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DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 
 

qp_hydrogen.m 

Main program for solving the Schrodinger Equation for hydrogen-like atoms and ions. 

Calls  simpson1d.m  to calculate the integral of a wavefunction. 

 

qp_azimuthal.m 

mscript for plots of the real and imaginary parts of the azimuthal wavefunction. 

 

qp_legendre.m 

There is a Matlab function legendre(n, cos ) to compute the associated Legendre 

functions (cos )lm

lP  , where l is the degree of the function and ml = 0, 1, 2, … l is the 

order where n = l + 1. The angle  is measured with respect to the Z axis and has a range 

from 0 to  rad.  Polar diagrams of the directional dependence of the associated Legendre 

functions and corresponding probability densities for different orbits are produced for the 

angular wavefunction. 

 

qp_pot.m   

mscript for plotting the potential energy functions Ueff, Uc and Ul for l = 0, 1, 2, 3. 

 

qp_bohr.m   

mscript for calculating the theoretical values of the total energy E from Bohr’s equation. 

 

qp_lithium.m      

mscripts for plotting the probability function for the neutral lithium atom using the data 

stored in the file  qp_hL.mat 
 

 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts
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qp_lithium.m      

Mscript for a plot of the line spectrum for the Balmer series.   
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Hydrogen is the simplest of all the atoms with only one electron surrounding the nucleus. 

Ions such as He
+
 and Li

2+
 are hydrogen-like since they also have only a single electron.   

 

In each case, the mass of the electron is much less the nuclear mass, therefore, we will 

assume a stationary nucleus exerting an attractive force that binds the electron to the 

nucleus. This is the Coulomb force with corresponding potential energy Uc(r) is 
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                       depends only on the separation distance  r between the electron and proton 

 

The Coulomb force between the nucleus and electron is an example of a central force 

where the attractive force on the electron is directed towards the nucleus. This is a three 

dimensional problem and it best to use spherical coordinates (r    ) centered on the 

nucleus as shown in figure 1. The radial coordinate is r,  is the polar angle (0 to ) 

and  is the azimuthal angle (0 to 2). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1.   Spherical coordinates of the electron (r, , ) centered on the 

nucleus. The distance between the electron and nucleus is r,   is the angle 

between the Z axis and the radius vector and  is the angle between the X 

axis and the projection of the radius vector onto the XY plane.    ranges 

from 0 to  and the azimuthal angle  from 0 to 2. 
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The time independent Schrodinger Equation in spherical coordinates can be expressed as 
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where  is the reduced mass of the system 
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The time independent wavefunction  in spherical coordinates is given by 

 

 (2) ( , , ) ( ) ( ) ( )r R r        

 

 

Equation (1) is separable, meaning a solution may be found as a product of three 

functions, each depending on only one of the coordinates r, , . This substitution 

allows us to separate equation (1) into three separate differential equations (equations 4, 

6 and 7) each depending on one coordinate r, , . For physical acceptable solutions to 

these three differential equations it requires three quantum numbers: 

 

  principle quantum number    n  =  1, 2, 3 … 

 (3) orbital angular momentum quantum number        l = 0, 1, 2, … n-1 

  magnetic quantum number   ml = 0,  1,  2, … ,  l 
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Azimuthal equation 

 

The differential equation in  is known as the Azimuthal equation can be written  
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The solution of the azimuthal equation (equation 4) is 

 

 (5)  ( ) exp li m                          solution not normalized 

 

The function ( )  has a period of 2 and since all physical quantities are derived from 

the wavefunction, the wavefunction must be singled valued for  = 0 and 2. This means 

that the only physically acceptable solutions for ml are ml = 0, 1, 2, 3, … . 

 

   exp(0) exp 2 0, 1, 2,l li m m      

 

The real part of ( )  is a cosine function and the imaginary part is a sine function. When 

ml = 0 then  ( 0) 1   . ml gives the number of complete cycles of the azimuthal 

function ( ) within the range 0 to 2 for  (figure 2). 

 

 

It is easy to write a Matlab script to plot the real and imaginary part of the azimuthal 

wavefunction (). Figure (2) shows a few sample plots. The m-script qp_azimuthal.m 

calculates and plots () against . 

