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DOWNLOAD DIRECTORY FOR PYTHON SCRIPTS 

 

qm042.py (fixed – fixed)   qm042A (fixed – free)  

qm042B.py (free – free) 

Solution of the wave equation for the transverse vibration of a rod 

(string) by finding the eigenvalues and eigenvectors (eigenfunctions).  

Code also includes a Cell for the animation of the vibrating rod. 

 

   GitHub 

 

   Google Drive 

 

VIEW ANIMATION OF VIBRATING ROD 

 

  

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm042an.htm
https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm042an.htm
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INTRODUCTION 

For a particle such as an electron when it is confined in a region of 

atomic dimensions, the electron is best described by a set of 

wavefunctions (eigenfunctions). The characteristics of the 

wavefunctions are very similar to the of transverse vibrational modes 

of a rod (string) with fixed boundary conditions at the end of the rod. 

So, before we look at bound states for particles such as electrons, it is 

best to review the transverse vibrations of a rod and the necessary 

mathematics to solve the wave equation for the system of the rod plus 

boundary conditions. 

 

Model parameters; 

      angular frequency  [ rad.s-1 ] 

 f     frequency  [ Hz ] 

 T    period [s] 

     wavelength  [ m ] 

  k   propagation constant [ m-1 ] 

  v   speed of the wave along the rod [ m.s-1 ]   

  y(x)    transverse displacement   [ m ] 

 Y(t, x) transverse displacement of the rod at time t  

                     and location x along the rod 
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2 2 / / / 2 /f T v k k v      = = = = =  

 

The [1D] wave equation for the transverse waves on a rod is 

 
2 2

2 2 2

( , ) 1 ( , )Y t x Y t x

x v t

 
=

 
 

 

For the normal modes of vibration: 

 ( , ) ( )cos( ) 1, 2, 3, ...n nY t x y x t n= =  

and the time independent wave equation (Helmholtz equation) can 

be expressed as  

 

2
2

2

( )
( )

d y x
k y x

dx
= −  

 

This is simply an eigenvalue problem, where y(x) is the eigenfunction 

and -k2 is the corresponding eigenvalue. 

 

The second derivative of the wavefunction y(x) can be approximated 

by the finite difference approximation 

        (1)    
2

2 2

( ) ( ) 2 ( ) ( )d y x y x x y x x y x x

d x x

−  − −  + + 



 

 

The X domain is divided into N+2 evenly spaced grid points where 

(2) (1)x x x = − . The ends of the rod are (1) 0x = and ( 2)x N L+ =  

where L is the length of the rod. The normal modes of vibration are 
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determined by the solutions of equation 1 that satisfy the imposed 

boundary conditions. 

For the interior grid points, equation 1 can be expressed in matrix 

form 

       (2)       2

2

1
y k y

x

 
= − 

 
A  

where A  is a matrix of dimensions N N and y is a column vector 

with elements (0), (1), ... , ( 1)y y y N − . The elements A(0, 0) and 

A(N-1, N-1) are determined by the boundary conditions. 

 

Note: the first element of an array is referenced by a zero and not by 

one. For example, an array y with 5 elements is 

[0] [1] [2] [3] [4]y y y y y  

 

For the rod fixed (y displacement is zero) at both ends when N = 5 
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− −   
   

    
    −
    
  = −   

     −     
    
   
  

= =

−

−

= 

−

=

 

since from equations 1, 2 and 3 

At the boundary x = 0 

 ( ) ( ) 2
1 0 1 0 1 02 2

1 1
2 12y y y y y k y

x x
− − + = + = −


−


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At an interior point 

( ) 2
1 2 3 22

1
1 2 1y y y k y

x
+ =


− −  

At the boundary x = L 

 ( ) ( ) 2
3 4 5 3 4 42 2

1
1

1
2 2y y y y y k y

x x
− + = −−=

 
 

 

For the rod free at both ends (slope is zero: y-1 = y0) when N = 5 
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     −     
    
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−

−

= =   

 

since from equations 1, 2 and 3 

At the boundary x = 0 

 ( ) ( ) 2
1 0 1 0 1 02 2

1 1
1 12y y y y y k y

x x
− − + = + = −


−


 

At the boundary x = L 

 ( ) ( ) 2
3 4 5 3 4 42 2

1
1

1
2 1y y y y y k y

x x
− + = −−=

 
 

 

Increasing the number of grid points N improves the accuracy of the 

simulation but at the expense of the execution time. 

 (N = 99    texec = 1 s,  N = 599   texec = 8 s) 
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The eigenvalues are given by the variable ev where ev = -k2. The  

eigenfunction (eigenvector) is given by the variable ef. The 

eigenfunction returns the values for the displacements  

                                   y0, y1, … , yN-1  

thus, it does not include the value of the displacements at the end of 

the rod where x = 0 and x = L. 

 

The Python Code qm042.py is used to simulation the normal modes 

of vibration of the rod (string). The matrix equation for the Helmholtz 

equation is expressed in the form 

 ( )2 2 2
4 /y x y = − A  

where the eigenvalues are ( )2 2 2
4 /x −  . Computing the 

eigenvalues, thus gives us the wavelengths for the normal modes of 

vibration. 

 

The input section specifies the properties of the string and M is the 

number of eigenvalues and eigenfunctions that are returned. 

