
1

DOING PHYSICS WITH PYTHON

Ian Cooper

matlabvisualphysics@gmail.com

QUANTUM MECHANICS

A NUMERICAL APPROACH

OPERATORS: EXPECTATION VALUES AND

THE HEISENBERG UNCERTAINTY

PRINCIPLE

DOWNLOAD DIRECTORIES FOR MATLAB SCRIPTS

qm002.PY

 Google drive

 GitHub

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts

2

INTRODUCTION

The state of a system can be represented by a vector and operators by

matrices. So, it is very convenient to use Python for simulating

quantum systems.

 State vectors in Dirac notation:

 column vector ket 

 row vector bra 

Differential operators:

 matrices (ket-bras) acting on those vectors

Dirac introduced bra-ket notation for state vectors and operators in

1930. This notation emphasized and clarified the role of inner

products and linear function spaces and his idea of the bra-ket

notation is fundamental to our understanding of quantum mechanics.

Two key concepts underpinning quantum physics are the Schrodinger

equation and the Born probability equation.

3

The Schrodinger equation tells us how the state of a system evolves in

time. The [1D] time dependent Schrodinger equation is

 (1) ˆ(,) (,)i x t H x t
t


 = 



where (,)x t is the ket vector representing the state of the system

(particle) and Ĥ the Hamiltonian operator.

In our approach, the state vector evolves in time, and operators

corresponding to observables (and hence their eigenbasis of vectors)

are time independent and the Hamiltonian is time-independent.

When a measurement of a physical quantity A is made on a particle

initially in the state (,)x t , the Born equation provides a way to

calculate the probability P(A0) that a particular result A0 is obtained

from the measurement.

 (2) ()
2

0 0~P A A 
*

0 0A A=

where 0A is the state vector corresponding to the particular result A0

having been measured, and 0A  is called the inner product.

4

EXPECTATION VALUES OF OBSERVABLES

The wavefunction (,)x t itself has no definite physical meaning,

however, by performing mathematical operations on the

wavefunction we can predict the mean values (expectation values)

and their uncertainties of physical quantities such as position,

momentum and energy.

The expectation value of an observable quantity A is the quantum-

mechanical prediction for the mean value of <A>.

We will consider a particle to be an electron and that we know the

wavefunction (,)x t for the system of the single electron. Since an

electron does exist within the system, the probability of finding the

electron is 1.

 (1)

The quantity *
(,) (,)x t x t  is called the probability density

function.

The probability of finding the electron in the region from x1 to x2 is

 (2) ()
2

1

*
1 2 (,) (,)

x

x
prob x x x x t x t dx  =  

5

Consider N identical systems, each containing an electron. We

make N identical measurements on each system of the physical

parameter A. In a quantum system, each measurement is different.

From our N measurements, we can calculate the mean

value A and the standard deviation A of the parameter A. Since

we do not have a complete knowledge of the system, we only can

estimate probabilities.

The mean value of an observable quantity A is found by calculating

its expectation value A by evaluating the integral

 (3) * ˆ(,) (,)A x t A x t dx


−
=  

where Â is the quantum-mechanical operator corresponding to the

observable quantity A, and its uncertainty is the standard deviation

of A. The uncertainty A is given by

 (4)
1/2

22
A A A  = −

 

 (5) 2 * ˆ ˆ(,) (,)A x t A A x t dx


−
=  

The quantity * ˆ(,) (,)x t A x t  represents the probability

distribution for the observable A and is often shown as a

probability density vs position graph. Probability distributions

6

summarize the extent to which quantum mechanics can predict the

likely results of measurements. The probability distribution is

characterized by two measures – its expectation value which is the

mean value of the distribution and its uncertainty which is the

represents the spread in values about the mean and is given by

the standard deviation. The R.H.S. of the integrals (3) and (5) are

known as sandwich integrals.

For our [1D] system, a particle in any state must have an

uncertainty in position x and uncertainty in momentum p that

obeys the inequality called the Heisenberg Uncertainty Principle

 (6)
2

x p  

The Heisenberg Uncertainty Principle tells us that it is impossible

to find a state in which a particle can has definite values in both

position and momentum. Hence, the classical view of a particle

following a well-defined trajectory is demolished by the ideas of

quantum mechanics.

Table 1 gives a summary of the most important operators for [1D]

quantum systems. Expectation values maybe time dependent.

7

 Table 1. Observables, Operators and Expectation values

Observable Operator Expectation Value

probability 1 *
(,) (,) 1x t x t dx



−
  =

position x

*

(,) (,)x x t x x t dx


−
=  

x2 x2

2 * 2

(,) (,)x x t x x t dx


−
=  

momentum
i

x


−



* (,)

(,)
x t

p i x t dx
x



−


= − 



p2

2
2

2
x


−



2
2 2 *

2

(,)
(,)

x t
p x t dx

x



−

 
= − 




Potential
energy

U

*

(,) () (,)U x t U x x t dx


−
=  

Kinetic energy K 2 2

2

(,)
(,)

2

x t
K x t dx

m x



−

 
= − 




8

EXAMPLE

The eigenfunctions for an electron confined to an infinite potential

well of width a are

2

sin 1, 2, 3, ...n

n x
y n

L a

 
= = 

 

The potential energy U is zero within the well and infinite outside the

well. Consider the case when n = 2 (first excited state) and the well

width is 1.00 nm. The wavefunction for the eigenstate n = 2 is shown

in the figure.

