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DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 
 

se_fdtd.m 
 
simpson1d.m   (function to compute the integral of a function) 
 
The mscript  se_fdtd.m is a versatile program used to solve the one-
dimensional time dependent Schrodinger equation using the Finite 
Difference Time Development method (FDTD). For different simulations 
you need to modify the mscript by changing parameters and 
commenting or uncommenting lines of code.  
 
The Schrodinger equation is solved for the real and imaginary parts of 
the wavefunction ( , )x t  in the region from 0 x L  with the boundary 

conditions (0, ) 0t   and ( , ) 0L t  . The initial values for the 

wavefunction ( ,0)x must be specified to describe the wave packet 

representing a particle. A Matlab Figure window gives a summary of the 
simulation parameters as shown in figure A.  You have the option to save 
an animated gif file for the time evolution for the wavefunction. 
 

view animation scattering of a wave packet 

 
You also have the option to view or not to view the time evolution of the 
wavefunction.  
  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
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Fig. A.   Matlab Figure window showing the input and 
computed values of the parameters for a simulation. 
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A graphical output of the wavefunction at the end of the simulation is 
shown in a Matlab Figure window (figure B). 

 
Fig. B.   Graphical output of the wavefunction at the end of 
the simulation. The red curve shows the initial wavefunction 
and the blue curve the wavefunction at the end of the 
simulation. 
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Using the mscript  se_fdtd.m 

 
For each simulation you need to specify the input parameters, for 
example: 
 
 % 
===================================================================== 
% INPUTS 
% 

===================================================================== 
Nx = 1001;   % [1001]   must be an odd number - number of grid points 
Nt = 14000;  % [10000]  number of time steps 

 
You need to specify the numbers for the Y axis values 
 
% max value for PE / limits for PE vs x plot 
   U0 = -600;   U1 = -610; U2 = 10;    
   UyTick = [-600 0]; 
   %UyTick = [0 100]; 

 
% Graphics:   limits and tick spacing 
  yL1 = -1e5; yL2 = 1e5;  yL = yL2/2;      % [1e5]  wavefunction 
  yLL1 = 0;   yLL2 = 4e9; yLL = 1e9;       % [6e9]  prob density 

 

The variable flagU is used to select the potential energy function 
 
% Potential energy function U  ------------------------------------- 

 

   U = zeros(1,Nx); 

     
   switch flagU 
      case 2                   % potential step 
         U(round(NxC):end) = U0;  

       
      case 1 
         U = zeros(1,Nx);      % zero PE - free wave packet  

    
     case 3                    % accelerating / retarding potential 
          U = -(U0/L).* x + U0; 
          a = e*U0 / (me * L); 
          F = me * a; 
          v1 = 7.1287e+06; 
          v2 = v1 + a * T; 
          x1 = 9.9620e-10; 
          x2 = x1 + v1 * T-dt + 0.5 * a * (T-dt)^2; 
          W = F * (x2-x1)/e; 

           
     case 4                    % potential hill / well 
         w1 = -80;  
         U(NxC-2*40/2:NxC+2*40/2-w1) = U0; 
         w = NxC+2*40/2-w1 - (NxC-2*40/2);  

     case 5                   % parabolic well 
         a = 4*abs(U0)/L^2; b = -4*abs(U0)/L; c = 0; 
         U = a .* x.^2 + b .* x + c; 
         period = 2*pi*sqrt(me / (2*a*e)); 
         Nt_period = period/dt  ; 
     end    

 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
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Specifying the initial wavefunction 
 
% 

==================================================================== 
% INITIAL WAVE PACKET 
% 

==================================================================== 

  
for nx = 1 : Nx 

   
   yR(nx) = exp(-0.5*((x(nx)-x(nx0))/s)^2)*cos(2*pi*(x(nx)-

x(nx0))/wL); 
   yI(nx) = exp(-0.5*((x(nx)-x(nx0))/s)^2)*sin(2*pi*(x(nx)-

x(nx0))/wL); 
   %yR(nx) = exp(-0.5*((x(nx)-x(nx0))/s)^2); 
   %yR(nx) = sin(2*pi*(x(nx))/wL); 
   % yR(nx) = 1*sin(2*pi*(x(nx))/(2*L/5)) + 

3*sin(2*pi*(x(nx))/(2*L/4)); 
end 
  % yI(1:Nx) = 0; 

   
% Normalize initial wave packet 
    y2 = yR.^2 + yI.^2; 
    A = simpson1d(y2,0,L); 
    yR = yR ./ sqrt(A); yI = yI ./ sqrt(A); 
    prob_density = yR.^2 + yI.^2; 
    yR1 = yR; yI1 = yI; yP11 = prob_density; 

  
% Kinetic energy KE 
         fn = zeros(1,Nx-2); 
    for nx = 2 : Nx-1 
         fn(nx) = C3 * (yR(nx) - 1i * yI(nx)) * ... 
         (yR(nx+1) - 2 * yR(nx) + yR(nx-1)+ 1i *(yI(nx+1) - 2 * 

yI(nx) + yI(nx-1))); 
    end 

K1avg = simpson1d(fn,0,L); 

 

 

View animation   flag1 
 
% Show figure 2 for animation  (0 no)  (1 yes) for flag1 
   flag1 = 1;     
   fs = 14;            % fontsize 
   time_step = 200;    % jump frames 

 

Save animation   flag2 
 
% Save animation as a gif file (0 no)  (1 yes) for flag2 
    flag2 = 1;     
% file name for animated gif    
    ag_name = 'ag_se_fdtd_14.gif';  
% Delay in seconds before displaying the next image   
    delay = 0.0;  
% Frame to start 
    frame1 = 0; 
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The Schrodinger Equation and the FDTD Method 

 

The Schrodinger Equation is the basis of quantum mechanics. The state 

of a particle is described by its wavefunction  ,r t which is a function 

of position r and time t. The wavefunction is a complex variable and one 

can’t attribute any distinct physical meaning to it.  

 

We will consider solving the [1D] time dependent Schrodinger Equation 

using the Finite Difference Time Development Method (FDTD). 

 

The one dimensional time dependent Schrodinger equation for a particle 

of mass m is given by 

 

 (1) 
2 2

2

( , ) ( , )
( , ) ( , )

2

x t x t
i U x t x t

t m x

  
   

 
 

 

where ( , )U x t  is the potential energy function for the system. 

