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INTRODUCTION 

 

In this article, we shall investigate the solutions of the time-

independent Schrodinger wave equation for an electron beam where 

the potential energy ( )U x  is represented by a step function 

     (1)       0 0
0 ( ) 0 0 ( ) constantx U x x U x U U =  = =  

  

This is an idealized potential which approximates many potentials that 

occur in real situations. The results we obtain using our idealized 

potential illustrate a number of characteristic quantum mechanical 

phenomena.  

 

We may think of ( )U x  as an approximate representation of the 

potential energy function for an electron moving along the X axis of a 

system of two electrodes, separated by a small gap which are held at 

two voltages. Also, a step potential is a good approximation for the 

motion a conduction electron moving near the surface of a metal.  
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Fig. 1.  Step potential function. The electron moves along the 

X axis of two cylindrical electrodes held at different voltages. 

The potential energy of the system is constant when an 

electron is inside either electrode, but changes rapidly when 

passing from one to the other. 

 

 

 

For a classical particle, the subsequent motion when it impacts the 

step barrier depends on the kinetic energy of the classical particle and 

the height of the barrier as shown in figure 2. 
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Fig. 2.   The total energy of a classical particle is conserved, 

constantE K U= + = . If the incident particle has a total 

energy which is less than the height of the step potential 

0
E U , then the particle will always be reflected (reflection 

coefficient R = 1, transmission coefficient T = 0). The particle 

cannot enter the region where U = U0.  If the incident particle 

has a total energy which is greater than the height of the step 

potential 0
E U , then the particle will always be transmitted 

pass the barrier (R = 0 and T = 1). 

 

 

To determine the motion of an electron according to quantum 

mechanics, we must find a solution of the time independent 

Schrodinger equation, since the potential energy function is 

independent of time. We can solve the Schrodinger equation (equation 

2) numerically using the Python ordinary differential equation solver 
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odeint. It is often much easier to solve the Schrodinger equation 

numerically, rather than doing lots of algebra to get an analytical 

solution. Also, for more realistic potential energy functions, there are 

no analytical solutions. 

 

The time independent Schrodinger equation is 

     (2)       
2 2

2

( )
( ) ( ) ( )

2
E

x
U x x E x

m x


 


− + =


 

where the solution is the eigenfunction ( )x  and the corresponding 

wavefunction ( , )x t which includes the time dependency is 

     (3)      ( , ) ( )
i t

x t x e E
 −

 = =  

 

The Codes qm030.py (numerically) and qm031.py (analytically) 

solves the Schrodinger equation (equation 2) for the case where an 

electron beam is incident upon the step barrier 

                        0
0 ( ) 0 0 ( )x U x x U x U =  =  

 

Fig. 3.  Step potential  E > U0 



6 

 

For an electron beam travelling to the right (direction of increasing x) 

equation 3 can be expressed as 

 

        
( )

( , )

p E
i x t

i k x t i k x i t
x t A e A e A e e

 

 
−  − −  = = =  

 

          ( )
i k x

x A e =          ( )x  is called an eigenfunction 

 

              propagation constant (wave number)  
2m Ep

k = =  

             angular frequency  
E

 =  

             de Broglie wavelength  
h

p
 =  

             momentum  /p k h = =   

 

              velocity   / / /v p m h m k m= = =  

 

For a free particle the total energy can have any value greater than or 

equal to zero since the particle is not confined. 
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THE ANALYTICAL MODEL 

An analytical solution of the Schrodinger equation for the step 

potential energy function is 

 

(4A)    ( ) ( )1 1
0 ( ) exp expx x A i k x B i k x = + −  

(4B)    ( )2
0 ( ) expx x C ik x =  

 

where  
1 1 1

2 2 /p k m E k m E= = =  

 

            ( ) ( )2 2 0 2 0
2 2 /p k m E U k m E U= = − = −  

 

In equation 4A, the first term corresponds to a wave travelling to the 

right (incident beam: direction of increasing x) and the second term to 

a wave traveling to the left (reflected beam: direction of decreasing x).  

 

• If E > U0 (k2 real) then equation 4B describes the motion of a 

free particle of momentum 2 2
p k= moving to the right (wave 

only propagates in the direction of increasing x). 

• If E < U0 (k2 imaginary) then equation 4B describes an 

exponential decreasing eigenfunction where  

                                 ( )0
2 /m U E = −  

 is called the attenuation coefficient. 
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The eigenfunction ( )x  is finite and continuous at the step 0x = . 

