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DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 
 

The Matlab scripts are used to give the solution of the Schrodinger Equation for a variety 

of potential energy functions using a matrix method where the solution are the 

eigenvalues and eigenfunctions of the energy operator. 

 

 

se_wells.m 
First m-script to be run when solving the Schrodinger Equation using the Matrix Method. 

Most of the constants and all the well parameters are declared in this file. You can select 

the type of potential well from the Command Window when the m-script is run.  You 

alter the m-script code to change the parameters that characterize the wells and you can 

add to the m-script to define your own potential well. When this m-script is run it clears 

all variables and closes all open Figure Windows. 

 

se_solve.m 
This m-script solves the Schrodinger Equation using the Matrix Method after you have 

run the m-script se_wells.m. The eigenvalues and corresponding eigenvectors are found 

for the bound states of the selected potential well.  

 

se_psi.m 
To be run after se_wells.m and se_solve.m. A graphical output displays the total energy, 

the potential energy function, kinetic energy function, eigenvector and probability 

distribution for a given quantum state. 

 

 
  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts
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se_measurements.m 
To be run after se_wells.m and se_solve.m. Evaluates the expectation values for a set of 

dynamic quantities: the inherent quantum-mechanical uncertainties in measurements and 

gives a test of the Heisenberg uncertainty principle. 

 

se_orthonormal.m 
To be run after se_wells.m and se_solve.m. You can investigate the orthonormal 

characteristic of the eigenvectors (stationary state wavefunctions). 

 

se_infwell.m 
Used to test the accuracy of the Matrix Method. Compares the analytical and numerical 

results for an infinite square well potential of width 0.1 nm. 

 

simpson1d.m 
Function to evaluate the area under a curve using Simpson’s 1/3 rule. 

 

Colorcode.m 
 Function to return the appropriate colour for a wavelength in the visible range from 380 

nm to 780 nm. 

 

gaussian_p.m 
Produces a graphical display of a Gaussian shaped potential well and the corresponding 

force graph. 

 

 

Using the m-script to solve the Schrodinger Equation 

 

Run  se_wells.m then     se_solve.m
 

Then any of the following can be run to investigate the solution:  

 

se_orthonormal.m  (orthonormal characteristic of wavefunctions) 

 
 se_psi.m  (displays energy functions and wavefunctions) 

 

 se_measurements.m  (calculation of  expectation values) 
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SCHRODINGER EQUATION  

 

On an atomic scale, all particles exhibit a wavelike behavior. Particles can be represented 

by wavefunctions which obey a differential equation, the Schrodinger Wave Equation 

which relates spatial coordinates and time.  You can gain valuable insight into quantum 

mechanics by studying the solutions to the one-dimensional time independent 

Schrodinger Equation.  

 

A wave equation that describes the behavior of an electron was developed by Schrodinger 

in 1925. He introduced a wavefunction ( , , , )x y z t . This is a purely mathematical 

function and does not represent any physical entity. An interpretation of the wave 

function was given by Born in 1926 who suggested that the quantity 
2

( , , , )x y z t

represents the probability density of finding an electron. For the one dimensional case, 

the probability of finding the electron at time t somewhere between x1 and x2 is given by 

(1) 
2

1

*Prob( ) ( , ) ( , )
x

x
t x t x t dx    

where 
* is the complex conjugate of the wavefunction . The value of Prob(t) must lie 

between 0 and 1 and so when we integrate over all space, the probability of finding the 

electron must be 1.  

  *( , ) ( , ) 1x t x t dx



    

In this instance the wavefunction is said to be normalized. 

 

We can see how the time-independent Schrodinger Equation in one dimension is 

plausible for a particle of mass m, whose motion is governed by a potential energy 

function U(x) by starting with the classical one dimensional wave equation and using the 

de Broglie relationship  

 Classical wave equation  
2 2

2 2 2

( , ) 1 ( , )
0

x t x t

x v t

 
 

 
 

 

 Momentum (de Broglie) 
h

p mv k


    
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 Kinetic energy   21
2

K mv  

 Total energy   ( ) ( )E K x U x   

 Wavefunction   ( , ) ( ) i tx t x e       periodic in time for t coordinate 

    

Combining the above relationships, the time-independent Schrodinger Equation in one 

dimension can be expressed as 

 (2) 
2 2

2

( )
( ) ( ) ( )

2

d x
U x x E x

m dx


          

 

Our goal is to find solutions of this form of the Schrodinger Equation for a potential 

energy function which traps the particle within a region. The negative slope of the 

potential energy function gives the force on the particle. For the particle to be bound the 

force acting on the particle is attractive. The solutions must also satisfy the boundary 

conditions for the wavefunction. The probability of finding the particle must be 1, 

therefore, the wavefunction must approach zero as the position from the trapped region 

increases. The imposition of the boundary conditions on the wavefunction results in a 

discrete set of values for the total energy E of the particle and a corresponding 

wavefunction for that energy, just like a vibrating guitar string which has a set of normal 

modes of vibration in which there is a harmonic sequence for the vibration frequencies.  

 

The Schrodinger Equation can be solved analytically for only a few forms of the potential 

energy function. In this paper, we will consider a numerical approach to solving the 

Schrodinger Equation using a matrix method where the eigenvalues of a matrix gives 

the total energies of the particle and the eigenfunctions the corresponding wavefunctions. 
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MATRIX METHOD  

The one-dimensional time independent Schrodinger Equation can be expressed as 

 (3) 

2

2

2 2

2 2

( )
( ) ( ) ( )

2

( ) ( ) ( )
2

( ) ( )

d x
U x x E x

m dx

d
U x x E x

m dx

H x E x


 

 

 


 

 
  

 



 

where the H is the Hamiltonian operator, which is the operator that corresponds to the 

total energy of the system. This is an eigenvalue equation. The action of the operator H 

on the function returns the original function multiplied by a constant which could be 

complex. This eigenvalue equation is generally satisfied by a particular set of functions  

1 2( ), ( ), ,x x  and a corresponding set of constants 1 2, ,E E . These are the 

eigenfunctions and the corresponding eigenvalues of the operator H. The time 

independent Schrodinger Equation of a system is the energy eigenvalue equation of the 

system. An eigenfunction ( )n x  describes a state of define energy En. When the energy 

of the system in this state is measured, the result will always be En.  For the eigenfunction 

to represent physical sensible solutions, we require  

 ( ) 0 asn x x    

so that the wavefunction can be normalized. 