 

The wavefunction is best expressed in terms of its real and imaginary 

parts is 

 

 (2) 
*

( , ) ( , ) ( , )

( , ) ( , ) ( , )

R I

R I

x t x t i x t

x t x t i x t

    

    

 

 

 

Inserting equation 2 into equation 1 and separating real and imaginary 

parts results in the following pair of coupled equations 

 

 (3a) 
2

2

( , ) ( , ) 1
( , ) ( , )

2

R I
I

x t x t
U x t x t

t m x

  
   

 
 

 

 (3b) 
2

2

( , ) ( , ) 1
( , ) ( , )

2

I R
R

x t x t
U x t x t

t m x

  
  

 
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We can now apply the finite difference approximations for the first 

derivative in time and the second derivative in space. The time step is t  

and the spatial grid spacing is x . Time, position and the wavefunction 

are expressed in terms of the time index 
t

n  and the spatial index 
x

n  

 

 Time                      1 1,2,3, ,
t t t

t n t n N     

          

 Grid positions     1 1,2,3, ,
x x x

x n x n N     

  

 Wavefunction is calculated at each time step nt 

 

       
( , ) ( )

( , ) ( )

R R x

I I x

x t y n

x t y n

 

 
 

 

where the symbol y is used for the wavefunction in the coding of the 

mscript. 

 

 (4) 
   , ,( , ) x t t x tx t

t t

   


 
 

 

 (5)  
     2

2 2

, 2 , ,( , ) x x t x t x x tx t

x x

        


 
 

 

The second derivative of the wavefunction given by equation 5 is not 

defined at the boundaries. The simplest approach to solve this problem is 

to set the wavefunction at the boundaries to be zero. This can cause 

problems because of reflections at both boundaries. Usually a simulation 

is terminated before the reflections dominate. 

 

Substituting equations 4 and 5 into equations 3a and 3b and applying the 

discrete times and spatial grid gives the latest value of the wavefunction 

expressed in terms of earlier values of the wavefunction  

 

 (6a) 
          

  

1

2

1 2 1

( )

R x R x I x I x I x

x I x

y n y n C y n y n y n

C U n y n

     


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 (6b) 
          

  

1

2

1 2 1

( )

I x I x R x R x r x

x R x

y n y n C y n y n y n

C U n y n

     


 

 

where the constants C1 and C2 are 

 

 (7) 
1 2

2

t
C

m x





    and     

2

e t
C


  

 

The potential U is given in electron-volts (eV) and to convert to joules, 

the charge of the electron e is included in the equation for the constant 

C2. 

 

In equations 6a and 6b, the y variables on the RHS gives the values of the 

wavefunction at time t t   and the y variables on the LHS are the 

values of the wavefunction at time t. Hence, given the initial values of 

the wavefunction, equations 6a and 6b explicitly determine the 

evolution of the system. The FDTD method can “blow-up” if appropriate 

time increments or grid spacings are not used. For a given grid spacing 

x we will set 
1

1/10C   which means the time increment is determined 

by  

 (8) 
2

1

2m x
t C

 
   

 
 

 

We will model the an electron in a system with a potential energy 

function ( )U x  in the region 0x   to x L . We will consider the 

potential energy function to be time independent. However, you can 

easily input a potential energy function that does depend upon time. 
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To simulate an electron, we will initiate a particle at a wavelength   in a 

Gaussian envelope of width s given by the expressions  

 

 (9) 

2

2

2 ( )
exp 0.5 cos

2 ( )
exp 0.5 sin

C C
R

C C
I

x x x x
y

s

x x x x
y

s









     
          

     
          

  

 

where 
C

x  is the position of the centre of the wave packet (or pulse) at 

time 0t  . 

 

The probability of finding the electron is one, hence, the initial 

wavefunctions given by equation 9 must be normalized to satisfy 

 

 (10)  * 2 2

0
( ) ( ) 1

L

R I
x x dx y y dx 




     

 

Matlab coding 

Evaluating the wavefunction given by equation 6 

 
 for nt = 1 : Nt 

     for nx = 2 : Nx - 1 

     yR(nx) = yR(nx) - C1*(yI(nx+1)-2*yI(nx)+yI(nx-1)) +  

      C2*U(nx)*yI(nx); 

     end 

    

     for nx = 2 : Nx-1 

      yI(nx) = yI(nx) + C1*(yR(nx+1)-2*yR(nx)+yR(nx-1)) –  

       C2*U(nx)*yR(nx); 

     end 

   end 

 

The initial wavefunction given by equations 9 

 
for nx = 1 : Nx 

  yR(nx) = exp(-0.5*((x(nx)-x(nx0))/s)^2)* 

  cos(2*pi*(x(nx)-x(nx0))/wL); 

 

  yI(nx) = exp(-0.5*((x(nx)-x(nx0))/s)^2)* 

  sin(2*pi*(x(nx)-x(nx0))/wL); 

end 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
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Normalizing the initial wavefunction using equation 10 

 

The integration is done using the call to the function simpson1d.m 

 
    % Normalize initial wave packet 

       y2 = yR.^2 + yI.^2; 

       A = simpson1d(y2,0,L); 

       yR = yR ./ sqrt(A); yI = yI ./ sqrt(A); 

       prob_density = yR.^2 + yI.^2; 

       yR1 = yR; yI1 = yI;  

 

 

The various potential energy functions can be selected and changed 

within the mscript. The variable flagU is used to set the potential 

energy function. 

 
% Potential energy function U  ------------------------------------- 
   U = zeros(1,Nx); 

     
   switch flagU 
      case 2                   % potential step 
         U(round(NxC):end) = U0;  

       
      case 1 
         U = zeros(1,Nx);      % zero PE - free wave packet  

    
     case 3                    % accelerating / retarding potential 
          U = -(U0/L).* x + U0; 
          a = e*U0 / (me * L); 
          F = me * a; 
          v1 = 7.1287e+06; 
          v2 = v1 + a * T; 
          x1 = 9.9620e-10; 
          x2 = x1 + v1 * T-dt + 0.5 * a * (T-dt)^2; 
          W = F * (x2-x1)/e; 

           
     case 4                    % potential hill / well 
         w1 = -80;  
         U(NxC-2*40/2:NxC+2*40/2-w1) = U0; 
         w = NxC+2*40/2-w1 - (NxC-2*40/2);  

          
     case 5                   % parabolic well 
         a = 4*abs(U0)/L^2; b = -4*abs(U0)/L; c = 0; 
         U = a .* x.^2 + b .* x + c; 
         period = 2*pi*sqrt(me / (2*a*e)); 
         Nt_period = period/dt  ; 
   end      

 

 

  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
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Expectation Values of the Observables 

 

The wavefunction itself has no definite physical meaning, however, by 

performing mathematical operations on the wavefunction we can predict 

the mean values and their uncertainties of physical quantities such as 

position, momentum and energy. 

