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DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS 
 

air_columns.m 

This mscript can be used to model a number of musical instruments and the human voice 

tract for the sound ”ah”. For an open end you can select to ignore or include an end 

correction.  A Graphical User Interface is used to find a frequency so that the boundary 

conditions at the end of the tube are satisfied. A pair of coupled first order difference 

equations are solved by a finite difference method to find the natural frequencies of 

vibration of the tube and the acoustic pressure along the length of the tube. You can listen 

to the sounds of the natural frequencies. You need to load data files for the profiles of the 

oboe, trumpet and voice track. 

x_oboe.mat   y_oboe.mat   x_trumpet.mat   y_trumpet.mat   x_voice.mat   x_voicee.mat    

  

 

wav_matrix_tube.m 

This mscript solves a wave equation (Webster’s horn equation) with the imposed boundary 

conditions using a matrix method. A solution gives a set of eigenvalues (natural 

frequencies) and eigenfunctions (pressure distributions). You need to load data files for the 

profiles of the oboe, trumpet and voice track. 

x_oboe.mat   y_oboe.mat   x_trumpet.mat   y_trumpet.mat   x_voice.mat   x_voicee.mat    

  

 

pipe_co.m 
The pressure distribution can be visualized along the length a cylindrical tube that has the 

boundary conditions closed / open. The input parameters are the mode number and length 

of the tube.   Some bugs in the program that need fixing 

 

 

http://www.physics.usyd.edu.au/teach_res/mp/mphome.htm
http://www.physics.usyd.edu.au/teach_res/mp/mscripts
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STANDING WAVES IN AIR COLUMNS 

  

The study into the vibrations of air columns is usually restricted to pipes of uniform cross-

sectional area with the ends either opened or closed. However, using a numerical approach, 

the vibrations of the air inside wind instruments and the human vocal tract can be 

investigated which demonstrates many features of real musical instruments and the human 

voice.  

 

Many real wind instruments are conical in shape with a narrow end so the player can blow 

into it. In real instruments, the neck end is always closed by a reed or the player’s lips. 

Examples of conical instruments include the oboe and bassoon - a good musician can 

change from playing the first harmonic (fundamental) to the second harmonic by simply 

blowing differently. This is called overblowing to an octave. The clarinet is like a closed / 

open cylinder.  

 

The brass instruments consist of a tube, closed at one end by the player’s lips and open at 

the other. The trombone is basically a cylinder for most of its length – yet can play a full 

harmonic series, both the odd and even harmonics. The natural frequencies of the 

cylindrical tube are modified by the shapes of the mouth piece and bell.  

 

The normal modes of vibration of many wind and brass instrument can be modelled and the 

pressure distribution along the axis of the tube and the natural frequencies of vibration can 

be computed. Figure (1) gives a number of sample tube profiles that are modelled using the 

mscripts  mscripts  air_columns.m  or  wav_tubes_matrix.m. It is a simple task to add 

profiles for other tubes.  
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Tube profiles 
 

 
 

 Fig. 1.   Types of tubes for modelling the standing waves in air columns. 

 

The data used for the trumpet and human voice track were taken from the paper by 

Johnston (Appendix). The numerical procedure used 2000 points for the calculations. To 

obtain 2000 points for the length and radius from the initial data, the following procedure 

using Matlab was done: 

1. The trumpet data was entered into two column vectors for the length and radius of 

the pipe.  

2. The length x was plotted against the radius y.  

3. From the menu bar in the plot window: Tools / Basic Fitting / Shape preserving 

interpolant / 5 significant figures. 

4. Find Y = f(X): define X range of values by linspace(min(L), Max(L), 2000). 

5. Save data to Workspace as x_trumpet and y_trumpet. 

6. Save variables to files: save x_trumpet and save y_trumpet. 

7. The procedure was repeated for the human voice tract data with the data saved as 

x_voice and y_voice.   

 

 

 

cylindrical tube: open / open cylindrical tube: closed / open

conical tube: open / open conical tube: closed / open

oboe: closed / open trumpet: closed / open

Human vocal tract "ah ...":
two pipe model

Human vocal tract "ah ...":
two pipe model
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All the computations are non-realistic and do not apply to real musical instruments because 

of the many simplifications and assumptions that are made: only a simple end-correction 

formula is used; all the wave fronts are planar and perpendicular to the length axis of the 

tube and dissipation effects are ignored.   

 

FINITE DIFFERENCE METHOD 

 

The normal modes of vibration for the air inside various tubes can be found by using a 

finite difference method. The pressure distribution along the tube and the natural 

frequencies of vibrating can be computed. 

