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[1D] FINITE SQUARE WELL POTENTIAL WITH STEP 

In this article we will consider a finite potential well with a step and is 

defined  by 
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The well parameters were selected to give six eigenstates as shown in 

figure 1. 
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Fig. 1.  Energy spectrum and square potential well with a step. The 

well parameters are: width w = 0.200 nm with depths U0 = -1000 eV 

and U1 = -200 eV. 

 

Energy spectrum: eigenvalues  

eV E1 E2 E3 E4 E5 E6 

 -970 -884 -741 -545 -308 -172 

 

 

 

 

 

 



4 

 

Eigenfunctions (eigenvectors) 

 

Fig. 2.  Eigenfunctions for the finite square well with a step at time      

t = 0. For each eigenstate the maximum value of the eigenvalue is set 

to one.   
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Probability density functions 

 

 

 

Fig. 3.  Probability density function for the finite square well with a 

step. Area under curves is one since each eigenfunction has been 

normalized. 
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Quantum Interpretation: Eigenstate n = 6 

 

 

Fig. 4.  Energy spectrum diagram and potential well with a step. 

Kinetic energies are for eigenstate n = 6. 

 

In regions 1 the kinetic energy K1 is negative and this is the classically 

forbidden region. However, on making a measurement on the system, 

there is a finite probability of finding the electron in this classically 

forbidden region due to the wave properties of an electron. The 

kinetic of the electron in region 2 is much greater than the kinetic 

energy in region 3 (K2 = 828 eV > K3 = 28 eV). Therefore, the 
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momentum p2 > p3, which means that 2 3   as shown in figure 2 for 

the state n = 6. The maximum of the eigenfunction occurs in region 3 

and this is the region of the highest probability of finding the electron. 

This can be shown by considering the eigenfunction and its slope at 

the boundary between regions 2 and 3. We can consider the 

eigenfunction to be expressed as a sine function, then 
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These equations can be squared and added to eliminate the phase   to 

give the equation for the maximum value of A 
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At the boundary, the eigenfunction  and its slope /m d dx=  must 

be continuous function of x. So, at infinitesimal distances close to the 

step, the values of both 2  and m2 are equal in magnitude on either 

side, but the value of the wavelength changes discontinuously as the 

wavelength is greater in region 3 than region 2 ( )3 2  . Therefore, 

the coefficient A increases with increasing wavelength, hence 3 2A A  

as shown in figure 2 for n = 6. 
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This result of greater amplitude with larger wavelength is important 

because any potential energy function can be approximated by a 

series of step functions. This implies that for any potential energy 

function regions of smaller kinetic energy or smaller momentum and 

larger wavelength have larger maximum value of the amplitude of the 

eigenfunction than adjacent regions of larger kinetic energy or 

momentum and smaller wavelength.  

 

In nonuniform potential wells the wavefunctions are not sinusoidal, 

but over a small part of the cycle, the potential energy does not 

change much, and so we speak loosely of a local “wavelength”.  

 

 

 

 