 

For atomic systems it is more convenient to measure lengths in nm (nanometers) and 

energies in eV (electron volts). We can use the scaling factors 

 length:  Lse = 1×10
-9

 to convert m into nm 

 energy:  Ese = 1.6×10
-19

 to convert J into eV 

and so we can write equation (5) as 

 (4) 

2

2

2 2

2

2 2

2

1
( ) ( ) ( )

2

1
( ) ( ) ( ) where

2

( ) ( )

se se

se se

se se

d
U x x E x

m L E dx

d
C U x x E x C

dx m L E

H x E x

 

 

 

   
    

   

    
      

    


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Consider an electron in a potential well (see figure 1). For energy values below the top of 

the well, the physically acceptable solution of the time independent Schrodinger equation 

give a discrete set of energies which are the energy eigenvalues and corresponding to 

each eigenvalue there is the energy eigenfunction. Quantization of the energy levels of 

bound particles arises naturally from the time independent Schrodinger equation and the 

boundary conditions imposed for physically acceptable solutions. The spectral lines 

observed in atomic systems are the result of transitions between such energy levels. 

 

 

Fig. 1.  Potential well defined by the potential energy function U(x). The 

bound particle has total energy E and its wavefunction is ( )x .   

 

These eigenstates ( )n x represents stationary states and the total wavefunction can be 

expressed as 

(5) /
( , ) ( ) ni E t

n nx t x e 
   

This is a state of definite energy, if the energy is measured then the value obtained will be 

En.  It is called a stationary state, because the probability of locating a particle in an 

interval dx is time independent. 

 

Many problems in physics reduce to solving an eigenvalue equation, for example, the 

vibrations of a violin string. The eigenvalues and eigenfunctions can be easily found 

using the Matlab command eig. The m-script se_solve.m is used to solve the Schrodinger 

equation using the Matrix Method. To solve equation (4), we first represent the 

continuous functions of x by sets of N discrete quantities expressed as vectors and 

e
n

e
rg

y

position x
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2

2
. .

d
curvature K E
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
 
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0 
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curvature

positive
curvature

negative
curvature

U(x)



7 
 

matrices. The discrete set of x values is represented by the vector 
nx  the corresponding 

wavefunctions by the vector 
n . The potential energy is given by a (N-2)(N-2) 

diagonal matrix [U] with diagonal element Un. A sample code [se_solve.m] for assigning 

the diagonal elements for [U] is 

 … 
 U_matrix = zeros(N-2,N-2); 

…  
for c = 1 : N-2 

 U_matrix (c,c) = U(c); 
 end 

 

Next, we have to represent the operator 

   
2

2 2

2

d

m dx


 

as a matrix of size (N-2)(N-2). From the definitions of the first and second derivatives of 

the function y(x), we can approximate them by the equations 

 

1/ 2

1

n

n n

x

dy y y

dx x






   

 

1/ 2 1/ 2

2

1 1

2 2

1 2

n nn

n n n

x xx

d y dy dy y y y

dx x dx dx x
 

 
   

      

 

Hence, the second derivative matrix for N = 6 can be written as a 44 matrix 

 
2

2 1 0 0

1 2 1 01
[ ]

0 1 2 1

0 0 1 2

x

 
 


 
 
 

 

SD  

The SD matrix size is (N-2)(N-2) and not NN because the second derivative of the 

function can’t be evaluated at the end points, n = 1 and n = N. The kinetic energy matrix 

[K] is then defined as 

 [ ] seCK SD  

We can now define the Hamiltonian matrix as 

    [ ]  H K U  
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A sample code [se_solve.m] for the generating the Hamiltonian matrix is 

 

% Make Second Derivative Matrix ------------------------------------------ 
off     = ones(num-3,1);                  
SD_matrix = (-2*eye(num-2) + diag(off,1) + diag(off,-1))/dx2; 

  
% Make KE Matrix 
K_matrix = Cse * SD_matrix;             

  
% Make Hamiltonian Matrix 
H_matrix = K_matrix + U_matrix; 

 

 

Therefore, the Schrodinger Equation in matrix form is 

 (6) [ ] n n nE H  

This is an eigenvalue equation in matrix form where the action of the Hamilton matrix 

results in each value to be the vector 
n  being multiplied by a multiplied by the set of 

numbers En. The set of numbers En are called the eigenvalues and set of vectors 
n  are 

the eigenvectors. 

 

This is a single Matlab function that finds both the eigenvalues and eigenvectors. The 

syntax of the command is 

 [e_funct, e_values] = eig(H) 

 

where e_funct is an (N-2)(N-2) matrix with the n
th

 column corresponding to the n
th

 

eigenfunction and e_values is a column vector for the N eigenvalues in increasing order. 

Only the negative values of e_values are significant.  To obtain the complete eigenvector 

we need to include the end points where min max( ) ( ) 0n nx x   . A sample Malab code 

[se_solve.m] to obtain the discrete set of eigenvalues and normalized eigenfunction is  
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% All Eigenvalues 1, 2 , ... n  where E_N < 0 
flag = 0; 
n = 1; 
while flag == 0 
    E(n) = e_values(n,n); 
    if E(n) > 0, flag = 1; end;      % if 
    n = n + 1; 
end                                             % while 
E(n-1) = []; 
n = n-2; 
  
% Corresponding Eigenfunctions 1, 2, ... ,n: Normalizing the wavefunction 
for cn = 1 : n 
psi(:,cn) = [0; e_funct(:,cn); 0]; 
area = simpson1d((psi(:,cn) .* psi(:,cn))',xMin,xMax); 
psi(:,cn) = psi(:,cn)/sqrt(area); 
prob(:,cn) = psi(:,cn) .* psi(:,cn); 
end                                                    % for 

 
A potential well as shown in figure (2) has a minimum at x = 0 and tends to zero away 

from the origin. A classical particle would be trapped by this potential well and oscillate 

to and fro about x = 0 because the force on the particle is always directed towards origin 

for position since F = -dU/dx.   

