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INTRODUCTION 

In this article, we shall investigate the solutions of the time-

independent Schrodinger wave equation for an electron beam where 

the potential energy ( )U x  is represented by a square potential barrier 
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 Fig. 1.   Hill potential barrier. 

 

This is an idealized potential which approximates many potentials that 

occur in real situations. The results we obtain using our idealized 

potential illustrate a number of characteristic quantum mechanical 

phenomena such as tunnelling. Examples of tunnelling phenomena 

include alpha decay, fusion reactions, and the scanning tunnelling 

microscope.  
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For a classical particle of kinetic energy K, the subsequent motion 

after it impacts a potential hill barrier of heigh U0 depends on whether 

K > U0 or K < U0 

 Classical particle: 

           K > U0    the classical particle will penetrate the barrier 

           K < U0   the classical particle will be reflected by the barrier 

 

To determine the motion of an electron according to quantum 

mechanics, we must find a solution of the time independent 

Schrodinger equation, since the potential energy function is 

independent of time. We can solve the Schrodinger equation (equation 

2) numerically using the Python ordinary differential equation solver 

odeint. It is often much easier to solve the Schrodinger equation 

numerically, rather than doing lots of algebra to get an analytical 

solution. Also, for more realistic potential energy functions, there are 

no analytical solutions. 
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The time independent Schrodinger equation is 
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where the solution is the eigenfunction ( )x  and the corresponding 

wavefunction ( , )x t which includes the time dependency is 
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The Code qm033.py solves the Schrodinger equation (equation 2) 

numerically for a hill potential barrier (equation 1).  

  ( )
i k x

x A e =          ( )x  is called an eigenfunction 

 

For a free particle, the total energy can have any value greater than or 

equal to zero since the particle is not confined. 

          Total energy E, potential energy U, kinetic energy K = E - U 

 Propagation constant (wave number) 
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In regions 1 and 3, the propagation constants k1 and k3 are real 

numbers, so the eigenfunctions 1  and 3  are sinusoidal functions. If 

E > U0 then k2 is real and the eigenfunction is sinusoidal, but if  

E < U0 then k2 is an imaginary number, thus 2  is an exponentially 

decreasing function. 

 

The reflection coefficient R and the transmission coefficients T are: 

  R + T = 1      R = 1 - T 
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Fig. 3.   Transmission T, and Reflection R coefficients for an electron 

incident upon a potential hill barrier of width a and height U0. The 

oscillations in T at higher values of E/U are due to the interference of 

the reflections at the discontinuities of the potential energy function 

U.   
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Quantum mechanics predicts that there maybe some reflection when 

E > U0 and that there is a certain probability that the electron will be 

transmitted through the barrier into the region x > a when E < U0. A 

particle in tunnelling through a barrier whose height exceeds its total 

energy is behaving purely like a wave. But, in the region beyond the 

barrier it can be detected as a localized particle. 

 

For E > U0, the transmission coefficient in general is somewhat less 

than one owing to reflections in the discontinuities of the potential. 

However, T = 1 when for region ,2 the width of the barrier a is equal 

to the distance of an integral number of de Broglie half-wavelengths 

and so the particles pass into region 3 without any reflection 

     ( )0 2 / 2 1,2,3,... 1E U ka n n a a n n T   = = = = =   

 

This occurs as a result of the interference between reflections at the 

edges of the barrier x = 0 and x = a (figure 4).  
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Fig. 4.   Plots of the wavefunction and probabilty density E0 > U0. 

E0 = 71  eV     U0 = 50  eV     a  = 0.134  nm 

wavelength: regions 1 & 3  wL = 0.146  nm 

wavelength: region 2  wL2 = 0.268 nm 

a/wL2  = 0.500  

Transmission probability percentage T = 100 
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Fig. 5.   Plots of the wavefunction and probabilty density E0 > U0. 

E0 = 71  eV     U0 = 50  eV     a  = 0.535  nm 

wavelength: regions 1 & 3  wL = 0.146  nm 

wavelength: region 2  wL2 = 0.268 nm 

a/wL2  = 2.000  

Transmission probability percentage T = 100 
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Fig. 6.   Plots of the wavefunction and probabilty density E0 > U0. 

E0 = 71  eV     U0 = 50  eV     a  = 0.321  nm 

wavelength: regions 1 & 3  wL = 0.146  nm 

wavelength: region 2  wL2 = 0.268 nm 

a/wL2  = 1.200  

Transmission probability percentage T = 57 
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Fig. 7.   Plots of the wavefunction and probabilty density E0 < U0. The 

decreasing curve in region 2 is not a simple exponential decline, but 

has both decreasing and increasing exponential contributions. 

E0 = 46  eV     U0 = 50  eV     a  = 0.321  nm 

wavelength: regions 1 & 3  wL = 0.181  nm 

Transmission probability percentage T =  0 
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The probability transmission percentage T21 is calculated in the Code 

qm033.py by finding the areas under the probability density function 

in regions 1 and 3 divided by the width of regions 1 and 3. 

 

# Probability per unit length 

fn = probD[x<0] 

z = x[x<0] 

prob1 = simps(fn,z) 

fn = probD[x>aB] 

z = x[x>aB] 

prob2 = simps(fn,z) 

  #   % Transmission probability 

T21 = 100*(prob2/prob1)*(-xMin/(xMax-aB))  
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We can also investigate a potential well barrier. A sample simulation 

is shown in figure 8. 

 

Fig. 8.    A well potential barrier U0
 = -50. 

E0 =  5  eV     U0 = -50  eV     a  = 0.321  nm 

wavelength: regions 1 & 3  wL = 0.548  nm 

wavelength: region 2  wL2 = 0.165 nm 

a/wL2  = 1.942  

Transmission probability percentage T = 60 
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It is a very easy task to change the Code for a variety of different 

potential energy functions by simply changing the function for the 

integration 

 

def lorenz(x, state): 

 u, v = state 

 P = E0 

 if x > 0 and x < aB: 

       P = E0 - U0 

 du = v  

 dv = C*P*u 

 return [du, dv]

  