 
% qp_azimuthal.m 
% Plot for the solution to the Azimuthal differential equation 
clear all; close all; clc; 
ml = 2;      % change the value of ml to the required value 
phi = linspace(0,1,500).* (2*pi);PHI = exp(j .* ml .* phi); 
figure(1) 
set(gcf,'Units','Normalized'); 

set(gcf,'Position',[0.2 0.15 0.2 0.2])  
set(gca,'fontsize',8); 
x = phi./(2*pi); y1 = real(PHI); y2 = imag(PHI); 
plot(x,y1,'linewidth',2);hold on; 
plot(x,y2,'r','linewidth',2); grid on; 
xlabel('azimuthal angle    \phi / 2\pi') 
ylabel('azimuthal   wavefunction     \Phi') 
title_m = ['m_l  =  ', num2str(ml)]; 
title(title_m); 
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Fig. 2.  Azimuthal wavefunction (): real part a cosine function (blue) and 

imaginary part a sine function (red). The azimuthal function is single valued 

at  = 0 and  = 2 rad. [qp_azimuthal.m] 

  



qp_hydrogen 7 

Angular equation 

 

The differential equation for ( )  is called the angular equation 
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Note that the angular equation (equation 6) depends upon the quantum numbers ml and l. 

For physically acceptable solutions of equation (6) there must be restrictions on ml and l 

as given by equation (3).  That is, the quantum number l must be a zero or a positive 

integer, and the quantum number ml must be a positive or negative integer or zero and 

lm l . 

 

The solution of the angular equation was first worked out by the famous mathematician  

Adrien Legendre (1752 – 1833). Equation (6) is often called the associated Legendre 

equation. 

 

The solutions ( ) for the angular equation are polynomials in cos  known as the 

associated Legendre polynomials (cos )lm

lP    

where l = 0, 1, 2, … and ml = 0, 1, 2, 3, … .      lm l  

 

The normalized solution to equation (6) can be written as 
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llmN is a appropriate normalization constant such that 
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It is customary for historical reasons to use letters for the various values of l. 

 

l 0 1 2 3 4 5 

letter s p d f g h 

 

The letters arose from visual observations of spectral lines: sharp, principle, diffuse, and 

fundamental. After l = 3 (f state), the letters generally follow the order of the alphabet. 

 

Atomic states are normally referred to by the number n and the l letter.  

 For example, n = 2 and l = 1 is called a 2p state. 
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There is a Matlab function legendre(L, cos ) to compute the associated Legendre 

functions (cos )lm

lP  , where l is the degree of the function and ml = 0, 1, 2, … l is the 

order. The angle  is measured with respect to the Z axis and has a range from 0 to  rad. 

  

For example in the Matlab Command Window: 

 

 legendre(2,0)  returns the vector [-0.5  0  3] 

 

l = 2      = /2     cos = 0 

ml 0 1 2 

(cos )lm

lP   -0.5 0 3 

 

The m-script qp_legendre.m computes and plots the associated  Legendre functions. 

Figure 3 shows polar diagrams of the directional dependence of the associated Legendre 

functions and corresponding probability densities for different orbits. 

 

Fig. 3.   Polar diagrams for the associated Legendre polynomials and 

directional dependence for the probability density functions for various 

values of l and lm . For the probability density curves, the length of the 

straight line from the origin to any point on a given curve is proportional to 

the probability that the electron is in the direction of that line. All values of 

P(l,|ml|) and P
2
(m,|ml|) have normalized to 1. Note the way in which the 

regions of higher probability shifts from the Z axis to the XY plane as lm  

increases. In the ground state (n = 0   l = 0   ml = 0) of a one-electron atom, 

the function 
*

l lnlm nlm   depends neither on   nor   and the probability 

density is spherically symmetrical. For states with ml = 0 and l  0 there is a 

higher probability density concentration along the Z axis (near  = 0
o
 and 

180
o
). For states with 1lm   , the concentration of probability density in 

the XY plane (near  = 90
o
) becomes more and more pronounced with 

increasing values of l and the  gives the alignment of higher probability 

concentrations along either the X or Y axis. A [3D] view can be imaged by 

rotating the patterns around the Z axis. If all the probability densities for a 

given n and l are combined, the result is spherically symmetrical. 

[qp_legendre.m] 
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     ml = -1  orbital aligned along X axis     ml = +1  orbital aligned along Y axis   
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The products ( ) ( )   describing the angular dependence of the wavefunction are 

known as the spherical harmonics ( , )lm

lY   . The functions ( )  are polynomials in 

sin and cos of order l.   

 

Because the angular equation contains l and ml as well, the solutions to the azimuthal and 

angular equations are linked. It is customary to group these solutions together into what is 

called the spherical harmonics ( , )lm

lY    

 

  ( , ) ( ) ( )l

l l

m

l l m mY         
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Radial equation 

 

Finally, to complete the process, the radial equation becomes 
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Equation (7) is also known as the associated Laguerre equation after the French 

mathematician Edmond Laguerre (1834 – 1886). The associated Laguerre functions are 

the solutions of the radial equation and are polynomials in r. 