 

Since an electron does exist within the system, the probability of finding 

the electron is 1.  

 

 (11)  *
( ) ( ) 1x x dx 




       

 

The quantity *
( ) ( )x x   is called the probability density function. 

 

The probability of finding the electron in the region from 
1

x  to 
2

x  is  

 

 (12)   
2

1

*
( ) ( )

x

x
x x dx   

 

Consider N identical one electron systems. We make N identical 

measurements on each system of the physical parameter A. In a 

quantum system, each measurement is different. From our N 

measurements, we can calculate the mean value A  and the standard 

deviation A  of the parameter A.  We do not have complete knowledge 

of a system, we only can estimate probabilities. 

  

The mean value of an observable quantity A is found by calculating its 

expectation value A  by evaluating the integral 

 

 (13) * ˆ( ) ( )A x A x dx 



   

 

where Â  is the quantum-mechanical operator corresponding to the 

observable quantity A. 
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and its uncertainty by estimating the standard deviation of A. The 

uncertainty can be given by 

 

 (14) 
1/2

22
A A A   

 
 

 

where  

 

 (15) 2 * ˆ ˆ( ) ( )A x A A x dx 



    

 

The quantity * ˆ( ) ( )x A x  represents the probability distribution for the 

observable A and is often shown as a probability density vs position 

graph.  Probability distributions summarize the extent to which quantum 

mechanics can predict the likely results of measurements. The 

probability distribution is characterized by two measures – its 

expectation value which is the mean value of the distribution and its 

uncertainty which is the represents the spread in values about the mean. 

 

For our [1D] system, a particle in any state must have an uncertainties in 

position x  and uncertainties in momentum p  that obeys the 

inequality called the Heisenberg Uncertainty Principle 

 

 (16) 
2

x p    

 

The Uncertainty Principle tells us that it is impossible to find a state in 

which a particle can has definite values in both position and momentum. 

Hence, the classical view of a particle following a well-defined trajectory 

is demolished by the ideas of quantum mechanics. 
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Observable Operator Expectation Value 

probability 1 *
( ) ( ) 1x x dx 




  

position x *
( ) ( )x x x x dx 




   

momentum 
i

x





 * ( )

( )
x

p i x dx
x









 

  

Potential 

energy 

U *
( ) ( ) ( )U U x x x dx 




   

Kinetic energy T 2 2
*

2

( )
( )

2

x
K x dx

m x









 

   

 

 

Matlab coding 

 
% =================================================================== 

% EXPECTATION VALUES 

% 

===================================================================== 

    C3 = -hbar^2 / (2 * me * dx^2 * e); 

% PROBABILITY 

    fn = (yR - 1i*yI) .* (yR + 1i*yI); 

    prob = simpson1d(fn,0,L); 

     

    prob1 = simpson1d(fn(1:NxC),0,L/2); 

    prob2 = simpson1d(fn(NxC:end),L/2,L); 

  

% POSITION x 

   fn = x .* (yR.^2 + yI.^2); 

   xavg = simpson1d(fn,0,L) ; 

    

% Potential energy  U 

    fn = U .* (yR.^2 + yI.^2); 

    Uavg = simpson1d(fn,0,L); 

  

% Kinetic energy T 

    for nx = 2 : Nx-1 

         fn(nx) = C3 * (yR(nx) - 1i * yI(nx)) * ... 

         (yR(nx+1) - 2 * yR(nx) + yR(nx-1)+ 1i *(yI(nx+1) - 2 * 

yI(nx) + yI(nx-1))); 

    end 

    Tavg = simpson1d(fn,0,L); 

  

% Total energy    

    Eavg = Uavg + Tavg; 
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% Momentum  p and speed v 

 dyRdx = zeros(1,Nx); dyIdx = zeros(1,Nx); 

 dyRdx(1) = (yR(2) - yR(1))/dx; dyRdx(Nx) = (yR(Nx) - yR(Nx-1))/dx; 

 dyIdx(1) = (yI(2) - yI(1))/dx; dyIdx(Nx) = (yI(Nx) - yI(Nx-1))/dx; 

 for nx = 2 : Nx-1 

    dyRdx(nx) = (yR(nx+1) - yR(nx-1))/(2*dx); 

    dyIdx(nx) = (yI(nx+1) - yI(nx-1))/(2*dx); 

 end 

   fn = - hbar .* (yI .* dyRdx - yR .* dyIdx + ... 

         1i  .* yR .* dyRdx + yI .* dyIdx ); 

   pavg = simpson1d(fn,0,L) ;  

  

   vavg = pavg / me; 

    

% Uncertainty - position 

   fn = x .* x .* (yR.^2 + yI.^2); 

   x2avg = simpson1d(fn,0,L);  

   delta_x = sqrt(x2avg - xavg^2); 

  

% Unceratinty - momentum 

    C3 = -hbar^2/dx^2; 

    for nx = 2 : Nx-1 

        fn(nx) = C3 * (yR(nx) - 1i * yI(nx)) * ... 

        (yR(nx+1) - 2 * yR(nx) + yR(nx-1)+ 1i *(yI(nx+1) - 2 * yI(nx) 

+ yI(nx-1))); 

    end 

    p2avg = simpson1d(fn,0,L); 

    delta_p = sqrt(p2avg - pavg^2);  

  

% Uncertainty Principle 

    dxdp = delta_x * delta_p; 
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SIMULATIONS 

 

In all the simulations described in this paper, we will consider an electron 

confined to the X axis in the region from 0x   to x L . The electron is 

represented by a wave packet to localize it. For example, at time 0t 

the wave packet may be given by  

 

 (9) 

2

2

2 ( )
exp 0.5 cos

2 ( )
exp 0.5 sin

C C
R n

C C
I n

x x x x
y A

s

x x x x
y A

s









     
          

     
          

  

 

Equation 9 gives the most common wave packet used in the simulations. 