 

In a simple model where there is no dissipation of energy, all physical quantities are taken 

as real, the phase remains constant in a plane perpendicular to the axis of the pipe and the 

motion is sinusoidal with frequency f and angular frequency 2 f  . It is assumed that 

the pressure gradient /p x   is proportional to the volume velocity U of the air and the 

gradient of the volume velocity /U x  is proportional to the acoustic pressure p. The 

volume velocity U is given by 

 

 (1) U Au  

 

where A is the cross-sectional area of the tube and u is the particle velocity. 

 

The simplest method to find the pressure p(x) along the pipe is by solving the two coupled 

first order difference equations given by equations (2) and (3) subject to the physical 

boundary conditions at the ends of the pipe. 

 

The boundary conditions at a closed end correspond to a pressure antinode (maximum) and 

a node for the volume flow rate (U = 0). The boundary conditions at an open end 

correspond to a pressure node (p = 0) and an antinode for the volume flow rate (maximum). 

The value assigned to the maximum values of p or U is not important, it only sets the 

amplitude of the standing wave. 

 

 (2) 0( )
( )

( )

p x
U x

x A x

 



                      

 

 (3) 
2

0

( ) ( )
( )

U x A x
p x

x c






 


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The steps in the finite difference method to solve the pair of coupled first order difference 

equations using the mscript  air_columns.m are:   

 

 A frequency f is entered manually in a GUI. 

 The initial values for p and U are assigned at one end (x = 0) of the air column 

using the boundary conditions for either a closed or open end. 

 The difference equations, equations (2) and (3) are integrated step by step along 

the pipe to the other end using a second order Runga-Kutta procedure. 

 If the boundary conditions are satisfied at the far end of the pipe, the frequency f 

corresponds to one of the natural frequency of the pipe. If not, another valued of f 

is entered. 

 

When a standing acoustic wave meets an open end of a pipe, the pressure to volume flow 

rate must match that of a spherical wave spreading out from a flat circular source. To meet 

this criteria, a rough rule of thumb is used for an end correction. When a pipe has an open 

end, it is stretch in length by the amount of 0.6 a, where a is the end radius of the pipe. This 

is only a crude approximation. You can easily modify the program to use a more accurate 

estimate of the end correction.  

 

Graphical user interface 
 

 
Boundary condition at the end of the tube is NOT satisfied.  air_column.m 
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Boundary conditions satisfied. For this normal mode, the natural frequency is 99.9 Hz 

and for the pressure distribution there are zero nodes in the interior of the tube. Due to 

end correction, the pressure node occurs outside the right hand end of the tube. 

air_column.m 

 

  

Sound 

A function is called to produce a sound at the frequency f that has been entered in the GUI. 

The sound corresponds to the pure tone at frequency f. 

 

%***************************************************************** 
  % SOUND Do the calculations 
% *******************************************************************  
cf2 = boxB; 
sf = 22050;                         % sample frequency (Hz) 
d = 5.0;                               % duration (s) 
n = sf * d;                           % number of samples 
s = (1:n) / sf;                      % sound data preparation 
s = sin(2 * pi * cf2 * s);    % sinusoidal modulation 
s = s./max(s); 
sound(s, sf);                      % sound presentation 
pause(d + 0.5);                 % waiting for sound end 
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Sample Results 
The sample results for a trumpet composed of a mouth piece (closed end), pipe and bell 

(open end) are given below. The first five natural frequencies of vibration in hertz are 

 

69.8   190.5   288.8   388.1   495.2 

 

and the pressure distribution along the pipe for the frequency 388.1 Hz which corresponds 

to the 3
rd

 overtone is shown in figure 1. 

 

 
 Fig. 2. The shape of the trumpet and the pressure along the pipe for the 3

rd
 

overtone at the frequency f = 388.1 Hz. 
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Woodwind with a hole 
In many musical wind instruments the pitch of the note can be changed by covering or 

uncovering holes along the length of the pipe. A hole is effectively a flanged open end and 

the pressure is essentially constant across the width of the hole. The effect of the hole of 

radius Rhole in a tube can be modelled by changing equation (3) to give equation (4) 

 

(4) 
2

0 0

( ) ( )
( )

2.8

holeU x A x R
p x

x c f



 

 
   

  
 

 

Table 1 gives the results for simulations of a cylindrical pipe of length 0.6253 m and radius 

0.9675x10
-2

 m and the same cylinder with a hole of radius 0.02 m using the mscript  

air_columns.m .   