 

The differential equations in  (equation 4) and in  (equation 6) are independent of the 

potential energy function Uc(r). The total energy E and the potential energy Uc(r) appear 

only in the radial differential equation (equation 7). Therefore, it is only the radial 

equation (equation 7) containing the potential energy term Uc(r) that determines the 

allowed values for the total energy E.   

 

Physically acceptable solutions of the radial equation (equation 7) for hydrogen atom and 

hydrogen-like ions can only be found if the energy E is quantized and has the form 

 

 (8) 
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eV

4 2
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           total energy is quantized 

 

where the principal quantum number is n = 1, 2, 3, …  and n > l. The negative sign 

indicates that the electron is bound to the nucleus. If the energy were to become positive, 

then the electron would no longer be a bound particle and the total energy would no 

longer be quantized. The quantized energy of the electron is a result of it being bound to a 

finite region. The energy levels of the hydrogen atom depend only on the principle 

quantum number n and do not depend on any angular dependence associated with the 

quantum numbers l and ml. Equation (8) is in agreement with the predictions of the Bohr 

model. In the Bohr Model of the atom the total energy En is quantized and the electron 

can only orbit without radiating energy in stable orbits of fixed radii  rn given by equation  

(9).  
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            Bohr model: allowed stable orbits 
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For hydrogen-like species, the total energy depends only on the principal quantum 

number n, this is not the case for more complex atoms. The ground state is specified by 

the unique set of quantum n = 1, l = 0, ml = 0. For the first excited state there are four 

independent wavefunctions with quantum numbers: 

 

  n = 2     l = 0     ml = 0 

 n = 2     l = 1     ml = -1 

 n = 2     l = 1     ml = 0 

 n = 2     l = 1     ml = 1 

 

This means that the first excited state is four-fold degenerate as the total energy E2 only 

depends on the principle quantum number n. 

 

We can define a pseudo-wavefunction g(r) = r R(r) which leads to a one dimensional 

Schrodinger Equation 
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where the effective potential energy Ueff has two contributions due to the Coulomb 

interaction Uc and the angular motion of the electron Ul 
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The Matlab mscript  qp_pot.m  can be used to plot the potential energy functions as 

shown in figure (4). 

 

  

  
Fig. 4.   Plots of the potential energy functions Ueff, Uc and Ul for l = 0, 1, 2, 3. 

[qp_pot.m] 
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Probability Distribution Function 
 
In the Bohr theory of the hydrogen atom, the electron was pictured as orbiting around the 

nucleus in a simple circular orbit. The position vector of the electron was well defined. 

However, in quantum terms the electron’s position is not well defined and we must use 

the wavefunction  
lnlm to calculate the probability distribution of the electron in the state 

(n l ml). 

 
Also, in many applications in atomic physics it is important to know the behaviour of the 

wavefunctions since measureable quantities can be obtained by calculating various 

expectation values.  

 

From the wavefunction of a given state (n l ml), we can calculate the probability of 

finding an electron from the corresponding probability density function 
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The probability of finding the electron does not depend upon the azimuthal angle  since 
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hence 

 

(14) 
/ /* * * * * *n n
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The ( ) distribution gives a uniform probability – all values of  are equally likely. 

 

The angular distribution functions and probability density functions are shown in figure 3. 

 

The radial wavefunction Rnl(r) can be used to calculate the radial probability distribution 

of the electron, that is, the probability of the electron being at a distance r from the 

nucleus and it depends on both n and l. 

 

We are interested in finding the probability P(r)dr of the electron being in a thin shell of 

radius r and thickness dr. The differential volume element in spherical polar coordinates 

is 

 

 (15) 2 sindV r dr d d    

 

Therefore, 
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We integrate over  and  because we are only interested in the radial dependence. Using 

the pseudo-wavefunction g(r) = r R(r) and letting N be a normalizing constant, the 

probability of finding the electron with the thin shell reduced to 

 

 (17)      *P r dr N g r g r dr  

 

where 

 

 (18)      *

0 0
1P r dr N g r g r dr

 

    

 

since the probability of finding the electron is one. 

 

 

Solving the Schrodinger Equation  

 
Matlab mscripts can be used to find solutions of the Schrodinger Equation. The angular 

dependence is determined by evaluating the associated Legendre functions using the 

Matlab function legendre(n, cos ). The radial equation given by equation (9) can be 

solved using the Matrix Method.  

