

Ian Cooper School of Physics, University of Sydney ian.cooper@sydney.edu.au

DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

wav_shm_sine.m wav_shm_sine_cal.m

mscripts are used to investigate simple harmonic motion through the sine function using a GUI. They also provide a template for creating your own simple GUI using input boxes.

SIMPLE HARMONIC MOTION (SHM)

Linear simple harmonic motion is motion in a straight line with an acceleration proportional to the distance from an equilibrium position and directed towards that equilibrium point.

Consider SHM along the Y-axis and the equilibrium position corresponding to the origin at y = 0. In SHM, an object will oscillate around the equilibrium position with an amplitude *A* and period *T*. The frequency *f* and angular frequency ω for the motion are

$$f = \frac{1}{T}$$
 $\omega = 2\pi f = \frac{2\pi}{T}$

The displacement y(t) at any time *t* is given by the sine function which can be expressed as

$$y(t) = A\sin\left(\frac{2\pi t}{T} + \phi\right)$$
$$y(t) = A\sin\left(2\pi f t + \phi\right)$$
$$y(t) = A\sin\left(\omega t + \phi\right)$$

where ϕ is the initial phase angle [radians]. It gives the value of y at time t = 0

initial position
$$y(0) = A\sin(\phi)$$

If $\phi = \frac{\pi}{2}$ then the displacement y can be expressed as

$$y(t) = A\cos\left(\frac{2\pi t}{T}\right)$$

To illustrate the dependence of the displacement y on time t, period T and initial phase angle ϕ you can run the mscript wav_shm_sine.m. This mscript uses a GUI to input the parameters and to view the graphical response. The figures below show the Figure Window for the GUI.

THE Graphical User Interface

You can use the two mscripts **wav_shm_sine.m** and **wav_shm_sine.m** as templates to create a simple GUI for your own simulations.

^{&#}x27;String',textD,'FontSize',fs, ...
'HorizontalAlignment','center','FontWeight','bold', ...
'BackgroundColor',colorBG,'ForegroundColor',colorFG);

```
Step 3
     Initial values for input boxes and create input boxes A, B, C and D
     % Input Initial Data
     ym = 10; T = 5; phi = 0; tMax = 30; Nt = 500;
     boxA = ym; boxB = T; boxC = phi; boxD = tMax;
% box 1 A -----
pos = [220 \ 630 \ 100 \ 30];
colorBG = [1 \ 1 \ 1];
colorFG = [0 \ 0 \ 0];
fs = 14;
Edit A = uicontrol(gcf, 'Style', 'edit', 'Position', pos, ...
         'String', boxA, 'FontSize', fs, 'BackgroundColor', colorBG, ...
         'Callback', 'boxA = str2num(get(Edit A, ''String''));');
 % box 2 B -----
 pos = [220 540 100 30];
 colorBG = [1 \ 1 \ 1];
 colorFG = [0 \ 0 \ 0];
 fs = 14;
 Edit B = uicontrol(gcf, 'Style', 'edit', 'Position', pos, ...
         'String',boxB,'FontSize',fs,'BackgroundColor',colorBG, ...
         'Callback', 'boxB = str2num(get(Edit B, ''String''));');
% box 3 C -----
 pos = [220 \ 390 \ 100 \ 30];
 colorBG = [1 \ 1 \ 1];
 colorFG = [0 \ 0 \ 0];
 fs = 14;
 Edit C = uicontrol(gcf, 'Style', 'edit', 'Position', pos, ...
         'String',boxC,'FontSize',fs,'BackgroundColor',colorBG, ...
         'Callback','boxC = str2num(get(Edit C, ''String''));');
                   _____
% box 4 D -----
 pos = [220 \ 250 \ 100 \ 30];
 colorBG = [1 \ 1 \ 1];
 colorFG = [0 \ 0 \ 0];
 fs = 14;
 Edit D = uicontrol(gcf, 'Style', 'edit', 'Position', pos, ...
         'String',boxD,'FontSize',fs,'BackgroundColor',colorBG, ...
         'Callback', 'boxD = str2num(get(Edit D, ''String''));');
```