 

 
 

  Table 1. Natural frequencies for a cylinder and a cylinder with one side hole. 

 fn  (Hz) fhole  (Hz) fhole / f1 

Fundamental  274  (1.00)  303   (1.00)    1.10 

1
st
 overtone  549  (2.00)  592   (1.95)    2.16 

2
nd

 overtone  822  (3.00)  852   (2.81)    3.11 

3
rd

 overtone 1097  (4.00) 1103  (3.64)    4.02 

4
th

 overtone 1371  (5.00) 1375  (4.53)    5.01 

5
th

 overtone 1646  (6.00) 1657  (5.47)    6.04 

6
th

 overtone 1920  (7.00) 1933  (6.38)    7.05 

7th overtone 2194  (8.00) 2199  (7.26)    8.02 
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The fundamental frequency for the tube with the single hole is higher than that for complete 

cylinder because the hole effectively reduces the effective length of the tube. The overtones 

with frequencies greater 2
nd

 overtone approximately form a harmonic series with the 

fundamental frequency of the complete cylinder. 

 

 

Figure 3 shows the acoustic pressure distribution along the tube for the fundamental and the 

first two overtones for the cylinder with a single side hole. It is as simple matter to modify 

the mscript to change the hole’s radius and place more holes along the length of the tube. 

 

 
 

Fig. 3.   The three lowest modes of vibration of an open / open cylinder with a 

single side hole.   

 

   

303  Hz

592 Hz

852 Hz
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MATRIX METHOD 

 

Equations (2) and (3) can be rearranged to give the Webster’s horn equation ( ~1919) 

which gives a one-dimensional approximation for low-frequency sound waves along a rigid 

tube with a variable cross-sectional area A(x). 

 

 (5) 
2

2

2

( ) 1 ( ) ( )
( )

( )

d p x dA x dp x
k p x

dx A x dx dx
    

 

 (6)  
2

2

2

1 ( )
( ) ( )

( )

d dA x d
p x k p x

dx A x dx dx

 
   

 
 

 

 (7) 
2 2 f

k
c c

  


    

  

Equation (6) is very similar to the one-dimensional Schrodinger Equation 

 

 (8) 
2 2

2
( ) ( ) ( )

2

d
U x x E x

m dx
 

 
  

 
 

 

Equation (6) is an example of an eigenvalue/eigenfunction problem. An eigenvector of a 

square matrix  M  is a non-zero vector  p such that, when the matrix  M  multiplies  p

it yields a constant multiple (K) called the eigenvalue 
 
 (9) -   M K p            K  k

2 

 

The mscript  wav_tube_matrix.m  is used to find the eigenvalues and eigenvectors of 

equation (9). 

 

We have to form the matrix to represent the operator acting on p(x). Assume there are N 

discrete x values (x1, x2, …, xN). So we want to compute the acoustic pressure p at each x 

position. To do this, arrays are constructed for the first and second derivatives.  

 

Consider arrays of size Nx1 representing the known x values, the known cross-sectional 

area A values, known pressures at the end point p1 and pN  and the N-2 unknown pressures 

pi at the interior points   

         1 1 1 2 2 2 1 1 1i i i N N N N N Nx A p x A p x A p x A p x A p        
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The pressures p1 and pN at the ends of the tubes are always specified by the boundary 

conditions. The length of the tube is L and  is an end correction and so the effective 

length of the tube is Leff = L +  . 

 

The pressure pN at the mouth xN is always a pressure node (open end):   pN = 0 

 

The pressure p1 at the throat x1 is either a pressure node (open end) or antinode (closed end) 

 Pressure node (open end):     p1 = 0       

Pressure antinode (closed end):   p1 = pmax       (arbitrary value) 

    

We only have to find (N-2) values of pressure since the two end pressure values are known. 

Hence, in equation (9), the size of the matrix [M] is (N-2)x(N-2) and the column matrix [p] 

is of size (N-2)x1. 