 

 

 

 

 

 
  

 

 

 

 

 

 

 Fig. 2. A potential well which traps a particle because the force acting on 

the particle is always directed towards the origin. [guassian_p.m 

annotation of figure done in MS Powerpoint]. 

 

  

x
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U
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F
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dU
F
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 
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We can solve the Schrodinger Equation (equation 6) for a variety of different potential 

energy functions. The m-script SE_wells.m defines most of the constants and potential 

well parameters. Within the m-script you can change the code to modify the potential 

wells and add new potential wells. The first step in solving the Schrodinger Equation 

using the Matrix Method for a bound electron is to run the file  SE_wells.m and select the 

type of potential well. The default potentials include: 

1 Square well 

2 Stepped well 

3 Double well 

4 Sloping well 

5 Truncated Parabolic well 

6 Morse Potential well 

7 Parabolic fit to Morse Potential 

8 Lattice  
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 Fig. 3. Some of the default potential wells that can be generated using the 

m-script se_wells.m.
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If you are not satisfied with the potential well that is displayed, you can change any of the 

parameters in the m-script se_wells.m and run it again. Then to solve the Schrodinger 

Equation run the m-script se_solve.m.  

 

Consider a sloping potential well with input parameters set in se_wells.m 

 % Input parameters 
 num = 801; 
     xMin = -0.1;      % default value = -0.1 nm 
     xMax = +0.1;      % default value = + 0.1 nm 
     U1 = -1200;        % Depth of LHS well: default = -1200 eV; 
     U2 = -200;         % Depth of RHS well: default = -200 eV; 
     x1 = 0.05;         % 1/2 width of well: default = 0.05 nm; 
 

The solution of the Schrodinger Equation for this sloping potential well using se_solve.m 

provides the following information: 

 

(1) The energy eigenvalues are displayed in the Command window 

No. bound states found =  5    
 Quantum State / Eigenvalues  En  (eV) 
  1      -894.67    
  2      -624.3    
  3      -403.46    
  4      -203.93    
  5      -13.546   

 

The energies are stored in the variable E. E(1) is the first energy level (ground state), 

E(2) is the second energy level, and so. The values can be displayed at any time in the 

Command Window by simply typing E 

>> E 
E = 
 -894.6664 -624.3014 -403.4580 -203.9267  -13.5456 
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(2)       A graph of the energy spectrum is shown in figure (4) for a sloping potential well 

 

 

  
Fig. 4. The energy spectrum for a potential well produced by the m-script  

se_solve.m.

   

(3) The energy eigenvectors are given by the array psi with dimensions 

(num×N) where num is the number of data points and N is the number of 

eigenvalues. For example, to display the eigenvector for quantum state n = 

2, type psi(:,2) into the Command Window. A graphical display of the first 5 

eigenvectors and corresponding probability density distributions are 

displayed in a Figure Window as shown in figure (5). 
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 Fig. 5. The energy eigenvectors and probability distributions for sloping 

potential well.   [se_solve.m]. 
 

To view a graphical display of an eigenvector and the probability density graphs for a 

given state, you can run the m-script se_psi.m from the Command Window.  The 

graphical output for a sloping potential well for quantum state n = 3 is shown in figure 

(6).  Variations with position of the eigenvector ( )n x ; probability density 
2

( )n x ; 

energies U(x), K(x), E are shown along with a probability cloud where each point 

displayed shows the position of the particle after a measurement is made on the system 

resulting in the collapse of the wavefunction. 

 

   n = 1 2   n = 1

   n = 2 2   n = 2

   n = 3 2   n = 3

   n = 4 2   n = 4

   n = 5 2   n = 5
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 Fig. 6. The eigenvector, probability density and energy graphs for the 

quantum state n = 3 of a particle trapped in a sloping potential 

well.   [se_psi.m] . 

 

 

We will again consider the sloping well. The sloping potential well represents an external 

electric field acting on the electron. Classically, the electron is subject to a very large 

force to the right at the left edge of the well and a force to the left along the sloping 

section with the magnitude of the force equal to the gradient of the slope ( /F dU dx  ). 

We could also view the potential as a quantum mechanical version of a particle sliding 

along a frictionless inclined plane with a high wall at the bottom. The classical motion of 

such a confined particle is that it would oscillate up and down the incline, having its 

largest kinetic energy at the bottom and decreasing kinetic energy the further up the 

incline. The particle would be moving most rapidly at the bottom of the incline and most 

slowly at the top. Therefore, it would spend less time at the bottom than at the top and 

this implies that it is more likely to find the particle at the top than at the bottom. Also the 

particle could be at rest at the bottom. 

 

Figure (7) shows the quantum mechanical solution for the sloping well potential for the 

state n = 1 (ground state). The results are very different from the classical predictions. 

The minimum energy of the particle is greater than zero. There is a non-zero probability 

of the electron being in a classically forbidden region (EK < 0), i.e., the electron can 
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penetrate the walls of the potential well and the most likely location to find the electron is 

towards the bottom and not at the top. 

 

 Fig. 7. The eigenvector, probability density and energy graphs for the 

quantum state n = 1 (ground state) of a particle trapped in a 

sloping potential well.   [se_psi.m]. 

 

There are 5 bound states for the sloping  potential well. As the quantum number n 

increases by 1, an additional hump of width in the order of half a wavelength is added to 

the shape of the wavefunction. For the state n = 1 there is only 1 hump and the state n = 

5, there are 5 humps.  The characteristics of the highest bound state (n = 5) is shown in 

Figure (8). This highly excited state has features more in-line with the classical picture. 

The particle is more likely to be found towards the top of the well where its kinetic 

energy is less. Since the particle moves at high speed at the bottom and less at the top, the 

wavelength of the wavefunction must be smallest near the bottom and increases towards 

the top. The ground state defies our classical expectations but the highly excited states are 

often in broad agreement with the classical picture. This is not so surprising since 

classical physics objects have very high quantum numbers. This idea is called the 

correspondence principle. 

-0.1 -0.05 0 0.05 0.1
0

5

10

Potential Well: SLOPING   n =   1   E
n
 = -894.6664

position x (nm)

w
a
v
e
 f

u
n
c
ti
o
n
  

 p
s
i

-0.1 -0.05 0 0.05 0.1

-1000

0

U
  

(e
V

)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

20

40

position x (nm)

p
ro

b
 d

e
n
s
it
y
  

 p
s
i?