 

The real and imaginary parts of the wavefunction correspond to a 

particle with wavelength   in a Gaussian envelope of width s and 
C

x  is 

the position of the centre of the wave packet at time 0t  .  An is a 

normalizing constant. Our equation for the wave packet needs to be a 

solution of the Schrodinger Equation and also satisfy the boundary 

conditions where the wavefunction vanishes at boundaries 

 

  0 0 0
R I

x x L y y     

 

When the wave packet strikes a boundary, reflections occur. This may 

cause problems, so it may be necessary to terminate a simulation before 

any reflections occur. 

 

The initial kinetic energy K and its momentum p of our electron (mass m) 

can be estimated from its wavelength   

 

  
2 2

2
2 2

h p h
p K K

m m 
    
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The default values for the simulations are  

 
9 10 10

4.000 10 m / 40 1.000 10 m / 25 1.600 10 mL L s L  
       

 

  24 -1
6.629 10 kg.m.s 149 eVp K


     

 

The accuracy of the FDTD method is improved as t  and x  are made 

smaller. You can start a simulation with 401
x

N   (
x

N  should always be 

an odd number, otherwise the integrations by Simpson’s rule will give 

wrong results). You then should increase 
x

N until the numerical 

predictions become more consistent.  

 

For example, in the simulation of the motion of a free electron with an 

initial kinetic energy of 149 eV, simulation results give 

 

  
401 144 eV

1001 149 eV

x

x

N K

N K

  

  
 

 

The numerical predictions are more accurate and consistent with the 

larger value of 
x

N . 
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Free-particle wave packets 

 

A free particle is one that is not subject to any forces. This is a region in 

which the potential energy function is a constant 

 

(17) 
( )

( ) constant ( ) 0
dU x

U x F x
dx

     

 

It is easy to predict the motion of a free particle in classical physics, but 

the corresponding task is less straightforward in quantum mechanics. 

The solution of the time dependent Schrodinger Equation predicts how 

the wave function evolves in time. The Matlab code for the initial 

wavefunction is 

   
 yR(nx) = exp(-0.5*((x(nx)-x(nx0))/s)^2)*cos(2*pi*(x(nx)-x(nx0))/wL); 

     

 yI(nx) = exp(-0.5*((x(nx)-x(nx0))/s)^2)*sin(2*pi*(x(nx)-x(nx0))/wL); 

 

Figure 1 shows the time evolution of the free-particle wave packet - the 

initial wave packet (red) and the wave packet after 10 000 time steps 

(blue). Table 1 is a summary of the simulation results for three time 

intervals.  

 

Table 1.   Summary of the simulation results for a free electron.  

                 1001
x

N   

Observable   1
t

N   5000
t

N   10000
t

N   

Time  t  [s] 2.79x10-20 1.40x10-16 2.79x10-16 

Probability 1.000 1.000 1.000 

K    [eV] 150.3 150.1 150.1 

p    [kg.m.s-1] 6.6x10-24 6.6x10-24 6.6x10-24 

v     [m.s-1] 7.1x106 7.1x106 7.1x106 

x     [m] 1.0x10-9 2.0x10-10 3.0x10-9 

x     [m] 0.71x10-10 1.3x10-10 2.3x10-10 

p     [kg.m.s-1] 1.1x10-24 1.1x10-25 1.1x10-24 

x p    [kg.m2.s-1] 7.9x10-35 1.26x10-34 2.6x10-34 
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The simulation results show that the probability and total energy of the 

system is conserved in the implementation of the FDTD method in 

solving the Schrodinger equation with 1001 spatial grid points. The time 

evolution of the system shows that the wave packet spreads as it 

propagates. There is nothing mysterious about the wave packet 

spreading. It merely reflects the initial uncertainty in position and 

momentum of the wave packet. The uncertainty in position increases 

with time but the uncertainty in momentum does not increase since 

there is no force acting on the electron to change its momentum. 

 

In the time evolution of the wave packet the Heisenberg Uncertainty 

Principle is satisfied.  You can decrease the width of the wave packet and 

run a simulation. You will notice that decreasing the spatial width of the 

initial wave packet increases the spread of momenta and therefore 

increases the rate at which the wave packet spreads. 
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Fig. 1.   The time evolution of a free particle wave packet shown at 0t 

(red) and after 10 000 time steps (blue). 

 

All that can happen to a classical particle is that it can move from one 

position to another. But, a quantum mechanical wave packet undergoes 

a more complicated evolution with time in which the whole probability 

distribution shifts and spreads with time. The Ehrenfest’s theorem is a 

general statement about the rates of change of x  and p  in 

quantum-mechanical systems. 
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Ehrenfest’s theorm 

If a particle of mass m is in a state described by a normalized wave 

function in a system with a potential energy function ( )U x , the 

expectation values of position and momentum of the particle obey the 

equations 

 

 (18)  
d x p d p dU

v
dt m dt dt

     

 

In our simulation with 1001
x

N   , you can see that Ehrenfest’s theorem 

is satisfied. The momentum and its uncertainty remain constant. The 

distance d that the peak of the probability distribution moves in the time 

interval t  is 

 

 

 

6 16

9

9 9 9

7.13 10 m 2.79 10 s

2.0 10 m

2.99 10 0.996 10 m 2.0 10 m
f i

v t

d v t

d x x





  

    

    

       

 

 

The displacement d of the probability density is clearly shown in figure 1. 

 

 

view animation of the wave packet 
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We can model the time evolution of an initial wave packet that is 

Gaussian in shape with its imaginary part being zero.  

 
           yR(nx) = exp(-0.5*((x(nx)-x(nx0))/s)^2); 
 

      yI(1:Nx) = 0; 

 

 

The expectation value of the momentum is zero at all times. The wave 

packet does not propagate along the X axis, it simply spreads with time. 

The wave function develops real and imaginary parts, both of which 

develop lots of wiggles, however, the probability function turns out to 

also Gaussian in shape with a width that increases with time. The 

expectation value of the total energy of the electron does not change 

with time and has a non-zero value of 1.89 eV.  In a quantum system the 

total energy of a particle is always greater than zero and its lowest value 

is called its zero-point energy. 