 

 Matrix for the term 
1 ( )

( )

dA x

A x dx

 
 
 

 

The cross-section area A(x) is calculated from the given radii R(x) 

 

  A = (pi*R^2).* ones(1,num);     

 

The term dA(x)/dx is calculated by using the Matlab command gradient 

 

% Area Matrix 

dAdx = gradient(A,dx);                 % gradient of A wrt x 

dAdx_A = dAdx ./A; 

AREA_matrix = zeros(N-2,N-2); 

for cc = 1 : N-2; 

AREA_matrix(cc,cc) = dAdx_A(cc+1); 

end 
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  Matrix for the first derivative operator  
d

dx
 

Interior points:   pressure 1 1

2

i i

i

dp p p

dx x

 



                 x = x2 – x1 

At mouth:   pN = 0    2 2

1

0

2 2

N N N

N

dp p p p

dx x x

 



 
 

 
 

At throat: 

 pressure node   p1 = 0   3 1 3

2

0

2 2

dp p p p

dx x x

 
 

 
 

 pressure antinode   p1 =  p2     
3 1 3 2

2 2 2

dp p p p p

dx x x

 
 

 
 

 

Example for the first derivative matrix with N = 9 and N-2 = 7 

 

 

2

3

4

5

6

7

8

2

3

4

5

6

7

8

0
1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0
1

0 0 1 0 1 0 0
2

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

dp
dx

dp
dx

dp
dx

dp
dx

dp
dx

dp
dx

dp
dx

p

p

p

p
x

p

p

p


    
    

    
    
    

         
    
     
         

 

 

Element (1,1) = 0 for pressure node at throat and element (1,1) = -1 for pressure antinode. 

 

% Pressure gradient matrix 
offP = ones(N-3,1);  
dP_matrix = (zeros(N-2) + diag(offP,1) - diag(offP,-1)); 
if flagBC == 1; dP_matrix(1,1) = -1; end; 
dP_matrix = dP_matrix ./ (2*dx); 
  
AP_matrix = AREA_matrix * dP_matrix; 
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 Matrix for the second derivative   
2

2

d

dx
 

Interior points:   pressure
2

1 1

2

2

2

i i i

i

d p p p p

dx x

  



 

At mouth:   pN = p(xN) = 0    
2

1 2 1 2

2

1

2 0 2

2 2

N N N N N

N

d p p p p p p

dx x x

   



   
 

 
 

At throat: 

 pressure node   p1 = p(x1) = 0     
2

3 2 1 3 2

2

2

2 2 0

2 2

d p p p p p p

dx x x

   
 

 
 

  

pressure antinode   p1 = p(x1) = p(x2) = p2     

                                                     
2

3 2 1 3 2 2 3 2

2

2

2 2

2 2 2

d p p p p p p p p p

dx x x x

    
  

  
 

 

Example for the second derivative matrix with N = 9 and N-2 = 7 

 

 

2
2

2

2
3

2

2
4

2

2
5

2

2
6

2

2
7

2

2
8

2

2

3

4

52

6

7

8

2
1 1 0 0 0 0 0

1 2 1 0 0 0 0

0 1 2 1 0 0 0
1

0 0 1 2 1 0 0

0 0 0 1 2 1 0

0 0 0 0 1 2 1

0 0 0 0 0 1 2

d p

dx

d p

dx

d p

dx

d p

dx

d p

dx

d p

dx

d p

dx

p

p

p

p
x

p

p

p




 
    
    

    
    
    

         
    

    
        

 

 

Element (1,1) = -2 for pressure node at throat and element (1,1) = -1 for pressure antinode. 

 
% Make Second Derivative Matrix 
off = ones(N-3,1);                  
SD_matrix = (2*eye(N-2) - diag(off,1) - diag(off,-1)); 
if flagBC == 1; SD_matrix(1,1) = 1; end 
SD_matrix = SD_matrix ./dx2; 
  
Matrix = SD_matrix - AP_matrix ;  
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where  -
2

2

1 ( )

( )

d dA x d

dx A x dx dx

 
  

 
Matrix 

 

To find the eigenvalues and eigenvectors of the matrix [M] given by equation (9) we can 

use the Matlab command eigs. You can’t use the command eig because it often produces an 

aliasing effect for the eigenvectors. 

 

To find the first Neig eigenvalues: 

SIGMA = 'sm';   
[e_funct e_values] = eigs(Matrix,Neig,SIGMA); 

 

The eigs command eigs(Matrix,Neig,SIGMA) finds the smallest [‘sm’] Neig eigenvalues and 

eigenvectors of Matrix .  

 

To extract the eigenvalues K = k
2
: 

% All Eigenvalues 1, 2 , ... N-2    wave number k 
k2 = zeros(1,Neig); 
for cc = 1 : Neig 
 k2(cc) = e_values(cc,cc); 
end 

 

To extract the eigenvectors for the pressure distribution: 

% Corresponding Eigenfunctions 1, 2, ... ,n 
clear y 
p = zeros(N,Neig);               % axial pressure 
for cn = 1 : Neig 
if flagBC == 1; yBC = e_funct(1,cn); else yBC = 0; end;     
p(:,cn) = [yBC; e_funct(:,cn); 0]; 
end % for 

 

When Matlab finds the eigenvalues, the order in which they are assigned is not always from 

the lowest to the highest value. 