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

-1000

0

U
  

(e
V

)

-0.1 -0.05 0 0.05 0.1

-1000

-500

0

500

1000

E
n
(black)   U(red)    K(green)

position x (nm)

e
n
e
rg

ie
s
  

(e
V

)



17 
 

 

Measurements of the half-wavelengths can be made using the ginput command 

to measure the positions of the peaks and then the successive distances between 

the peaks of the probability density curve, for example, 

 z = ginput 
 z(5) – z(4) 

 
The measured half-wavelengths [ 0.0184 0.0208 0.0241 0.0315 nm] from figure 

(8) increase from left to right, confirming the fact that the kinetic energy 

decreases with increasing  wavelength increases since 
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 Fig. 8. The eigenvector, probability density and energy graphs for the 

excited state, n =  5 of a particle trapped in a sloping potential 

well.   [se_psi.m]. 
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EXPECTATION VALUES 
 

The quantum behavior of bound particles is becoming more important in electronic 

devices made using semiconductor materials such as silicon and gallium. The heart of 

such devices is a tiny structure called a quantum dot that consists of a speck of one 

semiconductor material (width ~ 1 nm, ~100’s atoms) completely enclosed by a much 

larger semiconductor material.  Some of the electrons in the tiny speck become detached 

from their parent atoms and behave as particles trapped in potential wells of 1 dimension 

(quantum wafer), 2 dimensions  (quantum wire), or 3 dimensions (quantum dot). These 

particles are often referred to as particles in a box. The bound electrons have a discrete 

energy spectrum just like electrons bound in atoms. Quantum dots are often referred to as 

artificial atoms. The light emitting properties of quantum dots are used in solid state 

lasers such as DVD players, lighting systems, solar cells, fluorescent markers in 

biomedical applications.  Our focus of finding the physically acceptable solutions of the 

Schrodinger Equation for bound particles is important to understanding real systems of 

increasing technological importance. 

 

The wavefunction that describes a quantum state provides the most complete description 

that is possible of that state – it contains all the information we can possibly know about 

this quantum state. But the wavefunction is not something that can be measured and 

therefore has no physical meaning. The information we can get from the wavefunction is 

related only to the probabilities of the possible outcomes of measurements made on 

identical systems. Hence, there is an intrinsic and unavoidable indeterminism in the 

quantum world. 

 

 When a measurement is made on a quantum system, the wavefunction collapses, the 

state of the system after the measurement is not the same as the state before the 

measurement. The Schrodinger Equation does not describe this collapse of the 

wavefunction. So, for experiments designed to test the predictions of quantum mechanics, 

you can’t do a sequence of measurements on a single system, rather, you start with a 

large number of identical systems all in the same state and then perform the same 

measurement of each system. Although each system is initially identical, the outcomes of 
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the measurements typically give a spread of results, for example, the measurement of the 

position of the electron in passing through an equivalent of a double slit.  

 

We will consider systems of a single electrons confined by a one dimensional potential 

wells. We already know that it is a simple matter to use the wavefunction to find the 

probability distribution for the position of the electron. However, we can extend this 

method to find the probability distributions of other measureable quantities such as 

position, momentum and energy. This information is contained in the shape of the 

wavefunction and we will show how this information can be extracted. 

 

For the electron trapped in the sloping potential wells the solution of the Schrodinger 

Equation gave a set of energy eigenvalues and their corresponding eigenvectors 

(stationary states). The energy eigenvalues are the only allowed energies of the system. 

No matter what state the system is in, if we measure its energy, we always get one of the 

energy eigenvalues. These stationary states are special, because they are states of definite 

energy. So in this case, there is zero uncertainty in the measurements. If the system is 

described by a stationary state wavefunction ( , )n x t and we measure its energy, we will 

certainty get the result En for the energy eigenvalue. 

 

The eigenvectors are said to be orthonormal:  (1) the eigenvector is normalized so that the 

probability is 1 of finding the electron, and (2) any two energy eigenvectors with different 

energy eigenvalues are orthogonal to each other. Mathematically this is stated as: 

 

 (7) 
*

1
( ) ( ) Kronecker delta

0
j i ji ji

j i
x x dx

j i
   






  


  

 

One meaning of the wavefunction is that its magnitude measures the probability 

amplitude of the particle being found at some point. If the wavefunction corresponds to 

an eigenfunction ( , )n x t , then the probability distribution probn(x) is independent of 

time and is given by 

 

  
* *( ) ( ) ( ) ( ) ( )

n niE t iE t

n n n n nprob x x e x e x x   


   

 

  

http://www.physics.usyd.edu.au/teach_res/mp/doc/qp_duality.pdf
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and the probability Pn of finding the particle between x1 and x2 is 

   

  
2

1

*( ) ( )
x

n n n
x

P x x dx    

 

We can also calculate probability distributions for other observable quantities in a similar 

manner to above.  The probability distribution is characterized by two measures – its 

expectation value (estimate of the mean value of the distribution) and its uncertainty 

(spread of values around the mean). Suppose that an observable quantity A has a discrete 

set of possible values a1, a2, … .  Then, we can prepare N identical systems, all in the 

same state and measure the value of A in each system. In general, we will get a spread of 

results. The best estimate of the quantity A is its mean value <A> and the standard 

deviation A can be used as a measure of the spread or uncertainty in the measurements. 

The expectation value of an observable A is the quantum-mechanical prediction for the 

mean value. In a stationary state described by the wavefunction ( )n x , the expectation 

value of an observable A is given by 

 

 (8) * ˆ( ) ( )n nA x A x dx 



   

 

where Â is the quantum-mechanical operator corresponding to A. The operator is 

‘sandwiched’ between the two wavefunction *( )n x  and ( )n x , and for this reason we 

call the right hand side of equation (8) a sandwich integral. The first part of the integrand 

is called the bra ( *( )n x ) and the second part the ket ( ˆ ( )nA x ). Some of the dynamical 

properties of a system that can be calculated are shown in Table 1. 
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Total probability   ˆ 1A   

*1 ( ) ( )n nx x dx 



   

Position     Â x  

*( ) ( )n nx x x x dx 



   

Momentum
*
     ˆ d

A i
dx

   

*( ) ( )n n

d
p x i x dx

dx
 





 
  

 
  

Kinetic Energy     
2 2

2
ˆ

2

d
A

m dx
   

2 2
*

2
( ) ( )

2
K n n

d
E x x dx

m dx
 





 
  

 
  

Potential Energy      ˆ ( )A U x  

*( ) ( ) ( )P n nE x U x x dx 



   

 

 

 

 

 

Total energy      
2 2

2
ˆ ( )

2

d
A H U x

m dx
     

              where H is the Hamiltonian   

 *

2 2
*

2

( ) ( )

( ) ( ) ( )
2

n n

n n

E x H x dx

d
E x U x x dx

m dx

 

 











 
   

 




   

 

 Table 1. Operators and expectation value integrals for a range of dynamical 

quantities. 
*
Note: For the momentum, the integrand is imaginary, hence < p> = 0. 