 

Figure 2 shows the real and imaginary parts of the wavefunction and the 

probability density distribution after the first time step (red) and after 

20 000 time steps (blue) for a free electron when the potential energy 

function is zero. 
 

 

 

view animation of the wave packet 
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Fig. 2.   Time evolution of a wave packet described initially by 

a real function which is Gaussian in shape.  
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Motion of an electron in a uniform electric field 

 

We can simulate the motion of a wave packet representing an 

electron in a uniform electric field. The force acting on the electron 

is derived from the potential energy function ( )U x  

 (19) 
( )

( )
U x

F x
x


 


 

 

For a uniform electric field, the force acting on the electron is 

constant, therefore, the potential energy is a linear function with 

position x of the form 

 (20) 0
0

( )
U

U x x U
L

 
   

 
 

 

where L is the width of the simulation region and 
0

U is a constant. 

 

The linear potential is chosen within the mscript by setting 
flagU = 3 
  case 3          % accelerating / retarding potential 

     

                  U = -(U0/L).* x + U0; 

 

 

0

0

0 accelerating electric field

0 retarding electric field

U

U

 

 

      

 

 

We can apply Ehrenfest’s theorem to calculate the changes in 

expectation values, that is, we can apply the principles of classical 

physics only to expectation values and not instantaneous values. 

 

From equation (19) and (20), and Newton’s Second Law of motion, 

the constant acceleration of the electron is 

 

(21) 0

e

eU
a

m L
  
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We can use the equations of uniform acceleration to predict the 

expectation values and position of the probability density 

distribution from the initial conditions and the value of the 

acceleration  a after a time interval t 

 

 (22)  
final initial

v v at   

 

 (23) 21
2final initial initial

x x v t at    

 

The force due to the interaction of the charged electron and the 

electric field does work W on the electron to change its kinetic 

energy  

 

 (24)  e final initial final initial
W m a x x K K     

 

We compare the classical predictions given in equations 22, 23 and 

24 with the expectation values calculated from the solution of the 

Schrodinger Equation.  

 

Our wave packet is a sinusoidal function with a Gaussian envelope. 

The simulation parameters are: 

 

           Simulation region, 10
40.0 10 mL


   

           Wavelength,  9
1.00 10 m 

   

           Width Gaussian pulse,  9
1.60 10 ms


   

           Initial kinetic energy,   
2

2
149.1eV

2
initial

e

h
K

m
   

Initial expectation value kinetic energy,  149.2 eV
initial

K         
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Table 2 gives a summary of the results of three simulations: (1) zero 

electric field, 
0

0 eVU   (2) accelerating electric field, 
0

200 eVU   and 

(3) retarding electric field, 
0

200 eVU   . The time evolution for the 

three simulations are shown in figures 3, 4 and 5. The number of time 

steps and spatial grid points used are 10000
t

N   and 1001
x

N  .  The 

classical predict values are computed in the mscript in the section where 

the potential energy function is calculated. You can get the numerical 

values for any of these parameters from the Matlab Command Window. 

 

Table 2 shows that there is excellent agreement between the classical 

predictions and the numerical results from the solution of the 

Schrodinger Equation. Even though we don’t know exactly where the 

electron is or its exact velocity at any instant, we can predict with 

certainty the time evolution of the probability distribution function and 

expectation values. 

 

The result summary also shows the classical concept of conservation of 

energy holds in our quantum system. The total energy of the system is 

time independent and any change in the expectation value of the 

potential energy is accompanied by a corresponding change in the 

expectation value of the kinetic energy. For example, the electric force 

does work on the electron to increase its kinetic energy and this is 

shown by the increase in the expectation value of the kinetic energy and 

the decrease in the expectation value of the potential such that the 

expectation value of the total energy does not change.  

 

   view animation of the wave packet 
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Table 2.   Summary of the simulation results    1001
x

N   

Observable   
Zero field 

0
0U   

Accelerating 

field 

0
200 eVU   

Retarding field 

0
200 eVU    

x initial    [m] 0.996x10-9 0.996x10-9 0.996x10-9 

v initial   [m.s-1] 7.13x106 7.13x106 7.13x106 

K initial   [eV] 149 149 149 

U initial   [eV] 0 150 -150 

E initial   [eV] 149 299 -1 

 a   [m.s-2] 0 + 8.71x1021 - 8.71x1021 

  t   [s] 2.79x10-16 2.79x10-16 2.79x10-16 

simulation 

x final    [m] 
2.99.0x10-9 3.31x10-9 2.66x10-9 

classical prediction 

x final    [m] 
 3.32x10-9 2.65x10-9 

simulation 

v final    [m.s-1] 

7.13x106 9.45x106 4.75x106 

classical prediction 

v final    [m.s-1] 
 9.56x106 4.70x106 

K final   [eV] 149 265 66.1 

U final   [eV] 0 34 -67.3 

E final   [eV] 149 299 -1.2 

final initial
K K  

[eV] 

0 116 -83 

final initial
U U  

[eV] 

0 -116 83 

W  [eV]  116 -83 

 * The slight discrepancy in the final velocity values can be reduced by increasing the 

value for Nx (
6 -1

40000 9.59 10 m.s
x

N v    ). Increasing Nx increases 

the computation time. You often need to consider accuracy and computation time. 
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 Fig. 3. Wave packet motion for zero electric field. 
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Fig.4.   Motion of wave packet under the influence of a constant 

applied electric field to accelerate the electron. 
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Fig. 5.   Motion of wave packet under the influence of a constant 

applied electric field to deaccelerate the electron. 