 

The eigenvalues for the frequency are displayed in the Command Window and the 

eigenvectors for pressure are shown in Figure Windows.  
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SIMULATIONS:   NORMAL MODES 
 

The mscript  wav_tube_matrix.m  can be used to investigate the normal modes of 

vibration (natural frequencies of vibration and pressure distribution within the tube) of a 

large variety of tubes of differing lengths and profiles. As an example, we will consider a 

range of tubes with dimensions related to the Strasser oboe. No end correction is used in 

the simulations. 

 

The length of a Strasser oboe with a reed staple in place but without the reed: 

 

L = 62.53x10
-2

 m 

 

The radius at the throat and radius at the mouth: 

 

athroat = 0.115x10
-2

 m      amouth = 1.82x10
-2

 m  

 

average radius   aavg = 0.9675x10
-2

 m 

 

Speed of sound  c = 343 m.s
-1

 

 

 

Tube Natural frequencies [Hz]      ratio to fundamental  ( f / f1 ) 

cylinder 

 (c / o) 

137.2 

(1.00) 

411.5 

(3.00) 

685.8 

(5.00) 

960.2 

(7.00) 

1234.5 

(9.00) 

1508.8 

(11.00) 

1783.2 

(13.00) 

2057.5 

(15.00) 

cylinder 

(o / o) 

274.3 

(1.00) 

548.5 

(2.00) 

822.8 

(3.00) 

1097.1 

(4.00) 

1371.3 

(5.00) 

1645.6 

(6.00) 

1919.9 

(7.00) 

2194.1 

(8.00) 

cone 

(o / o) 

274.3 

(1.00) 

548.5 

(2.00) 

822.8 

(3.00) 

1097.1 

(4.00) 

1371.3 

(5.00) 

1645.6 

(6.00) 

1919.9 

(7.00) 

2194.1 

(8.00) 

cone 

(c /o) 

257.1 

(1.00) 

515.5 

(2.00) 

775.7 

(3.02) 

1038.2 

(4.04) 

1302.7 

(5.07) 

1568.9 

(6.10) 

1836.6 

(7.14) 

2105.5 

(8.19) 

oboe 234.4 

(1.00) 

547.2 

(2.33) 

752.9 

(3.21) 

1002.6 

(4.28) 

1265.2 

(5.40) 

1543.9 

(6.59) 

1824.0 

(7.78) 

2102.7 

(8.97) 

trumpet 

(scaled) 

70.5 

(1.00) 

192.5 

(2.73) 

292.2 

(4.15) 

392.1 

(5.56) 

499.8 

(7.09) 

609.11 

(8.64) 

718.1 

(10.19) 

827.9 

(11.75) 

 

The fundamental frequency is f1. 
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Cylinder (closed / open)     L = 0.6253 m   aavg = 0.9675x10
-2

 m 
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Cylinder (open / open)     L = 0.6253 m   aavg = 0.9675x10
-2

 m 
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Cone (open / open)     L = 0.6253 m   athroat = 0.115x10
-2

 m   amouth = 1.82x10
-2

 m 
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Cone (closed / open)     L = 0.6253 m   athroat = 0.115x10
-2

 m   amouth = 1.82x10
-2

 m 

 
 



20 
 

Oboe (open / open)     L = 0.6253 m   athroat = 0.115x10
-2

 m   amouth = 1.82x10
-2

 m 
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Scaled Trumpet (open / open)     L = 0.6253 m     amouth = 1.82x10
-2

 m 
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Cylindrical organ pipes with both ends open have a full harmonic series of overtones 

 fn = n f1        n = 1, 2, 3, … 

 

Cylindrical organ pipes with closed / open boundary conditions have only the odd 

harmonics 

 f2n-1 = (2n-1) f1 

 

For cylindrical tubes, the pressure varies as a sinusoidal function along the length of the 

tube 

 

A cone profile tube that is open at both ends has the same set of natural frequencies as a 

cylindrical tube of the same length – a full harmonic sequence. 