 

The mscript  qp_hydrogen. m  can be used to solve the Schrodinger Equation for the 

hydrogen atom and hydrogen like ions.  When the mscript qp_hydrogen. m is run, the 

following is shown requesting various inputs: 

 

max radial distance (default 10e-10 m), r_max =   
 orbital quantum number (default 0), L =  0 
 magnetic quantum number (default 0), m_L =  0 
 nuclear charge (default 1), Z =  1 
    

Enter Principal Quantum Number for calculation of expectation values and 
graphical display 

 Enter Principal Quantum Number (n > L),  n  =   

 

The Command Window output after the mscript has finished executing is: 

 

  
  

http://www.physics.usyd.edu.au/teach_res/mp/doc/qp_se_matrix.pdf
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No. bound states found =  5    
   
 Quantum State / Eigenvalues  En  (eV) 
   1      -13.586    
   2      -3.3972    
  3      -1.5098    
   4      -0.81674    
   5      -0.21545    
   
 Principal Quantum Number, n  =  3    
 Orbital Quantum Number, L  =  0    
 Magnetic Quantum Number, m_L  =  0    
 Nuclear charge, Z  =  1    
    
 Energy, E =  -1.50983    
 Total Probability = 1    
   
 r_peak = 6.93334e-10   m 
 <r> = 7.1458e-10   m 
 <r^2> = 5.79647e-19   m^2 
   
 <ip> = 2.43256e-29   N.s 
 <ip^2> = 4.40938e-49   N^2.s^2 
   
 <U> = -3.02182   eV 
 <K> = 1.51082   eV 
 <E> = -1.511   eV 
 <K> + <U> = -1.511   eV 
   
 deltar = 2.62721e-10    
 deltaip = 6.64031e-25    
 (dr dk)/hbar = 1.6536    
   
 execution time = 17.4 s   
 

 

There are some problems with the accuracy of the Matrix Method due to the maximum 

range for the radial coordinate rmax. If rmax is too small than the energy eigenvalues near 

the top of the potential well will be inaccurate. However, if rmax is large, then the 

numerical procedure has difficulties in calculating the eigenvalues. The real potential 

diverges to infinity as r approaches zero. In our modelling, the potential energy function 

is truncated at some value of r. Table 1 gives the energy eigenvalues in eV for different 

values of rmax (x10
-10

 m). The theoretical values for E are calculated from equation (8) 

using the mscript  qp_bohr.m . 
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Table 1 

State (n l ml) E (theory) rmax = 10 rmax = 20 rmax = 30 rmax = 50 

(1 0 0) -13.5828 -13.578 -13.586 -13.582    -13.5680 

(2 0 0) -3.3957 -3.3952    -3.3972    -3.3969   -3.3961    

(3 0 0) -1.5092 -1.2867 -1.5098    -1.5099    -1.5097    

(4 0 0) -0.8489 --- -0.81674    -0.84919    -0.84929    

(5 0 0) -0.5433 --- -0.21545 -0.52374    -0.54356    

(6 0 0) -0.377 --- ---  -0.20996    -0.37605    

(7 0 0) -0.2772 --- --- --- -0.24948 

(8 0 0) -0.2122 --- --- --- -0.093909 

(2 1 0) -3.3957 -3.3980    -3.3984    -3.3985 -3.3986    

(3 1 0) -1.5092 -1.3537 -1.5103    -1.5104    -1.5104 

  

For larger n values the maximum radial coordinate must be large otherwise the results are 

inaccurate because for large n values the electron is most likely to be found at large 

distances from the nucleus.  

 

The energy spectrum for the hydrogen atom is shown in figure 5. 

 

  
 

Fig.5.   The Coulomb potential Uc and the energy eigenvalues En for a 

hydrogen atom. For large values of n the eigenvalues become very closely 

spaced in energy since En approaches zero as n approaches infinity  
21/nE n . The intersection of the curves for Uc and En which defines one 

end of the classically allowed region moves out as n increases.   

[qp_hydrogen.m] 
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Although the wavefunction is not a measureable quantity, we can use this function to 

calculate the expected result of the average of many measurements of a given quantity – 

this result is known as the expectation value. Any measurable quantity for which we can 

calculate the expectation value is called a physical observable.  The expectation values 

of physical observables must be real because experimental measurements are real 

quantities. See the document on Matrix Methods for details of calculating expectation 

values. 

 

We will consider the quantum predictions for the ground state of the hydrogen atom 

using the Matlab mscript  qp_hydrogen.m.  

 

 Ground state is specified by the quantum numbers    n = 1   l =0   ml = 0 

 Maximum radial distance used in the simulation   rmax = 20x10
-10

 m 

 Eigenvalue energy   E1 = -13.5858 eV   (Theoretical value   E1 = -13.5828 eV) 

   Expectation value for kinetic energy of electron   <K> = 13.5624   eV 

 

 Expectation value for potential energy of system   <U> = -27.1729   eV 

 Expectation value for the total energy    <E> = -13.6104    eV  

         where <K> + <U> = -13.6104   eV 

 

The expectation value for the total energy <E> should equal the eigenvalue energy E1 

with E = 0 since the electron is in a stationary state.  