 

The electron can be though as a particle and the classical laws of physics 

can be used to predict the time evolution of expectation values. But the 

wave nature of the electron means that we do not know the precise 

values of position and velocity at an instant. We can’t predict the path of 

an electron, we can only predict the probability of finding the electron at 

each instant within a range of x values. Thus, we can conclude that the 

expectation value for position tracks the classical trajectory. 
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BOUND STATES   Particle in a box 

 

In our model the wavefunction is set to zero at the boundaries and this 

implies that the potential function is infinite at the boundaries 

 

 (0, ) 0 ( , ) 0 (0) ( )t L t U U L       

 

The particle is thus confined to move only along the X axis from 0x   to 

x L  due to the repulsive force acting on the particle at the 

boundaries. When a particle is restricted to moving in a limited region, 

the solution of the Schrodinger Equation predicts that only certain 

discrete values of the energy are possible (eigenvalues) and only certain 

wavefunctions are allowed (eigenfunctions).  For a particle confined to 

an infinite square well potential as in the model we are using, the 

physically acceptable solutions of the [1D] Schrodinger Equation that 

satisfy the boundary conditions give the predictions 

 

 Quantum state specified by the integer n     n = 1, 2, 3, … 

 

 (25)   Wavelength                   
2

n

L

n
   

 

 (26)   Energy eigenvalues     
2

2
8

n

h
E

m L
  

 

Eigenfunctions (spatial part only)  

(27)                            
2

( ) sin 0
n n

n

x
x A x L






 
   

 
                         

 

The finite difference time development method described in this 

paper can’t be used to find the eigenvalues and eigenfunctions since 

we need to specify a wavefunction at time 0t  that satisfies the 

Schrodinger Equation and boundary conditions.  But, what we can do 

is to enter a known eigenfunction to start the time evolution and to 

calculate the expectation values at time t. 
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We can also show that if we start with a wavefunction that does not 

satisfy the Schrodinger Equation at time 0t   the simulation results 

give physically unacceptable results. 

 

Any linear combinations of eigenfunctions is also a solution of the 

Schrodinger Equation. Therefore, a wave packet must represent a linear 

combination of eigenfunctions  

 

  (28)  
1

2
( , ) sin ni t

n

n n

x
x t A C e










 
   

 
  

 

where A is a normalizing constant and n
n

E
   is the frequency of a free 

particle matter wave. 

 

The numerical results for a simulation for the quantum state n = 4 are 

given below and figure 6 shows the time evolution of the system. The 

best way to view the time evolution is to click the link to the animated gif 

file. 

 

view animation of the bound state 
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Simulation parameters 

 

 Length of confinement 10
4.000 10 mL


   

 Wavelength 10

4

2
2.000 10 m

4

L
 

    

 Total energy 
4

37.267 eVE   

 Angular frequency 16 -1

4
5.659 10 rad.s    

 Period  162
1.110 10 sT






    

 Grid spacing 201
x

N   

 Time steps 16000
t

N   

 

Simulation predictions 

 

 Evolved time 16
1.12 10 st


   

Position 
10

10

2.00 10 m

1.13 10 m

x

x





 

  
 

Momentum 
-1

34 -1

0 kg.m.s

3.31 10 kg.m.s

p

p




  
 

Uncertainty Principle 34 2 -1
3.75 10 kg.m .s

2
x p


      

 Period  16
1.12 10 sT


   

 

 Potential energy 0U   

 Kinetic energy 37.26 eVK   

 Total energy 37.26 eVE   

 

 

There is excellent agreement between the theoretical predictions and 

the results computed by solving the time dependent Schrodinger 

equation. 
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Fig.6.   An electron confined to a box - the time evolution of 

the wavefunction and probability density function for the 

bound state 4n  .The red curves are the initial state ( 0t  ) 

and the blue curves are the final state   ( 16
1.12 10 ~t s T


  ). 

Although the wavefunction – real and imaginary parts vary 

with time, the probability density function is time 

independent.  
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We will now consider the superposition of two eigenstates given 

by the quantum numbers 4n   and 5n  . The initial wavefunction 

is of the form 

  

 (29)

 

4 5 4 5

4 5

2 2 2 2
( ) sin sin 0

4 5
n

x x L L
x A a a x L

 
  

 

    
        

     

 

 

where 
4

a  and 
5

a  are constants.  

 

The two energy eigenvalues from equation 26 are 

 

 
4 5

37.60 eV 58.75 eVE E   

  

  

Let  
4 5

1a a   

When a measurement is made on our system, the measurement must 

correspond to an eigenvalue. If we measure the total energy the result 

must be 37.60 eV or 58.75 eV. Since 
4 5

1a a   there is an equal 

probability that the electron will be in the state 4n    or 5n  , so 50% of 

the measurements will give 37.60 eV and the other 50% will be 58.75 eV. 

The average measurement will be 

 

  4 5 48.18 eV
2

avg

E E
E


   

 

From the simulation, the expectation value for the total energy is  

  

  48.15 eVE   

 

which is the average values of the measurements. 

 

Fig. 7 shows the initial wavefunction (red) and the final wavefunction 
(blue) after a time interval of 1.38x10-16  s.  
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Fig. 7.   Initial wavefunction (red) and final wavefunction 

(blue) after 1.38x10-16  s for a mixed state. The wavefunction 

(real and imaginary parts) and the probability density all vary 

with time.  

 

  

view animation of the mixed state 

 
  

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_se_fdtd_07.gif
http://www.physics.usyd.edu.au/teach_res/mp/images/ag_se_fdtd_07.gif


Doing Physics with Matlab      36 

Let  
4 5

3 and 1a a   

Again, when a measurement is made the electron will be either the 4n    

or 5n  .  The probability of being a state n is proportional to the 

coefficient 
n

a  . In this example, the average of the total energy made 

from a set of measurements on the system is 

 

  
2 2

4 4 5 5 4 5

2 2

4 5

9 1
39.72 eV

10
avg

a E a E E E
E

a a

 
  


 

 

From the simulation, the expectation value for the total energy is  

  

  39.70 eVE   

 

which is the average values of the measurements. 

 

Fig. 8 shows the initial wavefunction (red) and the final wavefunction 

(blue) after interval of 1.38x10-16  s. 
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Fig. 8.   Initial wavefunction (red) and final wavefunction 

(blue) after 1.38x10-16  s for a mixed state. The wavefunction 

(real and imaginary parts) and the probability density all vary 

with time.  

 

  

view animation of the mixed state 
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Step Barrier 

 

Consider the system of a sinusoidal wave packet with a Gaussian envelop 

with a step potential energy function 

 

  
0

( ) 0 0 / 2

( ) / 2

U x x L

U x U L x L

  

  
 

 

Such a potential step does not exist in nature, but it is a reasonable 

approximation to the instantaneous potential between the dees of a 

cyclotron when 
0

U  is negative (attractive potential) or to the potential 

barrier at the surface of a metal when 
0

U  is positive (repulsive 

potential). 

