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Operators play a significant role in quantum mechanics. Operators in 

quantum mechanics are mathematical entities used to represent 

physical processes that result in the change of the state vector of the 

system. In this article, we will consider operators as matrices to 

compute the first derivative and second derivates of functions of the 

form f(x). 
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FIRST AND SECOND DERIVATIVES OF A ONE VARIABLE 

FUNCTION 

Consider the one variable function ( ) ( )y x f x . Then the first 

derivative of the function ( )y x  is  

 (1) 
( )

0

( )( )
lim
x

y x x y xdy x dy

dx dx x →

+  − 
 =  

 
 

The first derivative tells us how rapidly the function ( )y x  varies when 

we change the value of x by a tiny amount dx . 

 (2) 
dy

dy dx
dx

 
=  
 

 

If we change x  by the amount dx  then the change in y  is dy  and is 

proportional to dx  with the constant of proportionality equal to the 

first derivative /dy dx . Graphically the first derivative gives the slope 

or gradient of the tangent of the curve ( )y x  verses x .  

We can approximate the first derivative at x by the following: 

 (3a) 
( ) ( )

x

dy y x x y x

dx x

+  −



               forward approximation 

 (3b) 
( ) ( )

x

dy y x y x x

dx x

− − 



              backward approximation 

 (3c) 
( ) ( )

2x

dy y x x y x x

dx x

+  − − 



  central difference approximation 
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Mathematically, equations 3 are only correct in the limit 0x → . In 

calculating derivatives numerically, x  has to be small enough to 

provide sufficient accuracy of the result. There is an optimal value for 

x , since, if x is too small you get round-off errors. For most 

applications, the central difference approximation is preferred over 

the forward or backward methods. It is more difficult to achieve good 

accuracy in numerical differentiation compared to numerical 

integration. The main reason comes from the fact that we are taking 

the ratio of two differences. 

 

The second derivative can be approximated by the equation 

 (4) 
2

2 2

( 1) 2 ( ) ( 1)

n

d y y n y n y n

dx x

+ − + −



 

 

DIFFERENTIATION USING MATRICES 

The process of differentiation can be considered as an operator acting 

upon a function. A differential operator is represented by a square 

NxN matrix that acts on the function y given by a Nx1 column vector 

to give the derivative of the function y’ also as an Nx1 column vector.   

 

The matrix elements can be easily deduced from the definition of the 

first derivative and second derivative approximations. 
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The first derivative matrix equation 

                

1 1

2 2

3 3

1 1

' 2 2 0 ... 0 0

' 1 0 1 ... 0 0

' 0 1 0 ... 0 01

...... ...2

0 0 ... 1 0 1'

0 0 ... 0 2 2'

N N

N N

y y

y y

y y

x

y y

y y

− −

−    
    

−
    
    −

=    
    

    −
    

−       

 

 

The second derivative matrix equation 

           

1 1

2 2

3 3

2

1 1

'' 1 2 1 ... 0 0

'' 1 2 1 ... 0 0

'' 0 1 2 1 0 01

...... ...

0 0 ... 2 0 1''

0 0 ... 1 2 1''

N N

N N

y y

y y

y y

x

y y

y y

− −

−    
    

−
    
    −

=    
    

    −
    

−       

 

 

The differentiation processes can be written as functions in Python 

(qm003B.py) 
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def firstDer(N,dx): 

    v  = ones(N-1) 

    M1 = diag(-v,-1) 

    M2 = diag(v,1) 

    M = M1+M2 

    M[0,0] = -2; M[0,1] = 2; M[N-1,N-2] = -2; M[N-1,N-1] = 2 

    MF = M/(2*dx)  

    return MF 

 

def secondDer(N,dx): 

     v = -2*ones(N) 

     M1 = np.diag(v) 

     v = np.ones(N-1) 

     M2 = np.diag(v,1) 

     M3 = np.diag(v,-1) 

     M = M1+M2+M3 

     M[0,0] = 1; M[0,1] = -2; M[0,2] = 1 

     M[N-1,N-3] = 1; M[N-1,N-2] = -2; M[N-1,N-1]=1 

     MS = M/(dx**2)  

     return MS  
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Example                qm003B.py 

The first and second derivatives of the function  

  sin( ) 199 0,20y x N x= =   

#%% Function to be differentiated 

N = 199                  # Number of array elements 

x1 = 0; x2 = 20          # Function limits 

x = linspace(x1,x2,N)    # x array 

dx = x[2]-x[1] 

y  = sin(x)              #  Function to be differentiated  

MF = firstDer(N,dx)      #  1st derivative matrix 

FD = MF@y                # 1st derivative 

MS = secondDer(N,dx)     # 2nd derivative matrix 

SD = MS@y                # Second derivative 

 

#%%  GRAPHICS 

plt.rcParams['font.size'] = 12 

plt.rcParams["figure.figsize"] = (5,4) 

fig, ax = plt.subplots(1) 

ax.xaxis.grid(); ax.yaxis.grid() 

ax.set_ylabel('y, dy/dx, -d$^2$y/dx$^2$ ',color= 'black') 

ax.set_xlabel('x ',color = 'black') 

ax.set_xlim([0, 20]); ax.set_ylim([-1.1, 1.1]) 
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ax.set_yticks(np.arange(-1,1.2,0.50)) 

fig.tight_layout() 

ax.plot(x,y,'b', lw = 3, label = 'y') 

ax.plot(x,FD,'r',lw = 2, label = 'dy/dx') 

ax.plot(x,-SD,'k',lw = 1, label = '-d$^2$y/dx$^2$ ' ) 

ax.legend() 

# fig.savefig('a1.png') 

 

Analytic derivatives 

2 2
sin( ) / cos( ) / sin( )y x dy dx x d y dx x y= = − = =  

So, with N = 199, there is excellent agreement between the numerical 

estimates for the derivatives compared to the analytical results. If N is 

too small, then there will be poor agreement. 


