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DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 
 

osc_bungee.m 

This mscript can be used to model a bungee jump or a bridge swing. The mscript calls the 

function eq_quadratic.m.  Inspect and run the mscript  osc_bungee.m 

so that you are familiar with the program and what the code does.  

 

eq_quadratic.m 

Function to solve a quadratic equation 

 

 

Understanding the physics of bungee jumping & bridge swings 

 

A bungee jump is when a person plummets off some high structure 

such as a tower, bridge, crane or hot air balloon. A version of the 

bungee jump is the bridge swing. A bungee cord is connected to 

one side of a bridge and the other end to the jumper in an abseiling 

harness on the other side of the bridge. Bungee cords are soft and 

springy and may stretch to more than three times their natural 

length. Most jumps occur without any mishap, however, there 

have been many serious injuries and deaths, and in some countries 

bungee jumping is illegal. Accidents can be traced to human error 

such as improper attachment of the body harness to the jumper and 

others to the poor understanding of the physics where there has 

been a mismatch between the mass of jumper, height of jump and 

bungee cord selected for the jump. 

 

  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts
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Simple models based upon Newton’s Second Law (equation of motion) can be used to give 

an insight into the physics of bungee jumping and to give estimates of jump drop, 

maximum speed, acceleration, forces and energies during a jump. A two dimensional 

model is used for the simulations of bungee jumps and bridge swings. The coordinate 

system is one in which the +y-axis is vertical up and the +x-axis is horizontal to the right. 

The origin (0,0) is the point of attachment of the bungee cord to some structure. The jumper 

is assumed to be a point particle of mass m and during the jump, the forces acting on the 

jumper are the gravitational force GF ,  the elastic restoring force EF due to the extension of 

the bungee cord and a dissipative force DF  due to friction and drag forces acting on and 

within the cord and on the jumper. 

 

The equation of motion for the jumper is  

 

 (1) G E DF F F F ma     

 

where a  is the acceleration of the jumper and the position of the jumper has coordinates 

(x,y). The natural length of the bungee cord is L, the extension of the cord e and extended 

length of the cord r 

 

 (2) 
2 2r L e x y    . 

 

The bungee cord acts like a weak spring with a stiffness that decreases with extension 

(Menz, 1993). A two-piece linear model is used to describe the stiffness (spring constant) 

of the bungee cord - the stiffness is k1 when the extension is less than e1 and k2 for 

extension e greater than e1 where k1 > k2. The elastic restoring force when the cord is 

stretched is given by  

 

 (3a) 1 1 10 ( constant)Ee e F k e k    

 (3b)  1 2 1 2 1 1 2( , constants)Ee e F k e k k e k k    . 

 

The dissipative force is assumed to depend upon the both the velocity and the square of the 

velocity of the jumper. The x and y components of the forces acting on the jumper are given 

in equation (4) 

 

 (4a) 0G xF   G yF m g   

 

 (4b) E x E

x
F F

r
   E y E

y
F F

r
   

   



3 
 

 (4c) 1 2D x x xF D v D v v    

          1 2D y y yF D v D v v           (D1,  D2    constants) 

 

The x and y components for the acceleration of the jumper are then 

 

 (5) 
 G x E x D x

x

F F F
a

m

 
    and      

 G y E y D y

y

F F F
a

m

 
 . 

 

A simple numerical method is used to calculate the velocity and displacement from the 

acceleration at successive time steps given a set of initial conditions. The method outlined 

is not the most accurate method but one in which is easy to implement. If the values of x(t), 

y(t), vx(t), vy(t), ax(t) and ay(t) are known at time t then the values at time t + t are 

 

 (6a) 
2( ) ( ) ( ) ( ) ( ) ( ) 0.5 ( )x x x x xv t t v t a t t x t t x t v t t a t t           

 

 (6b) 2( ) ( ) ( ) ( ) ( ) ( ) 0.5 ( )y y y y yv t t v t a t t y t t y t v t t a t t           

 

Once the acceleration, velocity and displacement are known, it is a simple matter to 

calculate forces and energies. The kinetic energy of the jumper EK, the elastic potential 

energy EP, the gravitational potential energy EG and the total mechanical energy E are 

given in equation (7). The zero for the gravitational potential energy is chosen to be at 

y  =  0. 