 

The standard deviation A is used to describe the spread of the measurements about the 

mean value. It is measured by summing the square deviations from the mean and then 

taking the square root. For a system in a given state ( )n x , the uncertainty of the 

observable A is defined by 

(9)    
1/2 1/22 22A A A A A       

 

The fundamentals of quantum mechanics were worked out in a remarkably short period 

of time from 1925 to 1927. One of the fundamental consequences of quantum theory is 

the Heisenberg uncertainty principle. One form of the uncertainty principle is: 

 

In any system, the uncertainties of position x and momentum component xp obey the 

inequality 

(10) 
2

xx p    
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Hence, it is impossible to find a state in which a particle has both definite values for 

position and momentum. The classical picture of a particle following a well-defined 

trajectory is no longer valid. A system described by a wavefunction implies a spread of 

position and momentum values and that a narrow spread in one of these quantities is 

offset by a wide spread in the other. The uncertainty principle is sometimes interpreted in 

terms of the disturbance produced by a measurement, but, this is not correct. The 

uncertainty principle tells us about the indeterminacy that is inherent in a given state 

before the measurement is made.  

 

When a system’s wavefunction corresponds to one of its eigenfunctions n , the 

uncertainty in the total energy En is zero,  0nE  . This is show by the following 

calculation, in which the operator for the total energy E is the Hamiltonian Ĥ : 

  

   

* *

2 2

2 * * 2

1/2 1/222 2 2

ˆ

ˆ

ˆ ˆ ˆ

0

n n n n

n n n n

H E

E H dx E dx E

E E

E H H dx E H dx E

E E E E E

 

   

   

 

 

 

 



  



  

     

 

 

 

 

In our models, the range of x values is restricted to the range, xMin to xMax and the 

wavefunction is forced to zero at these extreme values of x. So an expectation value is 

calculated as 

 (11) ( ) ( )
Max

Min

x

x
A bra ket dx   

 

The integral is evaluated numerically using Simpson’s 1/3 rule by using the m-script 

simpson1d.m. The m-script se_measurements.m can be used to evaluate the integrals in 

Table (1) and to evaluate the uncertainties.   
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Sample codes from the m-script se_measurements.m to evaluate the expectation value 

for total energy and the uncertainty in position are: 

 
 % total energy – need to convert units in calculations 

psi1 = gradient(Psi,x); 
ket = - (hbar^2/(2*me*e))*gradient(psi1,x)(Lse^2*Ese)  + (U.*Psi')';     
braket = bra .* ket; 
Eavg = simpson1d(braket,xMin,xMax); 
 

 % position x & uncertainty in position 
 ket = x .* Psi; 

braket = bra .* ket; 
xavg = simpson1d(braket,xMin,xMax); 

    
ket = (x.^2) .* Psi; 
braket = bra .* ket; 
x2avg = simpson1d(braket,xMin,xMax); 

 
deltax = sqrt(x2avg - xavg^2) * Lse;  
                  % length units nm to m 

 

The m-script se_measurements.m outputs numerical values of the integrals to the 

Command Window and graphical representations in a Figure Window (figure 9)). For 

example, the sloping well potential: 

 
Quantum number, n  =  3    
Energy, E =  -403.458  eV  
Total Probability = 1    
<x> = -0.000569644   nm 
<x^2> = 0.000708057   nm^2 
<ip> = -3.53767e-030   N.s 
<ip^2> = 7.36845e-047   N^2.s^2 
<U> = -655.895   eV 
<K> = 252.787   eV 
<E> = -403.107   eV 
<K> + <U> = -403.107   eV 
   
deltax = 2.66032e-011  m  
deltap = 8.58397e-024   N.s 
(dx dp)/hbar = 2.16456    
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From the above result, we can conclude the following: 

1 E = < E > ignoring the slight difference in numerical values due to numerical 

inaccuracies in our modeling. 

2 < E > = < K > + < U >  

3 The average position of the electron is slightly to the left of the origin. 

4 The uncertainty principle is satisfied 2.2 0.5
x p 

  . 

5 The expectation for momentum is complicated by the factor i and so we have to 

calculate < i p > which is then a real quantity and from the results above, we can 

conclude that <i p> = 0. No measurable physical quantity can be imaginary, hence 

the integral must be zero. 

 

It is remarkable that a bound particle has definite set of discrete values for its total energy 

and this follows simply and directly from applying boundary conditions to a 

wavefunction that satisfies the Schrodinger Equation. At first, it seems surprising that the 

total energy has a set of unique values ( 0E  ) but the momentum does not, since the 

uncertainty principle must be satisfied. But a classical vibrating string in a normal mode 

has a unique frequency of vibration while not possessing a unique wavelength as the 

transverse standing wave is sinusoidal along the string but is zero at and outside the fixed 

end points. However, the shape of the string inside and outside the fixed ends can be 

thought of a superposition of waves of different wavelengths with amplitudes and phases 

chosen so that the disturbance cancels everywhere except in the region between the end 

points. Therefore, the wavefunction can be thought of a superposition of different 

wavelengths and through the de Broglie relationship /p h  ,the confined particle has a 

range of momentum.  
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 Fig. 9.     The graphical output from the m-script se_measurements.m for the 

quantum state n = 3 of a particle trapped in a sloping potential well.  The lower 

graphs shows the bra (wavefunction), the ket and the area under the braket curve 

representing the integral for the evaluation of the expectation value for position 

<x> The blue bar indicates the expectation value for position. You can modify the 

m-script se_measurements.m to produce graphical outputs for operators other 

than the position operator x̂ . 
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ACCUARY OF THE NUMERICAL MODELLING 

 

Numerical results may not always be accurate. Where possible you need to check that the 

results are OK. Firstly, you should always vary the number of points used in the 

modeling.  In solving the Schrodinger Equation by the Matrix Method, the variable num 

which is set in the m-script se_wells.m determines the size of the vectors and arrays. 