Step 5 Create subplot regions for text and graphs

Description of input parameters

```
plot1 = subplot('Position',[0.01 0.2 0.2 0.7]);
set(gca,'Xlim',[0 10]);
set(gca,'Ylim',[0 10]);
text(0,9,'amplitude A','FontSize',12');
text(0,8.5,'0 to 10 [m]','FontSize',12');
text(0,7,'period T [s]','FontSize',12');
text(0,5,'initial phase angle','FontSize',12');
text(0,4.5,' \phi ','FontSize',12');
text(0,4,'0 to 2 \pi [rad]','FontSize',12');
text(0,2,'max display time [s]','FontSize',12');
axis off
```

Output parameters

```
plot1 = subplot('Position', [0.4 0.6 0.5 0.3]);
set(gca, 'Xlim', [0 10]);
set(gca, 'Ylim', [0 10]);
text(2,9,'y = A sin(2\pi t / T + \phi)', 'FontSize', 12');
text(2,7,'y = A sin(2\pi f t + \phi)', 'FontSize', 12');
text(2,5,'y = A sin(\omega t + \phi)','FontSize',12');
tm1 = 'frequency f = ';
tm2 = num2str(f, '&3.3f\n');
tm3 = ' Hz';
tm = [tm1 tm2 tm3];
text(2,3,tm,'FontSize',12');
tm1 = 'angular frequency \omega = '; tm2 =
num2str(w, '%3.3f');
tm3 = ' rad/s';
tm = [tm1 tm2 tm3];
text(2,1,tm,'FontSize',12');
axis off
```

Plot

```
plot1 = subplot('Position',[0.4 0.1 0.5 0.4]);
xP = t; yP = y;
plot(xP,yP,'k','lineWidth',2);
axis on; grid on;
xlabel('time t [s]','FontSize',12');
ylabel('y [m]','FontSize',12');
set(gca,'Ylim',[-10 10]);
```

Step 6 Create the mscript for the CallBack for the RUN pushbutton
 Reads values entered into input boxes, calculates output parameters and updates graph and output parameters

```
% wav_shm_sine_cal.m
% CallBack mscript for wav_shm_sine.m
% Reads values from input boxes ------
ym = boxA;
T = boxB;
phi = boxC;
tMax = boxD;
t = linspace(0,tMax,Nt);
y = ym .* sin(2*pi*t/T + phi);
f = 1 / T; w = 2*pi*f;
```

```
plot1 = subplot('Position', [0.4 0.1 0.5 0.4]);
   xP = t; yP = y;
   plot(xP,yP,'k','lineWidth',2);
   axis on; grid on;
   xlabel('time t [s]', 'FontSize', 12');
   ylabel('y [m]','FontSize',12');
   set(gca, 'Ylim', [-10 10]);
% Output parameters ------
    plot1 = subplot('Position', [0.4 0.6 0.5 0.3]);
    set(gca,'Xlim',[0 10]);
    set(gca, 'Ylim', [0 10]);
    text(2,9,'y = A sin(2\pi t / T + \phi)', 'FontSize',12');
    text(2,7,'y = A sin(2\pi f t + \phi)','FontSize',12');
    text(2,5,'y = A sin(\omega t + \phi)', 'FontSize', 12');
    colorBG = [0.95 0.9 0.9];
    tmA = 'yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy ;
    text h =
    text(2,3,tmA,'FontSize',16','color',colorBG,'EdgeColor',colorBG,
     . . .
    'BackgroundColor',colorBG);
    tm1 = 'frequency f = ';
    tm2 = num2str(f, '\$3.3f\n');
    tm3 = ' Hz';
    tm = [tm1 tm2 tm3];
    text(2,3,tm,'FontSize',12');
    text h =
    text(2,1,tmA,'FontSize',16','color',colorBG,'EdgeColor',colorBG,
     . . .
    'BackgroundColor',colorBG);
    tm1 = 'angular frequency \omega = '; tm2 = num2str(w,'%3.3f');
    tm3 = ' rad/s';
    tm = [tm1 tm2 tm3];
    text(2,1,tm,'FontSize',12');
    axis off
```