 

The electron starts in the zero potential region with a total energy E and 

moves towards the step in the potential.   

 

Case 1   
0

100 eVE U    

 

Simulation parameters 

 Grid spacing 1001
x

N   

 Time steps 10000
t

N   

 Simulation time 16
2.76 10 st


   

 Length of confinement 9
4.00 10 mL


   

 Wavelength 10
1.00 10 m 

   

 Initial kinetic energy 150.34 eVK   

 Initial potential energy 0 eVU   

 Initial Total energy 150.34 eVE   

 Final kinetic energy 248.61 eVK   

 Final potential energy 98.27 eVU    

 Final Total energy 150.34 eVE   

 Prob  0 / 2x L   
1

Prob 0.017  

 Prob  / 2L x L   
2

Prob 0.983  
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As the wave packet travels to the right it starts to spread but its kinetic 

energy remains the same. When the wave packet strikes the barrier, part 

of the wave packet penetrates into the barrier while part of the wave 

packet is reflected. This does not mean that the electron has split into 

two. What it mean, is that we have a certain probability of locating the 

electron to the left of the barrier (reflection: 
1

Prob 0.017 ) and a certain 

probability of finding the electron to the right of the barrier 

(transmission: 
2

Prob 0.983 )  

 

 (30a) Probability of reflection           
/2

*

0
( ) ( )

L

x x dx   

 (30b) Probability of transmission      *

/2
( ) ( )

L

L
x x dx   

 

In the region / 2L x L   the electron gains kinetic energy as the 

potential decreases. At all times the total energy is conserved. 

 

Figure 9 shows the wavefunction and probability function. The red curves 

correspond to time 0t   and the blue curves give the results at time 

after 10 000 time steps.  

 

view animation wave packet and potential step 
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0
100 eVE U    

 

 
Fig. 9.   Simulation of an electron moving in free space and 

then striking an attractive potential step. When the electron is 

in free space, all its energy is in the form of kinetic energy. 

After it strikes the step, the expectation value for the 

potential energy decreases as the electron’s expectation 

value for the kinetic energy increases. 
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Case 2   
0

100 eVE U    

 

Simulation parameters 

 Grid spacing 1001
x

N   

 Time steps 10000
t

N   

 Simulation time 16
2.76 10 st


   

 Length of confinement 9
4.00 10 mL


   

 Wavelength 10
1.00 10 m 

   

 Initial kinetic energy 150.34 eVK   

 Initial potential energy 0 eVU   

 Initial Total energy 150.34 eVE   

 Final kinetic energy 59.73 eVK   

 Final potential energy 90.61 eVU   

 Final Total energy 150.34 eVE   

 Prob  0 / 2x L   
1

Prob 0.094  

 Prob  / 2L x L   
2

Prob 0.906  

 

As the wave packet travels to the right it starts to spread but its kinetic 

energy remains the same. When the wave packet strikes the barrier, part 

of the wave packet penetrates into the barrier while part of the wave 

packet is reflected. This does not mean that the electron has split into 

two. What it mean, is that we have a certain probability of locating the 

electron to the left of the barrier (reflection: 
1

Prob 0.094 ) and a certain 

probability of finding the electron to the right of the barrier 

(transmission: 
2

Prob 0.906 )  

 

Figure 10 shows the wavefunction and probability function. The red 

curves correspond to time 0t   and the blue curves give the results at 

time after 10 000 time steps.  

 

view animation wave packet and potential step 
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0
100 eVE U    

 

 
Fig. 10.   Simulation of an electron moving in free space and then striking 

a repulsive potential step. When the electron is in free space, all its 

energy is in the form of kinetic energy. After it strikes the step, the 

expectation value for the potential energy increases as the electron’s 

expectation value for the kinetic energy decreases. However, at all times 

the total energy is conserved. There is some probability that the electron 

was reflected and some probability that it penetrated the potential 

barrier. 
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Case 3   
0

200 eVE U    

 

Simulation parameters 

 Grid spacing 1001
x

N   

 Time steps 10000
t

N   

 Simulation time 16
2.76 10 st


   

 Length of confinement 9
4.00 10 mL


   

 Wavelength 10
1.00 10 m 

   

 Initial kinetic energy 150.34 eVK   

 Initial potential energy 0 eVU   

 Initial Total energy 150.34 eVE   

 Final kinetic energy 149.09 eVK   

 Final potential energy 1.26 eVU   

 Final Total energy 150.34 eVE   

 Prob  0 / 2x L   
1

Prob 0.994  

 Prob  / 2L x L   
2

Prob 0.006  

 

As the wave packet travels to the right it starts to spread but its kinetic 

energy remains the same. When the wave packet strikes the barrier, part 

of the wave packet penetrates into the barrier while part of the wave 

packet is reflected.  There is a very small probability that the electron is 

found in the classically forbidden region / 2L x L   where kinetic 

energy is negative 

 

  
150 200 eV 50 eVE K U K E U       

 

Figure 11 shows the wavefunction and probability function. The red 

curves correspond to time 0t   and the blue curves give the results at 

time after 10 000 time steps.  

 

view animation wave packet and potential step 
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0
200 eVE U    

 
Fig. 11.   Simulation of an electron moving in free space and then striking 

a repulsive potential step. When the electron is in free space, all its 

energy is in the form of kinetic energy. After it strikes the step, the 

expectation value for the potential energy increases as the electron’s 

expectation value for the kinetic energy decreases. However, at all times 

the total energy is conserved. There is some probability that the electron 

was reflected and a small probability that it penetrated the potential 

barrier into the classical forbidden region. 
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Case 4   Wave packet interacting with step barrier 
 

The parameters for the simulation are given in figure 12 and figure 13 
shows the graphical output for a wave packet striking a potential step. 
 

 
 Fig. 12.  Summary of parameters for wave packet striking potential step. 
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Fig. 13.   Wavefunction for wave packet striking a potential step. 
 
