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It is necessary to modify the mscripts and comment or uncomment lines of code to run 

the simulations with different input and output parameters. 

 

op_rs_point_source.m 
Calculation of the irradiance in a plane perpendicular to the optical axis for a circular 

aperture illuminated by a point source on the optical axis. It uses Method 3:  one-

dimensional form of Simpson’s rule for the integration of the diffraction integral.  

op_rs_point_sources_z.m 
Calculation of the irradiance along the optical axis for a circular aperture illuminated 

by a point source on the optical axis. It uses Method 3: one-dimensional form of 

Simpson’s rule for the integration of the diffraction integral.   

 

op_rs_point_sources_xz.m 
Calculation of the irradiance in the meridional - XZ plane for a circular aperture 

illuminated by a point source on the optical axis. It uses Method 3: one-dimensional 

form of Simpson’s rule for the integration of the diffraction integral.   

 

 

op_rs_point_sources_xy.m 
Calculation of the radial irradiance for a circular aperture illuminated by a point 

source on the optical axis or located off the optical axis. It uses Method 3: one-
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 2 

dimensional form of Simpson’s rule for the integration of the diffraction integral. This 

mscript runs slower than the others because you can’t make use of the circular 

symmetry because the source can be located off-axis. 

 

 

Function calls to: 

 

 simpson1d.m          (integration) 

 

fn_distancePQ.m    (calculates the distance between points P and Q) 

 

turningPoints.m      (finds the location of zeros, min and max of function) 

 

 

Warning: The results of the integration may look OK but they may not be accurate if 

you have used insufficient number of partitions for the aperture space and observation 

space. It is best to check the convergence of the results as the number partitions is 

increased. Note: as the number of partitions increases, the calculation time rapidly 

increases. 
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RAYLEIGH-SOMMERFELD DIFFRACTION INTEGRAL OF 

THE FIRST KIND 

 

The Rayleigh-Sommerfeld diffraction integral of the first kind states that the electric 

field EP at an observation point P can be expressed as 
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It is assumed that the Rayleigh-Sommerfeld diffraction integral of the first kind is 

valid throughout the space in front of the aperture, right down to the aperture itself. 

There are no limitations on the maximum size of either the aperture or observation 

region, relative to the observation distance, because no approximations have been 

made. 

 

The diffraction pattern can be given in terms of the irradiance distribution we , where 
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where 
0
 is the permittivity of free space, c is the speed of light in vacuum, n is the 

refractive index of the medium and EP is the peak value of the electric field at a point 

P in the observation space [ V.m
-1

].  

 

The time rate of flow of radiant energy is the  radiant flux WE where 
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A CIRCULAR APERTURE ILLUMINATED 

 BY A POINT SOURCE 

 

By numerically integrating the Rayleigh-Sommerfeld integral of the first kind 

(equation 1), the diffracted wave field can be calculated from the plane of the aperture 

to the far field without introducing many of the standard approximations that are used 

to give Fresnel or Fraunhofer diffraction.  The geometry for the diffraction by a 

circular aperture of radius a illuminated by a point source is shown in figure (1). 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1.  Geometry for the diffraction by a circular aperture that is 

illuminated by a point source located on the –Z axis. The radius of the 

circular aperture is a. 
 

The Cartesian coordinates for the source S, an aperture point Q and an observation 

point P are S(xS, yS, zS), Q(xQ, yQ, 0) and P(xP, yP, zP). In using the mscripts 

op_rs_point_source.m  or  op_rs_point_source_z.m  the source must be located on 

the optical axis (Z axis). The distance from the point source S to an aperture point Q is 

rSQ and the distance from the aperture point to the observation point P is rPQ.  The 

electric field EQ at an aperture point Q due to the point source S is 
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where ES is the source strength in V.m
-1

. For the illumination of the circular aperture 

by the point source, the Rayleigh-Sommerfeld diffraction integral (equation 1) can be 

expressed as 
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Equation (3) is evaluated using a one-dimensional form of Simpson’s rule. Note: no 

approximations have been made at this stage. Equation (3) is valid in the entire 

observation space in front of the aperture. The Rayleigh-Sommerfeld diffraction 

integral of the first kind gives the “true” diffraction pattern near the aperture, whereas, 

the Rayleigh-Sommerfeld diffraction integral of the second kind and the Kirchhoff 

diffraction integral do not. 
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IRRADIANCE DENSITY VARIATION ALONG THE OPTICAL AXIS 

 