  

 (7a) 
21

2KE mv  

 

 (7b) GE m g y  

 

 (7c) 

   

21
1 12

2 21 1
1 2 1 2 1 1 2 12 2

0 E

E

e e E k e

e e E k e k k e e k k e

  

     

 

  

 (7d) K E GE E E E    
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Table 1 summarize the input parameters and possible range of values for running the 

mscript  osc_bungee.m. 

 

 

  Table 1: Jump parameters: Parameters are changed within the mscript. 

Variable Symbol Value Unit 

mass of jumper m 50 to 150 kg 

natural length of bungee cord L 6 to 20 m 

stiffness of bungee cord:   

                                                 stiff cord 

k1 

k2 

~ 250 

~ 150 

N.m
-1

 

stiffness of bungee cord:   

                                           medium cord 

k1 

k2 

~ 200 

~ 110 

N.m
-1

 

stiffness of bungee cord:   

                                                 soft cord 

k1 

k2 

~ 160 

~ 80 

N.m
-1

 

stiffness of bungee cord   e1 4 to 6 m 

max tensile strength of bungee cord Smax ~ 2.010
4
 N 

elongation factor e/L 2 to 4  

dissipation factor D1 0 to 10 N.m
-1

.s
-1

 

dissipation factor D2 0 to 10 N.m
-2

.s
-2

 

bridge swing: starting x coordinate x(0) 0 to - L m 

  

 

BUNGEE JUMP: zero dissipation  FD = 0 
 

If the dissipative force FD = 0, the total mechanical energy is conserved 

 

  E = constant 

 

From the principle of conservation of energy in this situation, we can calculate analytically 

the maximum free fall velocity vff and the maximum distance the jumper falls vertically 

(jump drop) ymax.  

 

The total energy E at the start, end of free fall and the bottom of the jump are: 

 

 1.  Start of jump             1 1 1 1 0 0 0E GE K U U       

 2.  End of free fall         
21

2 2 2 2 2
0E G ffE K U U mv m g L       

 3.  Bottom of jump         3 3 3 3 3 max0E G EE K U U U m g L e       . 

 

Hence, the maximum free fall velocity is 

 

 (8) 2ffv g L  
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Using the principles of conservation of energy, the maximum extension, emax of the bungee 

cord and drop height, hdrop can be found from the quadratic equation (9a)  

 (9a)      2 2

max 1 2 1 max 1 2 1

2 2

2 1
2 0e k k e mg e k k e m g L

k k

   
         
   

 

  

 (9b) maxdroph L e  . 

 

One has to be wary in using numerical method because you are not always aware that the 

results may be inaccurate. The approximation method used in the simulations only gives 

reasonable results when the time increment is very small so that during any time step the 

acceleration does not change very much. When the time step is too large, the total 

mechanical energy often increases rather than being constant. Where possible you should 

compare your numerical results with values calculated using analytical methods. If there is 

disagreement, then the time step used in the numerical procedure can be decreased or it 

may be necessary to use a more accurate numerical method.  

 

During the jump, the acceleration of the jumper increases and so does the net force 

experienced by the jumper. The magnitude of this force experience by the jumper is related 

to the g-force, which is the ratio of the normal force (apparent weight) acting on them to 

their weight. 

 

  

apparent weight
g-force

actual weight

g-force

m g ma

m g

g a

g


 




     where g = + 9.8  m.s
-2

 

 

In free fall a = - g hence g-force = 0. 

 

Vertical axis g-force:   sustain g-forces along the axis aligned with the spine causes 

significant variation in blood pressure along the length of a person's body, which limits the 

maximum g-forces that can be tolerated. Positive or "upward" g, drives blood downward to 

the feet of a seated or standing whereas a negative or “downward” g drives blood upward to 

the head.  

 

Resistance to positive g varies. A typical person can handle about 5 g (49 m.s
-2

) - meaning 

some people might pass out in some cases exceeds this point. 

 

Resistance to "negative" or "downward" g which drives blood to the head, is much lower. 

This limit is typically in the −2 to −3 g (about −20 m.s
-2

 to −30 m.s
-2

) range. This condition 

is sometimes referred to as red out where vision is literally reddened due to the blood laden 
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lower eyelid being pulled into the field of vision. Negative g is generally unpleasant and 

can cause damage. Blood vessels in the eyes or brain may swell or burst under the 

increased blood pressure, resulting in degraded sight or even blindness.  

 

In running the mscript for different parameters, you will find that the g-force acting is not 

large enough to cause the jumper any problems and more importantly it has only a large 

value over very short time intervals. 