Figure 13 shows some of the most surprising aspects of quantum 
physics: (1) Particles have the ability to enter regions that are classically 
forbidden.  (2) Initially, as the wave packet approaches the barrier, the 
probability of locating the electron is located in a single “blob” flowing 
from left to right. However, when the wave packet encounters the 
barrier, the probability distribution develops closely spaced peaks. These 
peaks are a consequence of reflection. Part of the wave packet is 
advancing towards the barrier and part of it is retreating from the 
barrier due to reflection. This leads to interference effects which by the 
superposition principle results in the closely spaced spikes in the 
probability distribution. 
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Square well 

 

Consider the propagation of our sinusoidal wave packet with a Gaussian 

envelop incident upon a square well of depth 
0

U and width w. When the 

wave packet strikes the barrier, part of the wave packet penetrates into 

and through the well, while part of the wave packet is reflected as shown 

in figure 14.        

 
Fig. 14.   Wave packet striking a square well.  

16
3.87 10 st


       59.4 eVE        10

1.60 10 mw  
    

1 2
Prob 0.15 Prob 0.85    
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We can calculate the probability that the electron can be found on the 

left or right of the centre using equation (30). The transmission 

coefficient T is equal to the percentage probability of finding the 

electron to the right of the well.  For the square well shown in figure 14, 

the transmission coefficient is 85%T  . The transmission coefficient is 

sensitive to small changes in the total energy, the depth and width of the 

square well. Figure 15 shows the rapid variation in the transmission 

coefficient T with small changes in the width w of the well. 

 
Fig. 15.  Periodic variation in the transmission coefficient T as 

the width w of the square well increases.  

 

view animation wave packet and potential well 
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Potential Hill (Rectangular Barrier) 

 

In quantum physics, a particle may penetrate into a region where its total 

energy is less than the potential energy of the system and therefore the 

particle’s kinetic energy would be negative 

 

  0E K U E U K      

 

This leads to the tunnelling of particles through thin barriers which are 

classically impenetrable. Suppose an electron represented by a wave 

packet is incident from the left on a rectangular barrier (potential hill) of 

height 
0

U  and width w. We can calculate the transmission coefficient T 

for the electron penetrating the barrier from the solution of the 

Schrodinger equation. The sensitivity of the dependence of the 

transmission coefficient on the height of the barrier and the width of the 

hill can be easily investigated using the FDTD method to solve the 

Schrodinger equation.  

 

Modelling the electron as a sinusoidal wave packet with a Gaussian 

envelope with a total energy 59 eVE   incident upon a potential hill of 

height 
0

100 eVU  , we can compute the transmission coefficient T for 

varying width w as shown in Table 3. 

 

                Table 3.  Variation of T with w.         

Width  /w   0.25 0.50 0.75 1.00 

T % 20 2 0.4 0.1 

 

As the width increases there is a very rapid decrease in the transmission 

coefficient.  

 

Figure 16 shows the wavefunction for potential hill of height 100 eV and 

width / 4  after a time interval of 3.87x10-16  s. 
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 Fig. 16.  The wavefunction after a time interval of 3.87x10-16  s. 

 10
/ 1.60 10 59.4 eV 1001 14000

x t
w m E N N         

 

 

view animation wave packet and potential hill 
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QUANTUM BOUNCER 1   Parabolic Well 

 
We can animate the time development of a sinusoidal Gaussian wave 
packet for an electron trapped in a parabolic potential well. The electron 
bounces backward and forward similar to a classical particle. 
 
An electron in a parabolic well is subjected to a force that is always 
directed towards the centre of the well. The electron does not penetrate 
the walls of the well and is trapped. The wave packet continually 
spreads and reforms original shape with the probability density function 
being widest during the refection phase of its motion.   
 
The potential energy is given by the function 
 

20 0
02

4 4
( ) 0 (0) ( ) 0

U U
U x x x x L U U L U

L L

   
         
   

 
The effective spring k constant of the system is 
 

  0

2

8U e
k

L
          where 

0
U  is in the units of eV 

 
The electron trapped in the parabolic potential well exhibits periodic 
motion with a period T 

   

  
2

0

2 2
8

e e
m m L

T
k U e

    

 
For the simulation with the parameters 
     

9 16

0
4.00 10 m 600 eV 8.65 10 s 31293

t
L U T N

 
         

 
When the simulation is run, the wave packet almost returns to its initial 
position in a time interval approximately equal to the period T showing 
an excellent agreement between the classical prediction and the 
quantum physics prediction. 
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Fig. 17. An electron trapped in a parabolic potential well. The 
wave packet returns to its initial position (red) in a time 
interval as predicted by the classical physics calculation for 
the period T of a simple harmonic oscillator. 

 
 

view animation wave packet in parabolic well 
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The total energy is conserved during the motion of the electron within 
the well, therefore, it loses potential energy and gains kinetic energy in 
moving towards the centre of the well and gains potential energy and 
loses kinetic energy as it approaches the walls. The expectation values 
for the wave packet satisfy the classical equations of motion. For the 

initial position of the wave packet at positions 9

0
2.00 10x m


    and  

9

0
1.00 10x m


  , the expectation values for energy at different times 

are given in Table 4.  
 

Table 4.   Expectation values at different times   16
8.65 10 sT


  . 

Time /t T  x   nm E   eV U   eV K   eV 

0 2.00 -538.7 -598.1 59.4 

~1/4 2.63 -538.8 -540.7 1.9 
~1/2 2.00 -538.7 -598.1 59.4 

~3/4 1.37 -538.4 -540.4 1.9 

~1 2.00 -538.7 -598.1 59.4 
0 1.00 -387.5 -446.9 59.4 

~1/4 2.61 -387.5 -543.3 155.8 
~1/2 3.01 -387.5 -443.5 56.0 

~3/4 1.41 -387.5 -546.6 159.0 

~1 0.97 -387.5 -440.25 52.7 
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QUANTUM BOUNCER 2    Electron bouncing off a wall 

 
We can animate the time development of a sinusoidal Gaussian wave 
packet of a quantum bouncer for an electron subjected to a uniform 
force and bouncing off an impenetrable wall (classical analogue - tennis 
ball repeatedly falling and bouncing off the floor with elastic collisions 
between ball and floor). The expectation value for the position tracks 
the classical trajectory, while the wave packet spreads.  

 
Fig. 18.   Initial wavefunction (red) and wavefunction after 
100000 time steps (blue) for bouncing electron.  

 

view animation wave packet motion 
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