Generally, if this number is too low the results are not accurate. You should start with a 

small number for num and increase it until there is a convergence in the results. If num is 

too large, then the execution time in running the m-scripts could be excessive and/or too 

much memory is used. Secondly, if possible you should compare the predictions of a 

numerical method with the known results predicted by analytical methods. The energy 

eigenvalues for an infinite square well can be easily found analytically, so we can 

compare those results with our numerical model. 

 

Consider a system with an electron of mass me confined to a one dimensional region of 

length L. The potential well called an infinite square well has infinitely high walls which 

trap the particle, but the force on the electron is zero between the walls.  The potential 

energy function and boundary conditions on the wavefunctions are 

 

  

( ) 0 / 2 / 2

( ) / 2 and / 2

( / 2) 0 ( / 2) 0

U x L x L

U x x L x L

L L 

   

    

   

 

 

The classical predictions for such a system, is that the total energy of the trapped particle 

can have any positive value and since the potential energy inside the well is zero, the 

kinetic energy of the particle equals the total energy. The particle can have zero total 

energy (zero kinetic energy) and if its kinetic energy is greater than zero the particle will 

bounce back and forth between the impenetrable walls with constant speed. Increasing 

the energy simply increases the speed but no matter how great the speed, the particle 

can’t be outside the walls, the region outside the walls is said to be classically forbidden. 
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The predictions of quantum mechanics are very different. In solving of the Schrodinger 

Equation it is found that the shape of the wavefunction inside the walls is sinusoidal and 

the wavefunction must be zero at the walls since the potential energy is infinite at each 

wall. Therefore, the only acceptable physical solutions are those wavefunctions where 

integer multiple of half-wavelengths of a sine curve fit into the distance L between the 

walls: 

  
2

1,2,3,
2

L
L n n

n




 
    

 
 

 

The total energy E is related to the momentum p and the momentum related to a 

wavelength  (de Broglie relationship) hence, we can determine an expression for the 

total energy as a function of n (principle quantum number) and the length L 

 
22

2

L h p
p E

n m



    

(12) 
2

2

2
1,2,3,

8
n

h
E n n

m L

 
  
 

 

 

This is a momentous result and very different from the predictions of classical physical. 

The principle quantum number n is restricted to integer values, therefore, the bound 

particle has only a discrete set of values for its total energy and these are the only possible 

values for the total energy of the system. The lowest value is n = 1, and the lowest 

allowed energy is  2 2

1 / 8 0E h m L  . No particle in an infinite square well can have an 

energy lower than this, there is no state of zero total energy. This energy is called the 

ground state energy.  If L  then the spacing between energy 0E  which implies 

that the particle is behaving more like a free classical particle which can have any 

positive energy. 
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We can compare the predictions from the analytical model and the Matrix Method for an 

electron confined to an infinite square well potential of width 0.1 nm. To use the Matrix 

Method, modify m-script se_wells.m to produce an infinite square well potential then run 

it: 

 Infinite square well parameters set in se_wells.m 

 num = 801 

 Option 1 (case 1) square well 

  xMin = -0.05 

  xMax = +0.05 

  U1 = 0 

 

Then run the m-scipt se_solve.m. The screen output states that no eigenvalues are found. 

This is because the code is expecting negative values for the total energy. However, we 

can extract the required values for the total energy manually using the command 

e_values(mm,mm) in the Command Window. Do this and record the first 10 eigenvalues 

for mm = 1, 2, … , 10. These values are stored in the m-script se_infwells.m. Run the m-

script se_infWells.m. Note, when this file is run, all variables are cleared from the 

workspace. The file se_infWells.m calculates the first 10 energy levels using equation 

(12), outputs the results to the Command Window and plots the numerical and analytical 

values in a Figure Window (figure 10):  

     n        E  (eV)    Emm (eV) 
 1        37.74         37.69 
 2      150.95       150.74 
 3      339.64       339.17 
 4      603.80       602.97 
 5      943.44        942.13 
 6     1358.56     1356.60 
 7     1849.15     1846.50 
 8     2415.21     2411.70 
 9     3056.76     3052.30 
 10   3773.77     3768.10 
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 Fig. 10. The energy eigenvalues for an infinite square well of width 0.10 

nm calculated from equation (12) and the Matrix Method using the m-

scripts se_wells.m and se_solve.m.  [se_infWell.m] 
 

The discrepancy between the two sets of results is better than 0.2%. Therefore, we can 

have some confidence in the results from the Matrix Method for other potential well 

functions. 

 

The wavefunctions for the infinite square well can be plotted after running se_solve.m by 

typing the following commands in the Command Window, for example, to display the 

eigenvector for the state n = 8 

plot(e_funct(:,8),'lineWidth',3) 
axis off 

 

Figure (11 show the eigenvectors for the first 10 quantum states of an infinite square 

well. The eigenfunction is zero outside the well and is of a sinusoidal shape inside the 

well. For the n
th

 state, n half-wavelengths of a sinusoidal curve fit into the width of the 

well. The shape of the wavefunction is the same as the shape of a vibrating guitar string 

for normal modes of vibration.  