#%% INPUTS 
N = 999             # grid points 
L = 1                  # length of guitar string  0.640  [m] 
T = 100              # string tension  [N] 
mu = 5.0e-3     # linear density of string [kg/m] 
M = 6                # Number of modes 
 

 



7 

 

The matrix A is constructed and the eigenvalues and eigenfunctions 

are computed by the Code 

#%% COMPUTATIONS 

x = linspace(0,L,N)      # x domain  [m] 

dx = x[2] - x[1]          # dx [m]         

#  Second Derivative matrix 

off = np.ones(N-1) 

A = -2*np.eye(N) + np.diag(off,1) + np.diag(off,-1) 

# Eigenvalues and eigenfunctions (eigenvectors) 

ev, ef = eigsh(A, which="SM", k = M) 

ef = ef / np.amax(ef) 

 

 

Normal mode calculations 

#%% Normal modes 

wL = np.sqrt(-4*np.pi**2*dx**2/ev)   # wavelengths  [m] 

v = sqrt(T/mu)                                          # velocity  [m/s] 

f = v/wL                                                     # frequency  [Hz] 

 

wL[0]  gives the wavelength for mode n = 6 and wL[5] gives the 

wavelength for mode n = 1. 
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The eigenfunction ef[:,1] gives the wavefunction as a function of x for 

the normal mode n = 5. Note the variable ef for the transverse 

displacement y does not include the end points y(0) = 0 and y(L) = 0. 

 

SIMULATIONS 

 

Boundary conditions fixed at both ends y(0) = 0 (node), y(L) = 0 

(node)     qm042.py 

 

 

Console output 

L = 1.0 m  F = 100.0 N   mu = 5.0e-03 kg/m 

v = 141.42 m/s 

  n    lambda [m]    f  [Hz]     fn/f1 

  1       2.04        69.29          1.00 

  2       1.02        138.57        2.00 

  3       0.68        207.81        3.00 

  4       0.51        277.00        4.00 

  5       0.41        346.13        5.00 

  6       0.34        415.16        5.99 
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Graphical output

 

Fig.1.   First six normal modes for a rod of length L = 1.00 m fixed at 

both ends at time t = 0 s. The mode number n gives the number of 

half-wavelengths that fit into the length of the rod. 

                  1 12 / / 1, 2, 3, ...n nL n n f n f n = = = =  
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Fig.2.   Standing wave patterns for the first six normal modes for a 

rod of length L = 1.00 m fixed at both ends. The mode number n gives 

the number of half-wavelengths that fit into the length of the rod. 

                  1 12 / / 1, 2, 3, ...n nL n n f n f n = = = =  

 

The separation between adjacent nodes or adjacent antinodes is 

always / 2 . The variable n corresponds to the harmonic number and 

for the rod fixed at both ends, all the harmonics can be excited.  
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The modes of vibration of the rod are identical to the standing wave 

patterns of the matter waves of an electron bound in a well with 

infinite depth. 

  

 

Boundary conditions fixed at y(0) = 0 (node), and free at y(L) = 0 

(antinode)            qm042A.py 

 

Console output 

L = 1.0 m  F = 100.0 N   mu = 5.0e-03 kg/m 
v = 141.42 m/s 
  n    lambda [m]    f  [Hz]     fn/f1 
  1       4.06         34.82       1.00 
  3       1.35        104.46      3.00 
  5       0.81        174.07      5.00 
  7       0.58        243.63      7.00 
  9       0.45        313.14      8.99 
 11       0.37        382.56      10.99  



12 

 

Graphical output 

 

 
Fig. 3.  Standing wave patterns at time t = 0 for the rod fixed at x = 0 

(node) and free to vibrate at the end x = L (antinode). The distance 

between adjacent nodes or adjacent antinodes is / 2 . Only the odd 

harmonics can be excited where n = 1, 3, 5, … .  
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Fig. 4.  Standing wave patterns for the rod fixed at x = 0 (node) and 

free to vibrate at the end x = L (antinode). The distance between 

adjacent nodes or adjacent antinodes is / 2 . Only the odd harmonics 

can be excited where n = 1, 3, 5, … .  
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Boundary conditions free at both ends y(0) (antinode), y(L) 

(antinode)            qm042B.py 

 

 

Tacoma Narrows Bridge 

Longitudinal vibration: node N at each end of bridge (fixed-fixed 

boundary conditions). Transverse vibrations: antinode A at edges of 

bridge (free - free boundary conditions. 

 

The boundary conditions are that the rod is free to vibrate at both 

ends. So, antinodes will exist at the ends of the rod, x = 0 and 

x = L. 

Console output 

L = 1.0 m  F = 100.0 N   mu = 5.0e-03 kg/m 

v = 141.42 m/s 

  n    lambda [m]    f  [Hz]     fn/f1 

  1       2.00        70.59        1.00 

  2       1.00        141.18      2.00 

  3       0.67        211.78      3.00 

  4       0.50        282.37      4.00 

  5       0.40        352.95      5.00 

  6       0.33        423.54      6.00
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Graphical output   

 

Fig. 5.  Standing wave patterns with antinodes at both ends of the rod 

at time t = 0.  
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Fig. 6.  Standing wave patterns for rod free at each end.  

 

The normal mode wavelengths depend only on the length of the 

string. The vibrational frequency is dependent upon the wavelength 

(length), the rod tension and the linear density of the rod.  