 E1 = -13.5858 eV      <E> = -13.6104    eV 

The discrepancy between the two values is a result of numerical and model inaccuracies.   

  

 Radial position for maximum probability concentration   rpeak = 0.5333x10
-10

   m 

  Bohr radius   a0 = 0.5292x10
-10

 m 

 

 Expectation value for radial position of electron   <r> = 0.7948x10
-10

   m 

 Uncertainty in expected radial position of electron   r = 0.4589x10
-10

 m   

 Average value for radial position of electron   ravg = (0.79  0.46)x10
-10

 m      

 

The radial position for the maximum probability concentration corresponds to radius of 

the allowed stable orbit given by the Bohr theory. The average position of the electron 

has a value greater than the Bohr radius.  Figure (6) shows a graphical output for the 

calculation of the expectation position for the radial position r. 

 

http://www.physics.usyd.edu.au/teach_res/mp/doc/qp_se_matrix.pdf
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Fig. 6.   Graphical output for the calculation of the radial position r. The 

graph shows the expectation value <r> = 0.7948x10
-10

 m and the most 

probable position (location of highest probability concentration) at the Bohr 

radius a0 = 0.5292x10
-10

 m. [qp_hydrogen.m] 

 

 Expectation value for momentum   <ip> = 6.5557x10
-28

 m   N.s 

 

The expectation value for the momentum is imaginary, therefore, we can conclude that 

the linear momentum of the electron is zero   <p> = 0 N.s  

 

The Heisenberg’s uncertainty principle applies to our one-electron system 

 

  0.5
2

ip r
ip r

 
       

 

 Uncertainty in momentum of the electron   ip = 1.9895x10
-24

  N.s 

 Uncertainty in expected radial position of electron   r = 0.4589x10
-10

 m   

 

 0.8653 0.5
ip r 

   

Therefore, in our simulation, the uncertainty principle is satisfied. 

 

The radial wavefunction and radial probability density function depend upon the quantum 

number n and l but not ml. Figure (7) shows radial wavefunctions and radial probability 

density functions for the electron in a one-electron atom for differing (n l) combinations. 
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Fig. 7.  Plots of the radial wavefunctions and radial probability density 

functions for the electron in a one-electron atom for differing (n l) 

combinations . 

 

state     1s     n = 1     l = 0 

  
 

 

state     2s     n = 2     l = 0 
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state     2p     n = 2     l = 1 

 
 

state     3s     n = 3     l = 0 

 
 

 

state     3p     n = 3     l = 1 
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state     3d     n = 3     l = 2 

 
 

state     4s     n = 4     l = 0 

 
 

state     4p     n = 4     l = 1 
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state     4d     n = 4     l = 2 

 
 

state     4f     n = 4     l = 3 

 
 

 

For a state ( n  l ), the number of peaks in the probability density plots is ( n - l ), for 

example, the shell n = 4:  

 

 

 

   

 

 

 

 

 

Inspection of the plots show that the radial probability for a given combination of  (n l) 

have appreciable values only in restricted ranges of the radial coordinate, hence, the 

electron is most likely to be found within a thin shells region surrounding the nucleus. 

The radius of each shell is mainly determined by the principle quantum number n and 

with a small angular l dependence.  

  

subshell l No. 

peaks 

s 0 4 

p 1 3 

d 2 2 

f 3 1 
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The Bohr model of the hydrogen-like atoms gives allowed stable circular orbits of radii 

 

 (19) 2 100
0 0.5292 10 mBohr

a
r n a

Z

    

 

Solutions of the Schrodinger Equation show that radii of the shells are of approximately 

the same size as the circular Bohr orbits. The total energy becomes more positive with 

increasing n, so the region of the radial coordinate r for which E > U(r) is greater with 

increasing n, that is, the shells expand with increasing n because the classically allowed 

regions expand.  

 

Figure 7 shows that the details of the structure of the radial probability density functions 

do depend upon the value of the orbital angular momentum quantum number l. For a 

given n value, the probability density function has a strong single maximum when l has 

its largest possible value. When l takes on smaller values, additional weaker maxima 

develop inside the strong one. The smallest value of l gives the most number of maxima. 

When l = 0 there is a higher probability of the electron being in the region near the origin 

(r = 0), this means that only for s states (l = 0) will there be an appreciable probability of 

finding the electron near the nucleus.                       