From the Rayleigh-Sommerfeld diffraction integral of the first kind (equation 3), the 

axial irradiance  0,0,
P P

I z for a circular aperture illuminated by a plane wave can be 

expressed in a simple analytical form without any approximations due to the 

symmetry along the optical axis [Osterberg, Dubra] 
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where IQ is the radiant flux density from the aperture. Because of the cosine term, the 

axial irradiance oscillates and is bound between two envelopes corresponding to the 

locus of the minima and maxima of the axial irradiance.  The envelopes of the peaks 

and troughs is given by 
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From equation (4), peaks in the irradiance distribution along the optical axis will 

occur when the cosine term is equal to zero, hence 
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Rearranging equation (6) gives the values of zP for the peaks 
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Since zP > 0  then 
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For an aperture of radius a = 10 , the allowed values of m are 0, 1, 2, … , 9 giving 10 

peak in the irradiance distribution along the optical axis in front of the aperture. 
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To simulate a plane wave with our point source, it is only necessary to make zS very 

large. We will consider a simulation with the following parameters using the mscript 

op_rs_point_source_z.m  

 

 Source                       xS = 0, yS = 0 and zS = -1.00  m 

 Source Strength        EQ = 1.00 V.m
-1

     

 Wavelength                = 632.8  nm 

 Aperture radius         a = 10   

 Aperture partitions   nQ = 681701 

 Observation partitions      nP = 1809 

 

A typical execution time for running the mscript is about 3 minutes. 

 

A comparison of the analytical and numerical evaluations of the diffraction integral 

(equation 3) is shown in figure (2) – the top graph shows the irradiance from the near 

field (Fresnel region) to the far field (Fraunhofer region) and the bottom graph shows 

the near field only. There are 10 peaks in the irradiance distribution as predicted by 

equation (8). The maximum irradiance occurs at an axial distance of about 100  from 

the aperture and then decreases monotonically with increasing values of zP. For zP. < 

100  and as zP decreases to zero as one approached the aperture, the irradiance 

oscillates with increasing frequency and decreases in value to ¼ of the maximum 

irradiance at the largest peak which occurs at about 100 .  

 

How good is the Simpson’s method of evaluating the diffraction integral given by 

equation (3) compared with the exact analytical evaluation of the diffraction integral 

given by equation (4)? The answer is: the agreement between the numerical approach 

and the analytical one is excellent as shown by the plots in figure (2) provided that the 

number of partitions of the aperture and observation spaces are sufficiently large. 

How large can be found by increasing the number of partitions until there is a 

convergence in the results. 

 

There are often claims in the literature that there are difficulties in performing 

numerical integration of diffraction integrals because of the highly oscillatory 

integrand, however, the results as indicated in figure (2), confirms the accuracy of the 

numerical method using Simpson’s rule in evaluating the Rayleigh-Sommerfeld 

diffraction integral of the first kind. 
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Fig. 2.   The irradiance distribution along the optical axis. The red curves 

are for the envelopes (equation 5), the blue solid curve is the analytical 

evaluation (equation 4) and the blue circles for the numerical evaluation 

of equation (3) using Simpson’s rule for the double integral. 

S(0, 0, - 1.00 m)     op_rs_point_source_z.m 
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A numerical approach to evaluating diffraction integrals compared to an analytical 

one is much more powerful, especially using the Rayleigh-Sommerfeld diffraction 

integral of the first kind which gives the total diffraction wave field in front of the 

aperture without the need approximations. An example which it is not possible to do 

an analytical calculation is shown in figure (3) which shows a plot of the axial 

irradiance for a point source close to the aperture (xS = 0  yS = 0  zS = - 50 ). The 

irradiance distribution shown in figure (3) is quite different to the distribution shown 

in figure (2) for plane wave illumination.  

 

 
 

Fig .3.   The irradiance distribution along the optical axis for a point 

source close to the aperture  S(0,  0, - 50 ).    op_rs_point_source_z.m 
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IRRADIANCE VARIATION IN A RADIAL DIRECTION 

 

It is only necessary to calculate the irradiance in a radial direction to find the 

diffraction pattern in a XY observation plane since the diffraction pattern is circularly 

symmetric when the aperture is illuminated by a point source located on the negative 

Z axis. 

 

Diffraction patterns in different XY observation planes are shown in figures (4), (5) 

and (6) when the aperture is illuminated by a point source located far from the 

aperture and on the optical axis S(0, 0, 1 m).  Figure (4) shows the near field (Fresnel 

diffraction) when the observation plane is close to the aperture, zP = 20 . The 

irradiance distribution is shown in figure (5) when the observation plane is located 

close to the position of the largest peak on the optical axis (zP = 100 ). A Fraunhofer 

diffraction pattern for the far field is shown in figure (6). The diffraction pattern 

computed numerically agrees with the analytical Fraunhofer equation which gives the 

shape of the radial diffraction pattern in terms of Bessel functions of the first kind.  