 

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

Quantum No. n

T
o

ta
l 
E

n
e

rg
y
  
E

  
(e

V
)

 

 

analytical

Matrix Method



30 
 

 
 Fig. 11. The energy eigenvectors for an infinite square well for the first 10 

quantum states.  [se_wells.m  se_solve.m] 
 

When a potential well is of finite depth, the wavefunction extends into the classically 

forbidden region and so there is some probability of finding the particle outside the well 

which in classical terms in impossible. For a particular state of an infinite square well, the 

wavelength is constant (independent of x). This is not the case when the potential inside 

the well changes with x, for example, the wavelength increases with decreasing potential 

in the sloping well (figures 8 & 9) and so the shape of the wavefunction is not simply 

sinusoidal.   
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INVESTIGATIONS (Matrix Method) 
 

There are many aspects of quantum behavior for bound states you can investigate by 

studying various potential wells with different parameters. A proven learning strategy 

that you can apply to gain a deeper understanding of quantum physics is called POE 

Predict     Observe     Explain 

For a given potential well, some of the predictions you could make are: number of bound 

states, approximate values of energy eigenvalues, spacing of energy levels, shape of 

wavefunction, number of half-wavelengths inside well, changes in half-wavelengths and 

size of exponential tails, the number of zero crossings of the wavefunction, and height of 

peaks in wavefunction. For example, in a square well the energy levels are more crowded 

towards the bottom of the well, in a parabolic well (shape bends away from x-axis) the 

energy levels are equally spaced and in the Morse potential well or a Coulomb shaped 

well (shape bends towards the x-axis) the energy levels are more crowed toward the top 

of the potential well. 

 

After you have made your predictions, run the m-scripts and observe the results and 

compare them with your predictions. 

 

Then, you explain the results you observed and rectify any discrepancies in the results 

and your predictions. 
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1 Infinite Square Well and Finite Square Well  

 

1.1 Find the energy eigenvalues for various widths of an infinite square well and 

compare your results with theoretical values predicted by equation (12). For each 

state (n = 1, 2, …. ) measure the wavelength  , then using the de Broglie 

relationship ( /p h  ), calculate the momentum of the electron and its kinetic 

energy ( 2 / 2KE p m ). Compare the energy eigenvalues with the kinetic energy 

values. Repeat the calculations for different values of num (size of vectors and 

arrays). Can use the m-script se_infwell.m. 

1.2 Find the energy eigenvalues for various square wells of different depths and 

widths. Observe the wavefunction and expectation values for different states. 

Check the orthonormal character of the wavefunctions [se_othonormal]. Why 

does the wavelength of the eigenfunctions decrease as the quantum number n 

increases? Why is the kinetic energy of the electron in each eigenstate of a finite 

square well less than the value of its kinetic energy in an infinite square well of 

the same width? How does the number of zero crossing of the wavefunction vary 

with the quantum number n?  Comment on the curvature of the wavefunction 

inside and outside of the potential well and explain. Comment on the expectation 

values and is the Heisenberg Uncertainty Principle satisfied? 

1.3 The simplest nuclear system is a deuteron - a single proton bound together with a 

single neutron by the attractive strong nuclear force. This system has only one 

bound state with a binding energy of 2.22 MeV near the top of the well. This is 

the ground state, there are no excited states. This is a three dimensional system, 

but we can model the strong nuclear force as a one-dimensional finite square well 

potential where the solution of the Schrodinger Equation gives the radial 

component of the wavefunction. Experiments on the scattering of high energy 

electrons from deuterons provides evidence of the existence of a strong repulsive 

core in the nuclear potential, this means that the particles avoid the centre of the 

deuteron, the proton and neutron can’t get too close to each other, hence, the 

radial wavefunction must approach zero towards the centre. The mass of the 

bound particle is equal to the reduced mass of the system, hence  



33 
 

p n

p n

m m
m

m m



m = (mp + mn ) / 2 

We can alter the code for the square well potential (case 1) to model the potential 

for the deuteron. The modifications are: 

  m = mp*mn/(mp+mn);     reduced mass - deuteron 
xMin = 0          forces the wavefunction at the centre of the deuteron to be zero 

  x1 = 1.5e-6        width of square well in nm    
  xMax = 20*x1    
  U1 = -100e6       starting depth of square well  in eV 
 

Find the binding energy using se_solve.m. Then, adjust the value of U1 until the 

binding energy is about 2.2 MeV to find an estimate of the well depth. View the 

characteristics of the wavefunction using se_psi.m.  In the ground state, the 

eigenfunction describing the separation of the proton and neutron extends far 

beyond the confines of the well. From the Command Window determine the 

probability that the separation distance between the proton and neutron is greater 

than the width of the well using the function simpson1d.m: 

 

Check that the function is normalized, use 

 simpson1d(prob(:,1)',xMin,xMax)       result should be 1. 

The probability that the electron is found within the well, use 

 simpson1d(prob(1:min(find(x>=x1)),1)',0,x1) 

to evaluate the integral 
1 1

0 0
( ) ( ) ( )

x x

x x dx prob x dx    . The statement 

min(find(x>=x1)) finds the index of x for the edge of the well at x1. 

 

  The probability density 2( )x specifies the probability of finding the two 

nucleons in the deuteron with a separation in the vicinity of x. 

 

Use se_measurements.m to find the average separation distance. 
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One book quoted that the mean separation of the proton and neutron as 

4×10
-15

 m (much larger than the width of the well) and that there was a 50% 

chance of finding the particles in the classical forbidden region. How do your 

results compare? Your results about probability imply that the attractive region for 

the only bound state is just barely strong enough to overcome the effect of the 

repulsive core and lead to binding. As a consequence, there is a high probability 

that the two nucleons in the deuteron have a separation larger than the range of 

nucleon forces. The values for xMax, x1 and U1 are not unique in giving the correct 

value for the binding energy. If you check different references, you will get 

different numbers quoted in each reference. Remember, that our model is a crude 

one, and the numbers are not necessary accurate but the model does give an 

insight to the deuteron nucleus. 

  

2 Stepped Well (Asymmetrical Well) 

2.1 Investigate the solutions of the Stepped Well for various widths and depths of the 

left and right sides of the well by modifying the code in se_wells.m 

 case 2 
     xMin = -0.15;        % default = -0.15 nm 
     xMax = +0.15;        % default = +0.15 nm 
     x1 = 0.1;            % Total width of well: default = 0.1 nm 
     x2 = 0.06;           % Width of LHS well: default = 0.06 nm; 
     U1 = -400;           % Depth of LHS well; default = -400 eV; 
     U2 = -200;           % Depth of RHS well (eV); default = -250 eV; 

 
 Set U1 = -400, U2 = -200,  x1 = 0.10 and x2 = 0, 0.25x1, 0.50x1, 0.75x1, 1.00x1 

 Set x1 = -0.10, x2 = -0.05,  U1 = -400 and U2 = 0, 0.25U1, 0.50U1, 0.75U1, 1.00U1 

2.2 Investigate an asymmetrical well by commenting the line as shown below in the 

m-script for se_wells.m (case 2). 

 for cn = 1 : num 
     if x(cn) >= -x1/2,      U(cn) = U1; end;  %if 
    if x(cn) >= -x1/2 + x2, U(cn) = U2; end;  %if 
    %if x(cn) > x1/2,        U(cn) = 0;  end; %if 
         % comment above line to give an asymmetrical well 
     end %for 
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 Fig. 12. The energy spectrum for a stepped well. 

