 1.000 0.0464 0.0160 0.0080 0.0048 

A uP -17.92 -13.89 -9.86 -5.73 0 5.73 9.86 13.89 17.92 

A 

peaks 
0.0050 0.0083 0.0165 0.0472 1.000 0.0472 0.0165 0.0083 0.0050 

 

 

The figures (6) and (7) and the results given in Tables 5 and 6 only demonstrate a 

reasonable agreement between the numerical computation of RS1 diffraction integral 

and the predictions using the Debye approximation. The irradiance distribution is 

slightly asymmetrical about the focal plane. For positive uP values, the pattern is 

slightly stretched as that the zero and peaks occur at larger uP values than for the 

parameters used in Simulation 1 (large Fresnel number). For negative uP values, the 

pattern is slightly compressed as that the zero and peaks occur at smaller  |uP| values 

than for the parameters used in Simulation 1 (large Fresnel number).  

 

The Fresnel number could have been reduced by decreasing the radius of the aperture 

or increasing the wavelength instead of the focal length. The irradiance plotted against 

the axial optical coordinate as shown in figures (6) and (7) depend upon the value of 

the Fresnel number and the plots are roughly independent on the values used for the 

wavelength, aperture radius or focal length. The irradiance patterns are insensitive to 

changes in wavelength, aperture radius or focal length when plotted in terms of the 

optical coordinates. Therefore, the Fresnel number is an excellent parameter for 

describing the structure of the irradiance distribution in the focal region. 

 

 

 

   

 

  



 16 

Simulation 3: Small Fresnel Number NF = 15.80 

 

Table 7 gives a summary of the input parameters used in the simulation. The 

execution time for the mscript was about 50 seconds. The only changes to the 

parameters used in Simulation 1 were the focal length f or axial position of the source 

zS and the range of zP values. The focal length f was increased from 0.100 m to 10.0 m 

to reduce the value of the Fresnel number NF.  The number of partitions of the optical 

axis nP has to be larger than in Simulation 1 because of the more rapid variation in the 

irradiance distribution. 

 

 

Table 7.   Input parameters for NF = 15.80 

 

 wavelength     =  6.32810
-7

  m  

 

Partitions 

 inner ring n1  =  201 

 outer inner ring n2  =  801  

 rings nR  =  201  

     nQ  =  101003  

     nP  =  1509  

    

 Source   S   

     xS  =  0  m  

     yS  =  0  m  

     zS  =  10.00  m  

     focal length  f  =  10.00  m  

    

 Aperture space   Q 

     radius of aperture  a  =  0.010  m  

     Fresnel Number  NF  =  15.80    

     Numerical Aperture  N.A.  =  0.0010    

  

 Observation space   P 

  max distance from focal plane  | zP – zS |max = 5.00  m 

 

 

Figures (6) and (7) show the graphical output for the variation in irradiance along the 

optical axis. Tables 8 gives a summary of the positions of the zeros in the irradiance 

distribution and Table 9 a summary of the positions of the peaks and their relative 

strengths.   
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 Fig. 8.   The axial irradiance near the focal point.   

          = 632.8 nm   a = 0.01 m   f = 10.0 m   NF = 15.8   N.A. = 0.001 

 

 
 

 Fig. 9.   The axial irradiance near the focal point. 

 The blue curve is the numerical calculation (N) and the red curve (A) is 

calculated using equation (11).  

          = 632.8 nm   a = 0.01 m   f = 10.0 m   NF = 15.8   N.A. = 0.0010 
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The mscript  turningPoint.m  can be used to find the positions of the zero and 

positions and values of the peaks in the irradiance distribution. 

 

Table 8: Zeros
*
 in the irradiance distribution  

     N   RS1 Numerical calculation  

N -14.82 -13.60 -12.22 -10.58 -8.66 -6.35 -3.54 4.55 10.65 

 

 

Table 9: Positions and relative values for the peak in the irradiance distribution   

     N   RS1 Numerical calculation    

N uP -14.21 -12.91 -11.40 -9.62 -7.50 -4.86 -0.147 6.85 14.02 

N 

peaks 
0.0080 0.0096 0.0123 0.0172 0.0282 0.0655 1.0000 0.0317 0.0078 

 

The figures (8) and (9) and the results given in Tables 8 and 9 demonstrates that there 

is no agreement between the numerical computation of RS1 diffraction integral and 

the predictions using the Debye approximation. The irradiance distribution is now 

asymmetrical about the focal plane with the central peak not occurring at the focal 

plane but the position is shifted towards the aperture at uP = -0.147. For positive uP 

values, the pattern is slightly stretched as that the zero and peaks occur at larger uP 

values than for the parameters used in Simulation 1 (large Fresnel number). For 

negative uP values, the pattern is highly compressed as that the zero and peaks occur 

at smaller  |uP| values than for the parameters used in Simulation 1. 

