
1

DOING PHYSICS WITH PYTHON

Ian Cooper

matlabvisualphysics@gmail.com

QUANTUM MECHANICS

A NUMERICAL APPROACH

FIRST AND SECOND DERIVATIVES AS

OPERATORS

DOWNLOAD DIRECTORIES FOR MATLAB SCRIPTS

 qm003B.py

 Google drive

 GitHub

Operators play a significant role in quantum mechanics. Operators in

quantum mechanics are mathematical entities used to represent

physical processes that result in the change of the state vector of the

system. In this article, we will consider operators as matrices to

compute the first derivative and second derivates of functions of the

form f(x).

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts

2

FIRST AND SECOND DERIVATIVES OF A ONE VARIABLE

FUNCTION

Consider the one variable function () ()y x f x . Then the first

derivative of the function ()y x is

 (1)
()

0

()()
lim
x

y x x y xdy x dy

dx dx x →

+  − 
 =  

 

The first derivative tells us how rapidly the function ()y x varies when

we change the value of x by a tiny amount dx .

 (2)
dy

dy dx
dx

 
=  
 

If we change x by the amount dx then the change in y is dy and is

proportional to dx with the constant of proportionality equal to the

first derivative /dy dx . Graphically the first derivative gives the slope

or gradient of the tangent of the curve ()y x verses x .

We can approximate the first derivative at x by the following:

 (3a)
() ()

x

dy y x x y x

dx x

+  −



 forward approximation

 (3b)
() ()

x

dy y x y x x

dx x

− − 



 backward approximation

 (3c)
() ()

2x

dy y x x y x x

dx x

+  − − 



 central difference approximation

3

Mathematically, equations 3 are only correct in the limit 0x → . In

calculating derivatives numerically, x has to be small enough to

provide sufficient accuracy of the result. There is an optimal value for

x , since, if x is too small you get round-off errors. For most

applications, the central difference approximation is preferred over

the forward or backward methods. It is more difficult to achieve good

accuracy in numerical differentiation compared to numerical

integration. The main reason comes from the fact that we are taking

the ratio of two differences.

The second derivative can be approximated by the equation

 (4)
2

2 2

(1) 2 () (1)

n

d y y n y n y n

dx x

+ − + −




DIFFERENTIATION USING MATRICES

The process of differentiation can be considered as an operator acting

upon a function. A differential operator is represented by a square

NxN matrix that acts on the function y given by a Nx1 column vector

to give the derivative of the function y’ also as an Nx1 column vector.

The matrix elements can be easily deduced from the definition of the

first derivative and second derivative approximations.

4

The first derivative matrix equation

1 1

2 2

3 3

1 1

' 2 2 0 ... 0 0

' 1 0 1 ... 0 0

' 0 1 0 ... 0 01

...... ...2

0 0 ... 1 0 1'

0 0 ... 0 2 2'

N N

N N

y y

y y

y y

x

y y

y y

− −

−    
    

−
    
    −

=    
    

    −
    

−       

The second derivative matrix equation

1 1

2 2

3 3

2

1 1

'' 1 2 1 ... 0 0

'' 1 2 1 ... 0 0

'' 0 1 2 1 0 01

...... ...

0 0 ... 2 0 1''

0 0 ... 1 2 1''

N N

N N

y y

y y

y y

x

y y

y y

− −

−    
    

−
    
    −

=    
    

    −
    

−       

The differentiation processes can be written as functions in Python

(qm003B.py)

5

def firstDer(N,dx):

 v = ones(N-1)

 M1 = diag(-v,-1)

 M2 = diag(v,1)

 M = M1+M2

 M[0,0] = -2; M[0,1] = 2; M[N-1,N-2] = -2; M[N-1,N-1] = 2

 MF = M/(2*dx)

 return MF

def secondDer(N,dx):

 v = -2*ones(N)

 M1 = np.diag(v)

 v = np.ones(N-1)

 M2 = np.diag(v,1)

 M3 = np.diag(v,-1)

 M = M1+M2+M3

 M[0,0] = 1; M[0,1] = -2; M[0,2] = 1

 M[N-1,N-3] = 1; M[N-1,N-2] = -2; M[N-1,N-1]=1

 MS = M/(dx**2)

 return MS

6

Example qm003B.py

The first and second derivatives of the function

  sin() 199 0,20y x N x= = 

#%% Function to be differentiated

N = 199 # Number of array elements

x1 = 0; x2 = 20 # Function limits

x = linspace(x1,x2,N) # x array

dx = x[2]-x[1]

y = sin(x) # Function to be differentiated

MF = firstDer(N,dx) # 1st derivative matrix

FD = MF@y # 1st derivative

MS = secondDer(N,dx) # 2nd derivative matrix

SD = MS@y # Second derivative

#%% GRAPHICS

plt.rcParams['font.size'] = 12

plt.rcParams["figure.figsize"] = (5,4)

fig, ax = plt.subplots(1)

ax.xaxis.grid(); ax.yaxis.grid()

ax.set_ylabel('y, dy/dx, -d2y/dx2 ',color= 'black')

ax.set_xlabel('x ',color = 'black')

ax.set_xlim([0, 20]); ax.set_ylim([-1.1, 1.1])

7

ax.set_yticks(np.arange(-1,1.2,0.50))

fig.tight_layout()

ax.plot(x,y,'b', lw = 3, label = 'y')

ax.plot(x,FD,'r',lw = 2, label = 'dy/dx')

ax.plot(x,-SD,'k',lw = 1, label = '-d2y/dx2 ')

ax.legend()

fig.savefig('a1.png')

Analytic derivatives

2 2
sin() / cos() / sin()y x dy dx x d y dx x y= = − = =

So, with N = 199, there is excellent agreement between the numerical

estimates for the derivatives compared to the analytical results. If N is

too small, then there will be poor agreement.