Therefore, at 0x = , its value and first derivative ( ) /d x d x  must be 

single valued.  Hence,  

  A B C+ =        ( )1 2
i k A B i k C− =  

 

Solving for B and C in terms of A 

        1 2 1 2

1 2 1 2

2k k k k
B A C A

k k k k

−
= =

+ +
 

 

Thus, the eigenfunctions for the incident, reflected and transmitted 

beams are 

 

        

( )

( )

( )

1

1

2

exp

exp

exp

inc

refl

trans

A i k x

B i k x

C i k x







=

=

=
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Number density n probability (beam intensity) j 

 

Fig. 4.  Probability current. 

 

For a free travelling beam with A being the amplitude of the 

eigenfunction, the number of particles N in a length L is  

      * 2

0

L

A A
N nL dx A = = =  

 

The number densities [number of particles per unit length] n are: 

     Incident beam          
1

* 2

0
1

1 L

inc A A
n dx A

L
 = =  

     Reflected beam          
1

* 2

0
1

1 L

refl B B
n dx B

L
 = =  

     Transmitted beam   
2

* 2

0
2

1 L

trans C C
n dx C

L
 = =  
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The beam intensities or probability fluxes [s-1]  J  are: 

     Incident beam            
2

1inc
J v A=  

     Reflected beam          
2

1refl
J v B= −  

     Transmitted beam      
2

2trans
J v C=     

 

The probability flux of our system is a constant, independent of both 

position and time. So, the probability flux in region 1 must be equal to 

the probability flux in region 2. We shall refer to this as the net flux 

net
J . 

 

     Region 1      
1 inc refl net

J J J J= + =  

     Region 2      2 trans net
J J J= =  

 

A stream of electrons constitutes a flow of charged particles and 

hence an electric current. Such a current can be quantitatively 

described in terms of wavefunctions.  We can define the quantity, J  

which is called the probability current.  

 

     (8)      
*

* 2

2
E

i k
J A

m x x m

  
= −  − = 

  
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The reflection coefficient R and the transmission coefficients T are: 

        

         

 

 

Fig. 5.   Transmission T, and Reflection coefficients. qm031.py 

 

 

 

 

 

 

 

 

 

 

 

2 2
2 2

1 2 1

2 2

1 2 1 2

2refl trans

inc inc

J Jk k kB C
R T

J A k k J A k k

   −
= = = = = =   

+ +   
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SIMULATIONS       qm031.py   qm030.py    qm032.py 

The Code qm031.py gives the analytical solution of the Schrodinger 

equation for the step potential. The results of are displayed 

numerically in the Console Window and graphically.  

E  > U0 

   E  = 80  eV  
   U0 = 50  eV  
   K1  = 80  eV  
   K2  = 30  eV  
   omega    = 1.215e+17  rad/s  
   period T  = 5.170e-17  s  
   deBroglie lambda1 = 0.137 nm  
   deBroglie lambda2 = 0.224 nm  
   Jinc    = 5.30e+06  1/s  
   Jref    = -3.07e+05 1/s  
   Jnet    = 5.00e+06  1/s  
   Jtrans  = 5.00e+06  1/s  
   Reflection coeff.   R = 0.06   
   Transmission coeff. T = 0.94   
    
 

Note: The kinetic energy of the electrons in the beam in region 1 is 

greater than the kinetic energy in region 2. The beam slows down 

after entering region 2, hence the longer wavelength than in region 1. 

The probability current is constant and the same in both regions. Most 

of the electrons in the beam are transmitted and not reflected. 
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Fig. 6.  Real and imaginary parts of the wavefunction and the 

probability density function for E > U0 at time t. 

E = 80 eV, U0 = 50 eV 

 

In region 1 the incident wave travels to the right while the reflected 

wave travels to the left. The two waves interfere with each other and 

produce a partial standing wave (the positions of nodes and antinodes 

vary slightly with time as the amplitudes of the incident and reflected 

waves are not equal). In region 2, a travelling wave propagates to the 

right. 