 

 



 19 

IRRADIANCE IN THE MERIDIONAL PLANE 

 

Simulation 4   op_rs_fb_xz.m 

The irradiance in the meridional plane (XZ plane) is shown in figures10 to 12 when 

the source point for the converging spherical waves is located on the optical axis. The 

irradiance contours are shown for the region near the focal point. The irradiance is 

given in decibels we(dB) = 10 log10(we / wemax). The uP values represent scaled 

distance from the source point along the optical axis and the vP values represent scaled 

distances from the optical axis in the observation plane. The back lines show the 

geometrical shadow region. 

 

 
Fig. 10.  Irradiance (dB) in the meridional plane for high Fresnel number. 

 = 632.8 nm    a = 0.01 m    S(0, 0, 0.1 m)    f = 0.1 m    NF = 1580    N.A. = 0.1    
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Fig. 11.  Irradiance (dB) in the meridional plane for low Fresnel number. 

 = 632.8 nm    a = 0.01 m    S(0, 0, 10 m)    f = 10 m    NF = 15.80    N.A. = 0.0010    

 

For the low Fresnel number case, the irradiance distribution is not symmetrical about 

the image plane (uP = 0) and the maximum in the irradiance is shifted slightly towards 

the aperture. 
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IRRADIANCE IN AN OBSERVATION PLANE 

 

The mscript  op_rs_fb_xy.m  can be used to calculate the irradiance pattern in an XY 

observation  plane only when the irradiance distribution is circularly symmetric about 

the optical Z axis.  When the observation plane coincides with the focal plane and the 

Fresnel number is large, the irradiance pattern in a radial direction calculated 

numerical from the RS1 diffraction integral (equation 5) agrees with the prediction of 

the Debye approximation of the diffraction integral given by equation (12) as shown 

by the results given in Simulation 5. However, for small Fresnel numbers as in 

Simulation 6, the Debye predictions of the irradiance pattern are no longer valid. For 

Simulations 5 and 6, the observation plane coincides with the focal plane (f = zS = zP).  

 

Simulation 5      Irradiance in the focal (image) plane   

 

Table 10.  Parameters for large Fresnel number   (execution time ~ 35 seconds) 

wavelength    =  632.8  nmm   

Partitions 

   inner ring n1  =  201  

    outer inner ring n2  =  801  

    rings nR  =  285  

    nQ  =  143075  

    nP  =  1285  

   

Source  (source must be on the optical axis in using  op_rs_fb_xy1.m ) 

    xS  =  0  m  

    yS  =  0  m  

    zS  =  0.100  m  

 focal length  f = 0.100 m 

 ES = 1.0010
-3

  V.m
-1

 

 

Aperture space 

    radius of aperture a  =  0.010 m  

    max irradiance  weQ  =  1.31410
-7

  W.m
-2

  

    radiant flux max irradiance  WEQ  =  4.16310
-11

 W  

    Fresnel Number  NF  =  1580    

    Numerical Aperture  N.A.  =  0.100    

   

Observation space 

    max radius rP  =  1.98010
-5

  m  

    distance aperture to observation plane  zP = 0.10  m  

    max irradiance  wemax    = 3.245  W.m
-2

  

    radiant flux  WE = 4.02610
-11

  W  

    % radiant flux enclosed within 1st min  = 83.7      
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 Fig. 12.   The radial irradiance in the focal plane. 

 The blue curve is the RS1 numerical calculation (N) and the red curve (A) is 

calculated using equation (12).  

          = 632.8 nm   a = 0.01 m   f = 0.100 m   NF = 1580    N.A. = 0.100 
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 Fig. 13.   Irradiance (dB) distribution on the focal plane.   

 

 
Fig. 14.  Percentage of energy enclosed within a circle of prescribed radius. 

The red vertical line shows the position of the first minimum in the diffraction 

pattern. 
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The mscript  turningPoint.m  can be used to find the positions of the zero and 

positions and values of the peaks in the irradiance distribution. 

 

Table 11.   vP /      zeros in the irradiance distribution  

     N   RS1 Numerical calculation     A Analytical calculation (equation 12) 

N 1.22 2.24 3.25 4.26 5.26 

A 1.22 2.23 3.24 4.24 5.24 
                                    *

  uncertainty   vP = 0.01 

 

 

Table 12.   Positions  vP/  and relative values for the peak in the irradiance 

distribution   

     N   RS1 Numerical calculation     A Analytical calculation (equation 12) 

N uP 1.64 2.69 3.71 4.72 5.74 

N 

peaks 
0.0176 0.0042 0.0016 0.0008 0.0004 

A uP 1.63 2.68 3.70 4.71 5.72 

A 

peaks 
0.0175 0.0042 0.0016 0.0008 0.0004 

                                      *
  uncertainty   vP = 0.01 

 

The figure (12) and the results given in Tables 11 and 12 clearly shows the excellent 

agreement between the numerical computation of the RS1 diffraction integral and the 

predictions using the Debye approximation. 