 

Simulation:  No dissipative forces   FD = 0 

 

Consider the bungee jump for a person with a mass of 80 kg using a bungee cord of 

medium stiffness and length 9.0 m.  The results of a simulation using osc_bungee.m are 

given in the Matlab Command Window and Figure Windows. 

 

Input parameters 
   Initial x coordinate of jumper, xs =  0.00  m   
   Initial y coordinate of jumper, ys =  0.00  m   
   Mass of jumper, m =  80.00  kg   
   Weight of jumper, F_G = 784  N     
   Natural length of bungee cord, L =  9.00  m   
   Dissipative force constant, D_1 =  0.00  N.m^-1.s^-1   
   Dissipative force constant, D_2 =  0.00  N.m^-2.s^-2   
   Stiffness, k_1 =  200.00  N.m^1   
   Stiffness, k_2 =  110.00  N.m^1   
   Stiffness: two piece linear transition, e_1 =  5.00  m   
     
Analytical (FD = 0) & numerical predictions     
   A: max free fall velocity, v_ff = 13.28  m/s   
   N: max free fall velocity, v_ff = 13.28  m/s   
     
   A: drop height, h_drop = 24.60  m   
   N: drop height, h_drop = 24.62  m   
     
Output parameters     
   max velocity, v_max = 14.68  m.s^-1   
   max velocity, v_max = 52.85  km.h^-1   
   max y-acceleration, ay_max / g = 17.31 m.s^-2    
   max acceleration, a_max = 17.31  m.s-2     
   max force on jumper, F_max = 1384  N     
   F_max / F_G  =  1.77       
   max vertical gforce =  2.77       
   max elastic restoring force by bungee cord, F_E_max = 2168  N   

 

There is good agreement in the predictions of the maximum free fall velocity and the drop 

height when the analytical and numerical values are compared.  
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During free fall, the accleration of the jumper is -9.8 m.s
-2

. The maximum accleration of the 

jumper occurs when the they are at the bottom of the drop because the upward acting elastic 

restroing force is greatest at the bottom of the jump.  
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The elastic restoring force is greatest at the bottom of the jump when the cord has its 

maximum stretch. 
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The total energy remains constant during the simulations. This is a good indictor that the 

numerical method is OK.  

  
The g-force has a maximum value of 2.77 only for short periods of time, hence, it is 

unlikely that the jumper will experience any problems due to the forces and accelerations 

during the jump.  
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Simulations of “real” bungee jumps 

 

In a real bungee jump, the duration of the jump is about 30 s and the oscillations die-away 

after about five bounces. The total energy of the system of the jumper and bungee cord 

decreases because of the dissipative forces acting.  

 

 
  

 

Table 2 is a summary of the results for a 80 kg person using a three different bungee cords 

of length 9.0 m and e1 = 5.0 m. The coefficients D1 = 4.0 and D2 = 5.0 were chosen so that 

the about five oscillations died away in about 25 s.  

 

       Table 2. 

Parameters Stiff  Medium Soft 

k1 (N.m
-1

) 250 200 160 

k2 (N.m-1) 150 110 80 

velocity max (m.s
-1

) 10.2 10.2 10.3 

velocity max (km.h
-1

) 36.8 36.8 37.0 

g-force max 2.1 1.9 1.7 

drop height (m) 16.8 18.4 28.8 
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The maximum speed reached by the jumper does not depend upon the stiffness of the 

bungee cord. The stiffer the bungee cord, then the greater the g-force experienced by the 

jumper and the smaller value for the drop height. 

 

Table 3 is a summary of the results for two jumpers of masses 60 kg and 120 kg using a 

soft bungee cord (length 9.0 m, k1 = 160 N.m
-1

, k2 = 80 N.m
-1

, e1 = 5.0 m). The coefficients 

D1 = 4.0 and D2 = 5.0 were chosen so that the about five oscillations died away in about 

25 s.  

 

        Table 3. 

Parameters 60 kg  120 kg 

velocity max (m.s
-1

) 9.4 11.5 

velocity max (km.h
-1

) 33.7 41.5 

g-force max 1.8 1.6 

drop height (m) 17.1 27.7 

 

The jumper with the larger mass certainly has a much greater maximum speed and the drop 

height is significantly greater.  Serious injuries and even deaths have occurred during a 

bungee jump when a heavy person has been given the wrong bungee cord so that the drop 

height was more than the distance to the ground below – the jumper may hit the ground at a 

considerable speed. 
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Simulations of bridge swings 

 

A bridge swing is a version of a bungee jump where the bungee cord is connected to a 

structure and the other end to the jumper in an abseiling harness to one side of the structure. 

