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INTRODUCTION 

The state of a system can be represented by a vector and operators by 

matrices. So, it is very convenient to use Python for simulating 

quantum systems.  

 State vectors in Dirac notation: 

  column vector ket      

  row vector       bra      

 

Differential operators: 

 matrices (ket-bras) acting on those vectors   

 

Dirac introduced bra-ket notation for state vectors and operators in 

1930. This notation emphasized and clarified the role of inner 

products and linear function spaces and his idea of the bra-ket 

notation is fundamental to our understanding of quantum mechanics.  

 

Two key concepts underpinning quantum physics are the Schrodinger 

equation and the Born probability equation.  
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The Schrodinger equation tells us how the state of a system evolves in 

time. The [1D] time dependent Schrodinger equation is 

 (1) ˆ( , ) ( , )i x t H x t
t


 = 


 

 

where ( , )x t  is the ket vector representing the state of the system 

(particle) and Ĥ the Hamiltonian operator. 

 

In our approach, the state vector evolves in time, and operators 

corresponding to observables (and hence their eigenbasis of vectors) 

are time independent and the Hamiltonian is time-independent. 

 

When a measurement of a physical quantity A is made on a particle 

initially in the state ( , )x t , the Born equation provides a way to 

calculate the probability P(A0) that a particular result A0 is obtained 

from the measurement.  

 (2) ( )
2

0 0~P A A                              
*

0 0A A=  

 

where 0A  is the state vector corresponding to the particular result A0 

having been measured, and 0A   is called the inner product. 
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EXPECTATION VALUES OF OBSERVABLES 

  
The wavefunction ( , )x t  itself has no definite physical meaning, 

however, by performing mathematical operations on the 

wavefunction we can predict the mean values (expectation values) 

and their uncertainties of physical quantities such as position, 

momentum and energy. 

  

The expectation value of an observable quantity A is the quantum-

mechanical prediction for the mean value of <A>. 

  

We will consider a particle to be an electron and that we know the 

wavefunction ( , )x t  for the system of the single electron. Since an 

electron does exist within the system, the probability of finding the 

electron is 1. 

        (1)                    

  

The quantity *
( , ) ( , )x t x t   is called the probability density 

function. 

  

The probability of finding the electron in the region from x1 to x2 is 

        (2)       ( )
2

1

*
1 2 ( , ) ( , )

x

x
prob x x x x t x t dx  =    
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Consider N identical systems, each containing an electron. We 

make N identical measurements on each system of the physical 

parameter A. In a quantum system, each measurement is different. 

From our N measurements, we can calculate the mean 

value A  and the standard deviation A  of the parameter A.  Since 

we do not have a complete knowledge of the system, we only can 

estimate probabilities. 

        

The mean value of an observable quantity A is found by calculating 

its expectation value A  by evaluating the integral 

        (3)       * ˆ( , ) ( , )A x t A x t dx


−
=    

  

where Â  is the quantum-mechanical operator corresponding to the 

observable quantity A, and its uncertainty is the standard deviation 

of A. The uncertainty A  is given by 

        (4)       
1/2

22
A A A  = −

 
                 

  

        (5)       2 * ˆ ˆ( , ) ( , )A x t A A x t dx


−
=    

  

The quantity * ˆ( , ) ( , )x t A x t  represents the probability 

distribution for the observable A and is often shown as a 

probability density vs position graph.  Probability distributions 
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summarize the extent to which quantum mechanics can predict the 

likely results of measurements. The probability distribution is 

characterized by two measures – its expectation value which is the 

mean value of the distribution and its uncertainty which is the 

represents the spread in values about the mean and is given by 

the standard deviation. The R.H.S. of the integrals (3) and (5) are 

known as sandwich integrals. 

  

  

For our [1D] system, a particle in any state must have an 

uncertainty in position x  and uncertainty in momentum p  that 

obeys the inequality called the Heisenberg Uncertainty Principle 

        (6)       
2

x p    

  

The Heisenberg Uncertainty Principle tells us that it is impossible 

to find a state in which a particle can has definite values in both 

position and momentum. Hence, the classical view of a particle 

following a well-defined trajectory is demolished by the ideas of 

quantum mechanics. 

  

Table 1 gives a summary of the most important operators for [1D] 

quantum systems. Expectation values maybe time dependent. 
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   Table 1.  Observables, Operators and Expectation values 
 

  
  
  

  

  

  

  

  

  

  

Observable Operator Expectation Value 

probability 1 *
( , ) ( , ) 1x t x t dx



−
  =  

  

position x  

 
*

( , ) ( , )x x t x x t dx


−
=    

x2 x2  

 
2 * 2

( , ) ( , )x x t x x t dx


−
=    

momentum 
i

x


−


 

  

  

 

 
* ( , )

( , )
x t

p i x t dx
x



−


= − 

  

p2
  

 

2
2

2
x


−


 

  

 

 

2
2 2 *

2

( , )
( , )

x t
p x t dx

x



−

 
= − 


  

Potential 
energy 

U  

 
*

( , ) ( ) ( , )U x t U x x t dx


−
=    

 

Kinetic energy K 2 2

2

( , )
( , )

2

x t
K x t dx

m x



−

 
= − 


  
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EXAMPLE 

The eigenfunctions for an electron confined to an infinite potential 

well of width a are 

 
2

sin 1, 2, 3, ...n

n x
y n

L a

 
= = 

 
 

 

The potential energy U is zero within the well and infinite outside the 

well. Consider the case when n = 2 (first excited state) and the well 

width is 1.00 nm.  The wavefunction for the eigenstate n = 2 is shown 

in the figure. 