 

The irradiance distribution has a central bright spot called the Airy disk and it is 

surrounded by circular bright rings of rapidly decreasing strength which are separated 

by dark rings as shown in figure (13).   

 

Figure (14) shows the radiant flux enclosed with circles of increasing radius in the 

observation plane. The radiant flux emitted from the aperture pupil must equal the 

radiant flux through the observation plane because of conservation of energy. By the 

focussing action of the optical system modelled, most of the energy is concentrated 

into the Airy disk with 84% of the radiant flux within the first dark ring. 

 

Changing the Fresnel number to NF = 15.80 by increasing the focal length to f = 10.00 

m does not change the irradiance distribution as a function of the radial coordinate vP. 

However, the radius of the Airy disk expressed in meters is much larger as shown in 

figure (15) as compared to figure (12).  

 

The location of the first minimum: 

  

 NF = 1580                  rP(1
st
 min) = 3.910

-6
  m 

 NF = 15.80                 rP(1
st
 min) = 3.910

-4
  m 
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 Fig. 14.   The radial irradiance in the focal plane. 

           = 632.8 nm   a = 0.01 m   f = 10.00 m   NF = 15.80    N.A. = 0.100 

 

         

Simulation 6      Irradiance in a non-focal plane   

 

For Simulation 6, the parameters used were the same as in Simulation 5 except the 

observation plane was closer to the aperture than the focal plane 

 focal plane                f  =  0.0100  m 

 observation plane    zP  =  f - 510
-5

  m = 0.09950  m 

 

   

The irradiance distribution is no longer that of a Fraunhofer diffraction pattern.  There 

are no clear zeros in the diffraction pattern.  

 

Simulation 5   focal plane 

Fraunhofer diffraction 

Simulation 6   non-focal plane  

Fresnel diffraction 

Max irradiance  3.2  W.m
-2

   max irradiance  1.9 W.m
-2

 

Radiant flux within 1
st
 min Fraunhofer 

pattern (vP = 1.22) = 84 % 

Radiant flux within 1
st
 min Fraunhofer 

pattern (vP = 1.22) = 60 % 

 

 

The graphical output for Simulation 6 is shown in figures (15) and (16).  
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Fig. 15.   The radial irradiance in a non-focal plane . 

          = 632.8 nm   a = 0.01 m   f = 0.100 m   NF = 1580    N.A. = 0.100 

         zP  =  f - 510
-5

  m = 0.09950  m 
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Fig. 16.  Percentage of energy enclosed within a circle of prescribed radius. 

The red vertical line shows the position of the first minimum in the Fraunhofer 

diffraction pattern  vP = 1.22. 

 

 

 

Simulation 7 

      Irradiance in focal plane for an annular aperture  

 

For Simulation 7, the parameters used were the same as in Simulation 5 except the 

integration is for an annular aperture where the limits of the integration are for 

rQ = a/2 to a where a is the radius of the exit pupil. 

 

The irradiance distribution is no longer that of a Fraunhofer diffraction pattern.  There 

are no clear zeros in the diffraction pattern.  

 

Simulation 5   circular aperture 

rQ = 0 to a 

Simulation 7   annular aperture 

rQ = a/2 to a 

Max irradiance  3.2  W.m
-2

   max irradiance  1.8 W.m
-2

 

Radiant flux within 1
st
 min Fraunhofer 

pattern (vP = 1.22) = 84 % 

Radiant flux within 1
st
 min Fraunhofer 

pattern (vP = 1.22) = 49 % 

Position of 1
st
 min  vP = 1.22 Position of 1

st
 min  vP = 1.00 

 

 

The graphical output for Simulation 7 is shown in figures (17) to (19). Although the 

central peak is narrower for the annular aperture compared with the full circular 

aperture, the maximum irradiance is much lower as more energy is concentrated in the 

outer side-lobes of the irradiance distribution. 
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 Fig.  17.   The irradiance distribution for an annular aperture in the focal plane. 

   = 632.8 nm   a = 0.01 m   f = 0.100 m   NF = 1580    N.A. = 0.100 

 rQ = a/2 to a 
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 Fig 18.   Irradiance distribution for the annular aperture (blue curves) 

compared with the full circular aperture (red curves). 

 

 
Fig. 19.  Percentage of energy enclosed within a circle of prescribed radius. 

The red vertical line shows the position of the first minimum in the Fraunhofer 

diffraction pattern  vP = 1.22. 

      

 

 

 

 

 