Knowing the wavefunction y, it is a straight forward procedure to

calculate expectation values of key physical quantities and test the

uncertainty principle using Python. The code qm004.py was used to

9

make the plot and do the calculations. A summary of the calculations

are displayed in the Console Window.

prob = 1.000

xavg = 0.500 nm

deltax = 2.658e-10 m

deltap = 6.626e-25 N.s

Delta = 1.761e-34 J.s

<K> = 1.504e+00 eV

lambda = 1.000 nm

p = 6.626e-25 N.s

K = 1.504e+00 eV

The probability of finding the electron is 1 and the average position of

the electron is at the centre of the well (< x > = 0.500 nm). The

uncertainty principle is satisfied as

 34 35
1.761 10 / 2 5.27 10Delta x p

− −
=   =   = 

The total energy E is equal to the sum of the kinetic energy K and the

potential energy U

E = K + U = K since U = 0 inside the well

The theoretical eigenstate total energy is

2 2

2
1.504 eV

2 2e e

h p h
p E

m m 
= = = =

which agrees with the expectation calculation of the total energy

 < E > = 1.504 eV.

10

-*- coding: utf-8 -*-

"""

qm004.py April 2024

Ian Cooper matlabvisualphysics@gmail.com

QUANTUM MECHANICS

EXPECTATION VALUES AND THE UNCERTAINTY PRINCIPLE

Website: https://d-arora.github.io/Doing-Physics-With-Matlab/

Documentation: https://d-arora.github.io/Doing-Physics-With-

Matlab/pyDocs/qm002.pdf

"""

import time

import math

import numpy as np

import pylab as py

from matplotlib import pyplot as plt

from numpy import linspace,sin,cos,exp, zeros, ones, pi, diag, sqrt,

real, imag

from scipy.integrate import odeint, quad, dblquad, simps

from matplotlib.ticker import (MultipleLocator,

 FormatStrFormatter,

 AutoMinorLocator)

#%% FUNCTIONS

def firstDer(N,dx):

 v = ones(N-1)

 M1 = diag(-v,-1)

 M2 = diag(v,1)

 M = M1+M2

11

 M[0,0] = -2; M[0,1] = 2; M[N-1,N-2] = -2; M[N-1,N-1] = 2

 MF = M/(2*dx)

 return MF

def secondDer(N,dx):

 v = -2*ones(N)

 M1 = np.diag(v)

 v = np.ones(N-1)

 M2 = np.diag(v,1)

 M3 = np.diag(v,-1)

 M = M1+M2+M3

 M[0,0] = 1; M[0,1] = -2; M[0,2] = 1

 M[N-1,N-3] = 1; M[N-1,N-2] = -2; M[N-1,N-1]=1

 MS = M/(dx**2)

 return MS

INPUTS

Quantum number

n = 2

Grid points

N = 199

Well width

a = 1e-9

m to nm

L = 1e9

SETUP

hbar = 1.054571817e-34; me = 9.11e-31;

e = 1.602e-19; h = 6.626e-34

X grid

12

x1 = 0; x2 = a; x = linspace(x1,x2,N); dx = x[2] - x[1]

Wavefunction

y = sqrt(2/a)*sin(n*pi*x/a)

wL = 2*a/n

p = h/wL

K = p**2/(2*me)

Probability

fn = y*y

prob = simps(fn,x)

Expectation value & Uncertainty x

fn = y*x*y

xavg = simps(fn,x)

fn = y*x**2*y

x2avg = simps(fn,x)

deltax = sqrt(x2avg - xavg**2)

Expectation value & Uncertainty p

y1dash = firstDer(N,dx)@y

fn = y*y1dash

pavg = -1j*hbar*simps(fn,x)

y2dash = secondDer(N,dx)@y

fn = y*y2dash

p2avg = -hbar**2*simps(fn,x)

deltap = sqrt(p2avg - imag(pavg)**2)

delta = deltax*deltap

13

Expectation KE

Kavg = -hbar**2*simps(fn,x)/(2*me)

Console output

v = prob; print('prob = %2.3f' % v)

v = xavg*L; print('xavg = %2.3f nm' % v)

v = deltax; print('deltax = %2.3e m' % v)

v = deltap; print('deltap = %2.3e N.s' % v)

v = delta; print('Delta = %2.3e J.s' % v)

v = Kavg/e; print('<K> = %2.3e eV' % v)

v = wL*L; print('lambda = %2.3f nm' % v)

v = p; print('p = %2.3e N.s' % v)

v = K/e; print('K = %2.3e eV' % v)

#%% GRAPHICS

plt.rcParams['font.size'] = 12

plt.rcParams["figure.figsize"] = (5,4)

fig, ax = plt.subplots(1)

ax.xaxis.grid()

ax.yaxis.grid()

ax.set_ylabel('y x104 ',color= 'black')

ax.set_xlabel('x [nm]',color = 'black')

fig.tight_layout()

ax.plot(x,y/1e4,'b', lw = 2)

fig.savefig('a1.png')