 

Knowing the wavefunction y, it is a straight forward procedure to 

calculate expectation values of key physical quantities and test the 

uncertainty principle using Python.  The code qm004.py was used to 
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make the plot and do the calculations. A summary of the calculations 

are displayed in the Console Window. 

prob =  1.000 

xavg =  0.500  nm 

deltax =  2.658e-10  m 

deltap =  6.626e-25  N.s 

Delta =  1.761e-34 J.s 

<K> =  1.504e+00 eV 

lambda =  1.000 nm 

p =  6.626e-25 N.s 

K =  1.504e+00 eV 

 

The probability of finding the electron is 1 and the average position of 

the electron is at the centre of the well (< x > = 0.500 nm). The 

uncertainty principle is satisfied as 

 34 35
1.761 10 / 2 5.27 10Delta x p

− −
=   =   =   

The total energy E is equal to the sum of the kinetic energy K and the 

potential energy U 

E = K + U = K     since U = 0 inside the well 

The theoretical eigenstate total energy is 

 
2 2

2
1.504 eV

2 2e e

h p h
p E

m m 
= = = =  

which agrees with the expectation calculation of the total energy 

 < E > = 1.504 eV. 
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# -*- coding: utf-8 -*- 

""" 

# qm004.py        April 2024 

# Ian Cooper         matlabvisualphysics@gmail.com 

# QUANTUM MECHANICS 

#  EXPECTATION VALUES AND THE UNCERTAINTY PRINCIPLE 

# Website: https://d-arora.github.io/Doing-Physics-With-Matlab/ 

# Documentation: https://d-arora.github.io/Doing-Physics-With-

Matlab/pyDocs/qm002.pdf 

""" 

 

import time 

import math 

import numpy as np 

import pylab as py 

from matplotlib import pyplot as plt  

from numpy import linspace,sin,cos,exp, zeros, ones, pi, diag, sqrt, 

real, imag 

from scipy.integrate import odeint, quad, dblquad, simps 

 

from matplotlib.ticker import (MultipleLocator,  

                               FormatStrFormatter,  

                               AutoMinorLocator)  

 

#%% FUNCTIONS 

 

def firstDer(N,dx): 

    v  = ones(N-1) 

    M1 = diag(-v,-1) 

    M2 = diag(v,1) 

    M = M1+M2 
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    M[0,0] = -2; M[0,1] = 2; M[N-1,N-2] = -2; M[N-1,N-1] = 2 

    MF = M/(2*dx)  

    return MF 

 

def secondDer(N,dx): 

     v = -2*ones(N) 

     M1 = np.diag(v) 

     v = np.ones(N-1) 

     M2 = np.diag(v,1) 

     M3 = np.diag(v,-1) 

     M = M1+M2+M3 

     M[0,0] = 1; M[0,1] = -2; M[0,2] = 1 

     M[N-1,N-3] = 1; M[N-1,N-2] = -2; M[N-1,N-1]=1 

     MS = M/(dx**2)  

     return MS 

 

 

# INPUTS 

# Quantum number 

n = 2 

# Grid points 

N = 199 

# Well width 

a = 1e-9 

# m to nm 

L = 1e9 

 

# SETUP 

hbar = 1.054571817e-34; me = 9.11e-31;  

e = 1.602e-19; h = 6.626e-34 

# X grid 
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x1 = 0; x2 = a; x = linspace(x1,x2,N); dx = x[2] - x[1] 

# Wavefunction 

y = sqrt(2/a)*sin(n*pi*x/a) 

 

wL = 2*a/n 

p = h/wL 

K = p**2/(2*me) 

 

# Probability 

fn = y*y 

prob = simps(fn,x) 

 

# Expectation value & Uncertainty x 

fn = y*x*y 

xavg = simps(fn,x) 

fn = y*x**2*y 

x2avg = simps(fn,x) 

deltax = sqrt(x2avg - xavg**2)       

 

# Expectation value & Uncertainty p 

y1dash = firstDer(N,dx)@y 

fn = y*y1dash 

pavg = -1j*hbar*simps(fn,x) 

 

y2dash = secondDer(N,dx)@y 

fn = y*y2dash 

p2avg = -hbar**2*simps(fn,x) 

deltap = sqrt(p2avg - imag(pavg)**2) 

 

delta = deltax*deltap 
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# Expectation KE 

Kavg = -hbar**2*simps(fn,x)/(2*me) 

 

# Console output 

v = prob; print('prob =  %2.3f'  % v) 

v = xavg*L; print('xavg =  %2.3f  nm'  % v) 

v = deltax; print('deltax =  %2.3e  m'   % v) 

v = deltap; print('deltap =  %2.3e  N.s'   % v) 

v = delta; print('Delta =  %2.3e J.s'   % v) 

v = Kavg/e; print('<K> =  %2.3e eV'   % v) 

v = wL*L; print('lambda =  %2.3f nm'   % v) 

v = p; print('p =  %2.3e N.s'   % v) 

v = K/e; print('K =  %2.3e eV'   % v) 

 

#%% GRAPHICS 

plt.rcParams['font.size'] = 12 

plt.rcParams["figure.figsize"] = (5,4) 

 

fig, ax = plt.subplots(1) 

ax.xaxis.grid() 

ax.yaxis.grid() 

ax.set_ylabel('y  x10$^4$ ',color= 'black') 

ax.set_xlabel('x [nm]',color = 'black') 

fig.tight_layout() 

ax.plot(x,y/1e4,'b', lw = 2) 

 

 

# fig.savefig('a1.png') 

 