                  

A summary of the Bohr radii rBohr,  the expectation values ravg and radii for the most 

probable location rMost Prob  for different combinations of n and l given in Table 2. 

 

 

Table 2. 

 

State (n l ml) rmax 

(x10
-10

  m) 

rBohr 

(x10
-10

  m) 

rMost Prob 

(x10
-10

  m) 

ravg 

(x10
-10

  m) 

1s  (1 0 0) 30 0.53 0.53 0.80 

2s  (2 0 0) 30 2.21 2.77 3.18 

2p  (2 1 0) 30 2.21 2.12 2.65 

3s  (3 0 0) 40 4.77 6.93 7.15 

3p  (3 1 0) 40 4.77 6.37 6.62 

3d  (3 2 0) 40 4.77 4.77 5.56 

4s  (4 0 0) 50 8.48 13.04 12.72 

4p  (4 1 0) 50 8.48 12.5 12.18 

4d  (4 2 0) 50 8.48 11.25 11.24 

4f  (4 3 0) 50 8.48 8.46 9.54 

  

For a given n value, the radius rMost Prob  at which has the highest probability concentration 

agrees most closely with the Bohr radius rBohr is the state with the highest value of l and  

is the probability density function which has a single peak at a smaller value of r than 

those states with smaller l values.  For a given n value, the average radial distance ravg 

from the nucleus increases with decreasing l values. 
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Figure 8 shows two-dimensional views of the probability density functions for different 

electron states (n l ml) of the hydrogen atom. To image a three-dimensional view rotate 

the image through 360
o
, there being axial symmetry about the Z axis in each case. The 

binding energy EB = -E is the energy to remove the electron from the atom is displayed in 

each plot. 

 

 

Fig. 8.   Two-dimensional representation of the probability density functions. 

 
* * *

l l l lnlm nlm nl nl lm lmR R      

 

 
 

 state     1s     n = 1     l = 0     ml = 0 

 
 

state     2s     n = 2     l = 0     ml = 0 

 
 

 

 

 

low highprobability
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state     2p     n = 2     l = 1     ml = 0 

 
 

state     2p     n = 2     l = 1     ml = 1 

 
 

 

state     3s     n = 3     l = 0     ml = 0 
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state     3p     n = 3     l = 1     ml = 0 

 
 

state     3p     n = 3     l = 1     ml = 1 

 
 

 

state     3d     n = 3     l = 2     ml = 0 
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state     3d     n = 3     l = 2     ml = 1 

 
 

state     3d    n = 3     l = 2     ml = 2 

 
 

state     4s     n = 4     l = 0     ml = 0 
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state     4p     n = 4     l = 1     ml = 0 

 
 

state     4p    n = 4     l = 1     ml = 1 

 
 

state     4d    n = 4     l = 2     ml = 0 
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state     4d    n = 4     l = 2     ml = 1 

 
 

state     4d    n = 4     l = 2     ml = 2 

 
 

state     4f    n = 4      l = 3     ml = 0 
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state     4f    n = 4      l = 3     ml = 1 

 
state     4f    n = 4      l = 3     ml = 2 

  
 

state     4f    n = 4      l = 3     ml = 3 
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Single electron ions  He+ and Li++ 
 

Both the helium ion He
+
 and lithium ion Li

++
 can be modelled as single electron atoms. In 

the modelling the mass of the electron is used and not the reduced mass of the electron 

and nucleus. The only variable that needs to be change from the hydrogen simulations is 

the atomic number:  Z(H) = 1     Z(He
+
) = 2      Z(Li

++
)  = 3. 

 

In each case, the shapes of the wavefunction for all combinations of n, l and ml are the 

same since all three species can be modelled as single electron. 

 

The main difference between the three species are the binding energies EBn of the electron 

(EBn = -En) and the radius rMost Prob for the maximum probability concentration for the 

maximum l value (l = n-1) which corresponds quite well with the Bohr radius rn. 

 

The Bohr model gives equation (8) for the binding energy of the electron (same result as 

derived from the solution of the Schrodinger Equation) and the equation (9) for the 

allowed stable circular orbits of the electron. 

 

 (8) 
4 2

2 2 2

0

1

8

e
Bn

m e Z
E

h n
  

 

 (9) 
2

20

2n

e

h
r n

m e Z




  

 

Matlab can be used to draw line spectrum diagram. The mscript  qp_balmer.m was used   

to show the line emission spectrum for the Balmer series (final state nf = 2). 