 

The following figures and data are for a bridge swing for an 80 kg jumper using a soft 

bungee cord. 

 

Input parameters 

   Initial x coordinate of jumper, xs =  -9.00  m   

   Initial y coordinate of jumper, ys =  0.00  m   

   Mass of jumper, m =  80.00  kg   

   Weight of jumper, F_G = 784  N     

   Natural length of bungee cord, L =  9.00  m   

   Dissipative force constant, D_1 =  4.00  N.m^-1.s^-1   

   Dissipative force constant, D_2 =  5.00  N.m^-2.s^-2   

   Stiffness, k_1 =  160.00  N.m^1   

   Stiffness, k_2 =  80.00  N.m^1   

   Stiffness: two piece linear transition, e_1 =  5.00  m   

     

Analytical (FD = 0) & numerical predictions     

   A: max free fall velocity, v_ff = 13.28  m/s   

   N: max free fall velocity, v_ff = 0.00  m/s   

     

   A: drop height, h_drop = 28.78  m   

   N: drop height, h_drop = 18.86  m   

     

Output parameters     

   max elongation factor  r_max / L = 2.10     

   max velocity, v_max = 9.16  m.s^-1   

   max velocity, v_max = 32.98  km.h^-1   

   max y-acceleration, ay_max / g = 5.55 m.s^-2    

   max acceleration, a_max = 9.80  m.s-2     

   max force on jumper, F_max = 784  N     

   F_max / F_G  =  1.00       

   max vertical g-force =  1.57       

   max elastic restoring force by bungee cord, F_E_max = 1189  N     
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Investigations and Questions 

 

Simulate a bungee jump (start: xs = 0, ys = 0) with a zero dissipation force. 

 

1.1 Vary the number of time steps nt. What is the minimum value for nt so that the total 

mechanical energy, E is conserved. How well do the analytical and numerical 

predictions agree? 

 

1.2 Explain the shapes of the position, force and energy graphs. Comment on when 

values of position, force, energy are a maximum, minimum or zero. 

 

1.3 For a typical bungee jump, is the acceleration experience by the jumper excessive? (A 

person can blackout when their acceleration greater than about 5g’s). 

 

1.4 Is it likely that a bungee cord will snap? (The maximum tensile strength of a bungee 

cord is ~2.010
4
 N.) 

 

1.5 How does the vertical distance fallen by the jumper (jump drop), hdrop, depend upon 

the mass of the jumper, m? Repeat the simulation with increasing mass and tabulate 

the jump drop. 

 

1.6 What are the differences in jump drops for bungee cords of varying stiffness? 

Consider stiff, medium and soft bungee cords. 

 

1.7 Simulate a bungee jump with a non-zero dissipative force. How does this change the 

motion of the jumper? Adjust the value of the constants D1 and D2 to simulate as 

close as possible a real jump.  

 

1.8 What is the mostly likely reason a person could suffer a serve accident assuming there 

where no attachment problems associated with the harness and cord? 

 

1.9 If the stiffness of the bungee cord obeys Hooke’s law in extension (e1 = 0 and k1 = k2), 

how does it affect the jump drop. Is this significant? 
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Simulate a bridge swing with zero and non-zero dissipative forces. Check that the time step 

is small enough so that the total energy is conserved and that the numerical and analytical 

values agree. 

 

1.10 Explain the shapes of the position, force and energy graphs. Comment on when 

values of position, force, energy are a maximum, minimum or zero. The figure for the 

trajectory shows the position of the jump at fixed time intervals like in a strobe 

photograph, hence comment on the velocity of the jumper during the swing. 

 

1.11 You can make your own bungee cord by using a length of latex tubing or by stringing 

together many elastic bands. Use you home-made bungee cord with an object 

attached to one end to carry out a bridge swing. How does the trajectory of your bride 

swing compare with the computer model? You can change the parameters in the 

simulation to match those in your bungee swing using your home made cord. 

 

1.12 Design a jump so that the maximum velocity of the jumper exceeds 80 km.h
-1

. What 

is the corresponding jump drop? 
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