The radial variation in the irradiance is also shown as a function of the radial optical 

coordinate vP which gives a scaled distance from the optical axis. 

 

 (9) 
2

sin
P

a
v





  

 

The figures (4), (5) and (6) also show plots of the radiant flux enclosed by circles of 

increasing radius.   

 

 
Summary of parameters used in the simulations using the mscript  

op_rs_point_source.m 

 

 Source S                       xS = 0, yS = 0 and zS = -1.00  m 

 Source Strength        EQ = 1.00 V.m
-1

     

 Wavelength                = 632.8  nm 

 Aperture radius         a = 10   

 Radiant flux from aperture WeQ = 1.6710
-13

   W 

 Aperture partitions   nQ = 481801 

 Observation partitions      nP = 809 

Rayleigh distance dRL = 400   

 Execution time 1 minute  
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Fig. 4.   Diffraction pattern in the near field.  a = 10    zP = 20  
~ 90% of the energy is within a cylinder extended from the aperture with 

radius a. Most of the light has not spread very far from the optical axis 

but is concentrated directly in front of the aperture. 
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Fig. 5.   Diffraction pattern in Fresnel region.  a = 10    zP = 100  
~ 78% of the energy is within a cylinder extended from the aperture with 

radius a. Most of the light still has not spread very far from the optical 

axis but is concentrated directly in front of the aperture. 
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Fig. 6.   Diffraction pattern in Fraunhofer region.  a = 10    zP = 600  
~ 20% of the energy is within a cylinder extended from the aperture with 

radius a. Most of the light has now diffracted away from the optical axis. 
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We can also model the diffraction pattern for the source close to the aperture. Figure 

(7) shows the diffraction pattern for the source S(0, 0, -50).  

 
 

 

 

 

 

 

 

 

 
 

Fig. 7.   Diffraction pattern for the source close to the aperture 

S(0, 0, -50).  a = 10    zP = 600  . Irradiance values are very large 

because the because of the close proximity of the point source to the 

aperture.   
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Using a purely numerical technique makes it possible to compute the diffraction field 

for a much greater variety of situations than would be possible using more traditional 

analytical methods. For example, the diffracted wave field can be determined for a 

point source which is not located along the –Z axis.  

 

Figures (8) and (9) show the diffraction patterns from a circular aperture of radius  

a = 10   in the observation plane located at zP = 100  for a source located at 

zS = -50  using the mscript  op_rs_point_source_xy.m . Execution time was about 8 

minutes for the partitioning of the aperture space nQ  =  24341 and observation space 

nPnP = 221221 = 48841. More calculations need to be done using the mscript 

op_rs_point_source_xy.m  because in the off-axis case one can’t make use of the 

symmetry properties of the aperture and observation spaces. The plots show scaled 

values of the irradiance to better emphasize the positions of the minima and maxima.  

 

Figure (8) is for the point source on the optical axis S(0, 0, -50 ) . Figure (9) is the 

example for the source located off-axis S(20 , 20 , -50 ). The diffraction pattern is 

characterized by distorted circles surrounding an off-axis bright spot that has a 

complex structure.   

 

 
 

 Fig. 8.   The radial irradiance for the source located on the optical axis. 

         =  632.8  nm   zP = 100    S(0, 0, -50 ).    op_rs_point_source_xy.m   
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 Fig. 9.   The radial irradiance for the source located off the optical axis.     

 =  632.8  nm   zP = 100    S(20 , 20 , -50 ) .    

 op_rs_point_source_xy.m   

 

 

Since the irradiance distribution is circularly symmetric about the optical axis, when 

the circular aperture is illuminated by a point source located on the –Z axis, the 

irradiance distribution can be displayed in the meridional plane as shown in figure 

(10). A three-dimensional view can be imagined by rotating the plot in figure (10) 

about the Z axis. 

 
Fig. 10.   The irradiance distribution plotted in the meridional plane. 

op_rs_point_source_xz.m   
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The diffracted wave field given by the Rayleigh-Sommerfeld diffraction integral of 

the first kind is valid over the whole space in front of the aperture, both close and far 

from the aperture and in regions away from the axis. By having a numerical method 

of integration that is both accurate and quick, one can eliminate sets of 

approximations and there is no need for introducing a variety of optical coordinates 

that are necessary so that the diffraction integrals can be done analytically. The 

numerical procedure can be used to check many of the approximation methods that 

have been used in the past. The ability to calculate the near field is also important in 

investigating the behaviour of near field imaging systems. 
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