 

BALMER SERIES 

 

 
 

 

The following tables compare the calculation from equations (8) and (9) using the mscript  

qp_bohr.m  with the simulations using qp_hydrogen.m. The simulations used ml = 0 and 

 H   rmax = 60x10
-10

 m     He
+
   rmax = 30x10

-10
 m     Li

++
   rmax = 30x10

-10
 m . 
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Table 3A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3A: There is excellent agreement between the Bohr theory predictions and those of 

the simulation up to about n = 7. For higher n values, inaccuracies occur because the 

forcing of the wavefunction to go to zero at a radial distance of rmax = 60x10
-10

 m, the 

maximum well was set at -1000 eV and the number of data points for the calculation was 

1201. 

 

Table 3B 

 He
+
 (Bohr) He

+
 (simulation) 

 n EB (eV) rn (x10
-10

m) EB (eV) rn (x10
-10

m) 

 1 54.419 0.265 53.827 0.275 

 2 13.605 1.058 13.531 1.050 

 3 6.047 2.381 6.023 2.375 

 4 3.401 4.234 3.391 4.250 

 5 2.177 6.615 2.171 6.625 

 6 1.512 9.525 1.508 9.525 

 7 1.111 12.965 1.092 12.98 

 8 0.850 16.934 0.697 16.73 

 9 0.672 21.432 0.193 19.83 

10 0.544 26.459 --- 21.73 

 

Table 3B: There is excellent agreement between the Bohr theory predictions and those of 

the simulation up to about n = 6.  

  

 H (Bohr) H (simulation) 

 n EB (eV) rn (x10
-10

m) EB (eV) rn (x10
-10

m) 

 1 13.605  0.529 13.559   0.550 

 2  3.401  2.112  3.400   2.110 

 3  1.512  4.763  1.510   4.750 

 4  0.850  8.467  0.849   8.500 

 5  0.544 13.230  0.544 13.25 

 6  0.378 19.051  0.377 19.05 

 7  0.278 25.930  0.273 25.95 

 8  0.213 33.868  0.175 33.45 

 9  0.168 42.864  0.049 39.65 

10  0.136 52.918 --- 43.45 
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Table 3C 

 Li
++

 (Bohr) Li
++

 (simulation) 

 n EB (eV) rn (x10
-10

m) EB (eV) rn (x10
-10

m) 

 1 122.44 0.176 116.07 0.183 

 2 30.61 0.706 29.80 0.700 

 3 13.60 1.588 13.36 1.583 

 4 7.653 2.822 7.547 2.833 

 5 4.900 4.410 4.843 4.417 

 6 3.401 6.350 3.368 6.886 

 7 2.500 8.643 2.438 8.650 

 8 1.913 11.29 1.548 11.12 

 9 1.512 14.29 0.407 13.22 

10 1.224 17.63 --- 14.22 

 

Table 3C: The agreement between the Bohr theory predictions and those of the 

simulation is not so good. One always needs to be careful using numerical methods 

because the model can often give unacceptable results and you may not be aware of them. 

For these results, the number of data points for the calculation was 1201 and the potential 

energy function was truncated at -1000 eV. The total energy for the ground state is -122 

eV and so in this model the potential well was not deep enough. To improve the model, 

the maximum depth of the potential well was set to -5000 eV and the number of data 

points was increased to 2201. This increased the execution time by a factor of 2. The 

results of the improved model are given in Table 3D. 

  

Table 3D 

 Li
++

 (Bohr) Li
++

 (simulation) 

 n  l EB (eV) rn (x10
-10

m) EB (eV) rn (x10
-10

m) 

 1 0 122.44 0.176 122.1 0.175 

 2 1 30.61 0.706 30.56 0.700 

 3 2 13.60 1.588 13.59 1.600 

 4 3 7.653 2.822 7.64 2.825 

 5 4 4.900 4.410 4.89 4.425 

 6 5 3.401 6.350 3.40 6.350 

 7 6 2.500 8.643 2.50 8.650 

 8 7 1.913 11.29 1.91 11.30 

 9 8 1.512 14.29 1.46 14.30 

10 9 1.224 17.63 0.97 17.48 

 

Table 3D: There is an excellent agreement between the theoretical predictions and results 

of the simulation. The improved accuracy compared with Table 3C was the depth of the 

potential well was much deeper when truncated. 

 

In comparing the results in tables 3, the binding energies increase with greater nuclear 

charge (hydrogen +1, helium +2 and lithium +3) and on average the electron is closer to 

the nucleus as expected because of the greater the coulomb attraction between the 

electron the a nucleus with greater positive charge. 
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Neutral lithium atom  Li 
 

The lithium atom (Z = 3) has a nucleus containing three protons and surrounding it are 

three electrons. The electronic configuration of lithium in its ground state is 1s
2
 2s

1
. The 

inner two most electrons are tightly bound to the nucleus in a complete shell. However 

the single 2s electron is only weakly bound. This 2s electron can be easily removed from 

the atom (very low ionization energy).  