 

If the height of the step is increased then the reflection is increased 

and the transmission decreased as shown in figure 7. 
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   E  = 80  eV  

   U0 = 70  eV  

   K1  = 80  eV  

   K2  = 10  eV  

   omega    = 1.215e+17  rad/s  

   period T  = 5.170e-17  s  

   deBroglie lambda1 = 0.137 nm  

   deBroglie lambda2 = 0.388 nm  

   Jinc    = 5.30e+06  1/s  

   Jref    = -1.21e+06 1/s  

   Jnet    = 4.09e+06  1/s  

   Jtrans  = 4.09e+06  1/s  

   Reflection coeff.   R = 0.23   

   Transmission coeff. T = 0.77   

   

 

Fig. 7.  Note the significant increase in the wavelength of the 

wavefunction in region 2.   E = 80 eV, U0 = 70 eV 
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E  < U0 

   E  = 80.0  eV  
   U0 = 80.5  eV  
   K1  = 80  eV  
   K2  = -0  eV  
   omega    = 1.215e+17  rad/s  
   period T  = 5.170e-17  s  
   deBroglie lambda1 = 0.137 nm  
   deBroglie lambda2 = 0.000 nm  
   Jinc    = 5.30e+06  1/s  
   Jref    = -5.04e+06 1/s  
   Jnet    = 2.62e+05  1/s  
   Jtrans  = 2.62e+05  1/s 
 

 

Fig. 8.  For the finite square step potential in the case E < U0, there is 

a finite non-zero probability that the electron will penetrate the step, 

even though there is no possibility of tunnelling through it. 

E = 80 eV, U0 = 80.5 eV 
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As the height of the step potential is increased further, the penetration 

into the classical forbidden region (region 2) results in rapid decline in 

the penetration distance (figure 9). 

   E  = 80.0  eV  
   U0 = 100.0  eV  
   K1  = 80  eV  
   K2  = -20  eV  
   omega    = 1.215e+17  rad/s  
   period T  = 5.170e-17  s  
   deBroglie lambda1 = 0.137 nm  
   deBroglie lambda2 = 0.000 nm  
   Jinc    = 5.30e+06  1/s  
   Jref    = 1.49e+06 1/s  
   Jnet    = 6.79e+06  1/s  
   Jtrans  = 6.79e+06  1/s  
 

  

Fig. 9.    E = 80 eV, U0 = 100 eV 
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NUMERICAL SOLUTION             qm030.py 

Surprisingly, it is not easy to solve the [1D] time independent 

Schrodinger equation for the step potential.  

     (1)       0 0
0 ( ) 0 0 ( ) constantx U x x U x U U =  = =  

     (2)       

( )

2 2

2

2

2 2

( )
( ) ( ) ( )

2

2( )
( ) ( )

E

E

x
U x x E x

m x

mx
E U x x

x


 





− + =




= − −



 

 

To use the Python function odeint to solve the Schrodinger equation, 

we need to write the Schrodinger equation as a set of first order ODE. 

 

Let   
2

2
( ) /Em

C u x v du dx= − = =  then 

        ( )
du dv

v C E U u
dx dx

= = −  

 

The Python function in the code qm030.py used is 

 

def lorenz(x, state):     

    u, v = state 

    P = E0 

        if x > 0: 

       P = E0 - U0 

        du = v  

    dv = C*P*u 

    return [du, dv] 



18 

 

To call the function one has to be very careful in setting the correct 

initial conditions. The initial conditions are specified by the vector u 

with component u1 for the initial value of the wavefunction and u2 

for the slope of the wavefunction. Also, the integration must be done 

from xMax to xMin and this is done using the flip command. The 

wavefunction is a complex quantity ( )1R I j j  = + = − , so the 

Schrodinger equation must be solved for both the real and imaginary 

parts. Finally, the wavefunction must be flip because of the x span 

was reversed and its maximum value set to 1. 

 

Figure 10 shows a sample output with the same parameters for E and 

U0 as in figure 6. The analytical (qm031.py) solution and numerical 

solution (qm030.py) produce the same wavefunctions but with 

different amplitudes and phases and the same probability density. 

xSpan = np.flip(x) 

u1 = 0; u2 = k1 

u0 = [u1,u2] 

sol = odeint(lorenz, u0, xSpan,  tfirst=True) 

psiR = sol[:,0] 

u1 = 1; u2 = 0 

u0 = [u1,u2] 

sol = odeint(lorenz, u0, xSpan, tfirst=True) 

psiI = sol[:,0] 

psiR = np.flip(psiR)/np.amax([psiI,psiR]) 

psiI = np.flip(psiI)/np.amax([psiI,psiR]) 

probD = psiR**2 + psiI**2  

 



19 

 

 

Fig.10.  Real and imaginary parts of the wavefunction and the 

probability density function for E > U0 at time t. 

E = 80 eV, U0 = 50 eV   

 

You can view animated images of the scattering of the electron beam 

from the finite step potential by viewing the following two links: 

 

 

•     E < U0 

 

•     E > U0 

 

 
 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/agB.gif
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/agA.gif