   [se_wells.m  se_solve.m] 
 

 

 Fig. 13. The quantum state n = 3 for a stepped well. 

[se_wells.m   se_solve.m   se_psi.m] 
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 Fig. 14. The quantum state n = 4 for an asymmetrical well.  The total 

energy is greater than the potential on the left hand side of the well, 

therefore, the kinetic energy of the electron is positive with the electron no 

longer bound to the well and acts as a free particle. 

[se_wells.m   se_solve.m] 
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3 Double Well 

3.1 Investigate the properties of double potential wells. Remember to employ the 

POE  learning strategy. Start with the well parameters: 

 U1 = -400;      % Depth of LHS well: default = -440 eV 
  U2 = -400;      % Depth of RHS well: default = -400 eV 
   U3 = -300;       % Depth of separation section: default = 100 eV  
    x1 = 0.10;      % width of LHS well: default = 0.10 nm 
   x2 = 0.10;      % Width of RHS well: default = 0.10 nm 
    x3 = 0.10;      % Width of separtion section: default = 0.10 nm 
    xEnd = 0.05;    % parameters to define range for x-axis: default = 0.05 nm 

  

 Then, increase the height of the centre section of the well U3 in steps of 50 to 200. 

 

3.2 The results for the double well with U3 = 200 eV are:  

 Quantum State / Eigenvalues  En  (eV) 
   1      -373.13    
   2      -373.13    
   3      -293.56    
   4      -293.56    
   5      -165.41    
   6      -165.4    
   7      -2.8576    
   8      -2.7866     

 

 Fig. 15. The energy spectrum for the double well. Why do you only see 4 

energy levels and not 8?  [se_wells.m   se_solve.m] 
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 Fig. 16. The energy eigenvalues for the double well. 

    [se_wells.m   se_solve.m] 
 
 Explain the spacing of energy levels. 

 

3.3 Investigate a well with a deep centre section, try U3 = -600. 

 

  

   n = 1 2   n = 1

   n = 2 2   n = 2

   n = 3 2   n = 3

   n = 4 2   n = 4

   n = 5 2   n = 5
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4 Sloping Well 

4.1 Investigate the properties of sloping potential wells. Remember to employ the 

POE  learning strategy.  

 

5 Truncated Parabolic Well 

5.1 Investigate the properties of truncated parabolic potential wells. Remember to 

employ the POE learning strategy. What can you say about the spacing between 

energy levels? 

5.2 The potential energy for a classical particle oscillating in a parabolic well (e.g. 

particle vibrating at the end of a spring executing simple harmonic motion) is 

   21
2

( ) sU x k x         where ks is the spring constant. 

 The eigenstates for this system are the solutions of the Schrodinger Equation: 

   
2 2

21
22

( ) ( )
2

s n sn n

d
k x x E x

m dx
 

 
   
 

 

 The energy eigenvalues for this system known as the quantum harmonic 

oscillator are given by 

     1
2snE n    

 where n = 1, 2, 3, …     (N.B. most books have n = 0, 1, 2, 3, … ) 

  The classical frequency of oscillation   for a particle of mass m is 

    2s sk k
f

m m
    

  The Schrodinger Equation for our truncated parabolic well is 

    
22 2

1
12 2

1

1 4 ( ) ( )
2

n sn n

Ud
U x E x

m dx x
 

   
        

   

 

 where U1 is the depth of the well and x1 is the full width of the well when U = 0. 

 Show that the spring constant ks is related to the well parameters U1 and x1 by the 

relationship 

  
1

2

1

8
s

U
k

x
  
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Run the m-script se_wells.m for the parabolic well (case 5) with the parameters:  

 

  xMin = -0.2;       % default = -0. nm 
      xMax = +0.2;       % default = +0.2 nm 
      x1 = 0.2;          % width default = 0.2 nm; 
      U1 = -400;         % well depth default = -400 eV; 

  

and verify the following results. 

n Matrix 

Method En (eV) 

Theory 

Esn + U1 

En+1 - En 

1 -360.92 -360.94 --- 

2 -282.77 -282.83  78.15 

3 -204.68 -204.71 78.08 

4 -127.09 -126.60 77.60 

5     -52.272  -48.485 74.81 

 

Explain why the discrepancies are larger for higher the quantum numbers. 

 

 

Fig. 17. The eigenfunctions and probability distributions for the harmonic 

oscillator. 

 

   n = 1 2   n = 1

   n = 2 2   n = 2

   n = 3 2   n = 3

   n = 4 2   n = 4

   n = 5 2   n = 5
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Explain why the state n = 5 in figure (17) is more like the classical prediction for 

the probability of locating the particle. 

 

5.2 Repeat the above, for different well parameters. Run se_measurements.m and 

find the expectation values for a number of states. What is the significance for the 

state n =1 by considering the value for x p  ? 
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6 Morse Potential Well 

6.1 Investigate the properties of Morse parabolic potential wells. Remember to 

employ the POE learning strategy. What can you say about the spacing between 

energy levels? 

6.2 The Morse potential is often used as the potential energy function for diatomic 

molecules.  One form of the Morse potential is 

  

2

1
1( ) 1 exp 1

x x
U x U

S

    
         

 

 where S is a positive constant which determines the width of the well and the 

maximum depth of the well is at x1, U(x1) = U1. Consider the Morse potential with 

parameters: 

 U1 = -1200;  
     x0 = 0.08; 
     S = 0.075; 
     xMin = 0; 
 xMax = 0.3 
    xMax = 0.3; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 18. The energy eigenvalues for the Morse potential. 

                [se_wells.m   se_solve.m] 
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 Run the m-script  se_measurements.m  and record the expectation value 

for position. Comment on the spacing of the energy levels and explain why 

most materials expand upon heating. 