 

 Successive ionization energies for the lithium atom: 

 

 1
st
   5.3917 eV     2

nd
   75.64 eV     3

rd
   122.45 eV 

 

So we can model the neutral lithium atom in a similar manner to the hydrogen atom. The 

single 2s electron is bound to a +3 charged nucleus but this electron is screened from the 

nucleus by the two 1s electrons of total charge -2. In a simple model, we can use an 

effective Zeff value to account for the nuclear charge and the screening effect for the two 

inner most electrons in running our simulation. For the outer most (valence) electron, the 

ground state is 2s and the higher states are 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, … . There is also 

some electron-electron repulsion, but this is generally not significant. 

 

The binding energies for the states of the outer electron are given in Table 4. In running 

the simulations, the goal is to find the value of effective nucleus charge given by Zeff  by a 

trial-and-error approach by matching the computed binding energy for a state with the 

accepted value. 

 

 
Fig. 9. The valence electron is screened from the full effects of the charge on the nucleus. 
 

http://www.grandinetti.org/resources/Teaching/Chem121/Lectures/MultiElectronAtoms/

multielectron.gif 

  

http://www.grandinetti.org/resources/Teaching/Chem121/Lectures/MultiElectronAtoms/multielectron.gif
http://www.grandinetti.org/resources/Teaching/Chem121/Lectures/MultiElectronAtoms/multielectron.gif
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Table 4     rmax = 60x10
-10

 m 

State 

hydrogen 

EB (eV) 

Z = 1 

Lithium 

EB (eV) 

theory 

Lithium 

EB (eV) 

simulation 

Zeff 

simulation  

Zeff 

web 

searchs 

1s   13.56 ---    

2s   3.40    5.39    5.39   1.26  1.28 

2p   3.40    3.54      3.47   1.01  1.00 

3s   1.51    2.02    2.01   1.155  1.155 

3p   1.51    1.56    1.56   1.015  1.0144 

3d   1.51    1.51    1.51   1.000  1.000 

4s   0.85    1.05    1.06   1.115  

4p   0.85    0.867    0.867   1.010  

4d   0.85    0.852    0.853   1.002  

4f   0.85    0.848    0.849   1.000   

 

 
 Fig. 10.   Plots of the probability function for the neutral lithium atom.  

 mscript    qp_lithium.m     data file   qp_hL.mat 
 

In figure (10), the top plot shows the approximate probability density for the 1s state 

where the two inner most electrons screen the valence electron from the nuclear charge. 

The red curves are for s-sates, the black curves for the p-states, magenta for the d-states 
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and green for the f-states. The wavefunction for each state was found by executing the 

mscript  qp_hydrogen.m. The values for the wavefunction psi for each state were saved 

one at a time in a data file using the save command; for example the wavefunction for the 

4f state (n = 0, l = 3,  ml = 0, Zeff = 1) was assigned to the variable p4f in the Command 

window by p4f = psi(:,qn) after running the mscript  qp_hydrogen.m and then saved in 

the file qp_lithium.mat using the command  save(`qp_lithium`,`-append`,`p4f`). 
 
We see that there is a greater overlap between the orbitals for the two 1s electrons and 

the 2s orbital compared with the 2p orbital and so for 2p electron there is greater 

shielding (figure 11).  The probability of finding the 3d electron inside the core is small, 

for a 3p electron the probability is slightly larger and for the 3s electron it is much larger 

still. Clearly, for an electron inside the core the effective nuclear charge is substantially 

greater than for an electron outside for which Zeff  1. If the electron lies within the 

stronger field, there is a greater coulomb attraction, hence, its associated binding energy 

is expected to be greater.  

 

 
 Fig. 10.   Plots of the probability function for the neutral lithium atom in the 

region to show the overlap of the wavefunctions near the nucleus..  

 mscript    qp_lithium.m     data file   qp_hL.mat 
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The order of the shielding effects are: 

 

 2s < 2p     3s < 3p < 3d     4s < 4p < 4d < 4f 

 

and so the binding energies are order as: 

 

 2s > 2p     3s > 3p > 3d     4s > 4p > 4d > 4f 

 

That is, for a given principle quantum number n, the states of higher angular momentum 

(higher l) have lower binding energies than those of smaller angular momentum in multi-

electron atoms. 

 

For atoms such potassium the ordering of the binding energies is not so straight forward 

because of the shielding effects. In potassium the binding energy of the 4s state is greater 

than the 3d state whereas in hydrogen , the n = 4 levels all have less binding energies than 

the n = 3 levels.  

  