 

A cone profile tube that is closed / open, has an approximate harmonic series if the neck 

region is narrow. The “even” harmonics and “odd” harmonics can be both excited where as 

in the cylindrical tube which is closed / open only the odd harmonics can be excited. The 

lower overtones more closely match the harmonic series. The narrower the neck, then the 

distinction between an open or closed end reduces – there being no physical difference if 

the cone is complete.  

 

Oboe: for an oboist to achieve good, clear low frequencies tones, it is important that the 

low frequencies form a harmonic series. Does this model of the oboe achieve this good and 

clear tone at low frequencies? Our model does not include the reed. When a reed is placed 

on the oboe, it slightly lowers the natural frequencies of vibration. Is our model oboe well 

designed to offset the effect of the reed? 

 

 

The shape of the standing wave patterns for the trumpet shows: 

 

 Tendency for pressure nodes to occur near the throat where the tube is most 

constricted. 

 The bell has the greatest effect on the lower overtones – the fundamental frequency 

of the scaled trumpet being only 70.5 Hz and hence completely out of tune, 

however, the overtones 1 to 4 are almost harmonic to the same virtual fundamental 

(96.3 Hz) and therefore, nearly in tune with one another. 

1
st
 overtone:  296.3 Hz = 193 Hz (193 Hz) 

2
nd

 overtone: 396.3 Hz = 289 Hz (292 Hz) 

3
rd

 overtone:  496.3 Hz = 385 Hz (392 Hz) 

4
th

 overtone:  596.3 Hz  = 482 Hz (500 Hz). 
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The trumpet is an example of a brass instrument that consists of a pipe, closed at one end 

by the player’s lips at the mouth piece and a bell shaped flange at the other. The brass 

instruments even though they have closed and open boundary conditions at the ends, a full 

range of even and odd harmonics can be played because of the mouthpiece and bell of the 

instrument. The brass player’s lips act as a controlled driving mechanism. At the normal 

modal frequencies, the air column vibrations will cooperate with the driving mechanisms to 

sustained steady oscillations. The data used for the profile is only for an imaginary trumpet 

and the model we are using is very crude because at the flanged end of the trumpet the 

wave fronts will no longer be plane and perpendicular to the x-axis. Also, at the bell end, 

the end correction used is not really valid because of the large radius at the end of the bell.  
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VISUALIZATION OF THE PRESSURE DISTRIBUTION 
 
The pressure distribution can be visualized along the length a cylindrical tube that has the 

boundary conditions closed / open. The input parameters are the mode number and length 

of the tube. 

 

 
 

     pipe_co.m 
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APPENDIX 
 

Original data from Johnston for the length and radius of a trumpet and the human voice 

tract. 

 

 
length: trumpet (m) radius: trumpet (m) length: voice tract (m) radius: voice tract  (m) 

0 0.0899 0 0.0091 

0.005 0.0899 0.005 0.0071 

0.010 0.0890 0.010 0.0064 

0.015 0.0872 0.015 0.0056 

0.020 0.0856 0.020 0.0113 

0.025 0.0837 0.025 0.0091 

0.030 0.0810 0.030 0.0071 

0.035 0.0765 0.035 0.0056 

0.040 0.0763 0.040 0.0045 

0.045 0.0631 0.045 0.0045 

0.050 0.0451 0.050 0.0045 

0.055 0.0360 0.055 0.0056 

0.060 0.0315 0.060 0.0064 

0.065 0.0279 0.065 0.0071 

0.070 0.0252 0.070 0.0080 

0.075 0.0234 0.075 0.0091 

0.080 0.0234 0.080 0.0091 

0.085 0.0252 0.085 0.0071 

0.090 0.0279 0.090 0.0101 

0.095 0.0315 0.095 0.0113 

0.100 0.0405 0.100 0.0126 

0.105 0.0451 0.105 0.0144 

0.110 0.0540 0.110 0.0160 

0.115 0.0586 0.115 0.0160 

0.120 0.0631 0.120 0.0160 

0.125 0.0570 0.125 0.0160 

0.24 0.0631 0.130 0.0160 

0.47 0.0714 0.135 0.0160 

1.195 0.0765 0.140 0.0160 

1.220 0.0792 0.145 0.0160 

1.245 0.0820 0.150 0.0144 

1.270 0.085 0.155 0.0126 

1.295 0.0910 0.160 0.0126 

1.320 0.1000 0.165 0.0126 

1.345 0.1116 0.170 0.0126 

1.375 0.1323   

1.395 0.1557   

1.420 0.1908   

1.445 0.2322   

1.470 0.2853   

1.52 0.4725   

1.53 0.5850   

 


