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VIBRATIONS OF A HARMONIC OSCILLATOR: 

TRUNCATED PARABOLIC POTENTIAL WELL 

 

In most Quantum Mechanics textbooks, the treatment of the 

harmonic oscillator only discusses analytical methods. In this 

approach, there is not much physics but lots of mathematics. A 

better approach which gives more insight into the physics is to use a 

numerical method which involves solving the time independent 

Schrodinger equation to find the eigenstates using a matrix method 

for finding the eigenvalues and eigenvectors of the Hamiltonian 

operator. Nearly all the important concepts of the harmonic 

oscillator can be investigated by this numerical approach.  

 

Much of what we know about the structure of molecules has been 

obtained from the vibrational spectra in the infrared due to the 

interactions of electromagnetic radiation or its emission from 

molecules. A very useful model in quantum mechanics is the 

harmonic oscillator as this model provides the basis for exploring the 

vibration of chemical bonds. Hence, one of the most important 

examples of applying the Schrodinger equation is to consider the 

harmonic oscillator represented by a truncated parabolic potential 

well. 

 

https://d-arora.github.io/Doing-Physics-With-Matlab/pyDocs/qm040.pdf
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 The potential energy function ( )U x  is given by the parabolic 

function 

          21
02

U k x U= +  

 

where k is the effective spring constant, x is the displacement from 

the equilibrium position and 0
U  is the well depth. The potential 

energy function for the well is defined in terms of the well depth 0
U

and its width w (figure 1). 

 

Fig. 1.  Truncated parabolic potential well: depth U0 (U0 < 0) and 

width w.  

 

In figure 1, the blue dot represents a stationary particle while the red 

dot represents an electron. The binding force acting on the electron 

can be modelled by using a spring two connect the two particles. 

Classically, the electron would vibrate about the equilibrium position 
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executing simple harmonic motion and the total energy of the 

system can vary continuously and when the electron is at rest, its 

total energy is zero. But the bound electron does not obey the laws 

of classical physics. The time evolution of the system is governed by 

the laws of quantum mechanics. The predictions of quantum 

mechanics include: the total energy of the system is always greater 

than zeros and the total energy has discrete values and does not vary 

continuously, but in jumps. The notation of a particle vibrating back 

and forth has no meaning in the quantum world. We can only predict 

the probability of finding the location of the electron after a 

measurement is made.  Due to the wave nature of the electron, 

there maybe locations where the probability of finding the particle is 

zero. So, how can our electron be vibrating back and forth? 

 

 A potential well as shown in figure 1 has a minimum at x = 0 and 

tends to zero away from the origin. A classical particle would be 

trapped by this potential well and oscillate to-and-fro about x = 0 

because the force on the particle is always directed towards origin 

for position since F = -dU/dx.   
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Fig. 2. Potential energy function and the force experienced by the 

bound electron. The predicted behaviour of the electron described 

by quantum mechanics and classical physics are very different. 

 

The truncated parabolic potential well used for the simulation in the 

Python Code qm045.py sis defined by 
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The Schrodinger equation that is solved by the matrix method is 

      ˆ ( ) ( )H x E x =  

 

x

x

U

U = 0

F = 0

x = 0

F

force on bound electron

dU
F

dx
= −
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where the Hamiltonian operator is expressed as a matrix 

     
2 2

2
ˆ ( )

2
se se

e

d
H C U x C

dx m

−
= + =  

 

In solving this Schrodinger equation, all distances are measured in 

metres and energies in joules, but for display purposes, distances are 

in nanometres and energies in electron-volts.  

 

For the harmonic oscillator simulation, given the values for 0
U and w, 

the spring constant k and angular frequency   are calculated from 

the equations 

       0

2

1

8

e

U k
k

x m


−
= =                             mass of electron e

m  

 

The total energy spectrum for the harmonic oscillator with a 

parabolic well is given by 

         ( )1
02

1, 2, 3, ...
M

E M U M= − + =  

 

Since the total energy is measured from the bottom of the well and 

not from the zero level. The ground state energy is 

         1
1 02

E U= +  

 

The ground state is the zero-point energy. The total energy of the 

system is always greater than the bottom of the potential well. 
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SIMULATIONS           qm045.py 
 
The default simulation parameters are: 
 
 N = 599                #  grid size 

xMin = -0.5*sx         #  default = -0.2 nm 

xMax =  0.5*sx         #  default = +0.2 nm 

U0 = -400*se          #  Depth of well: default = -1200 eV 

w = 0.5*sx             #  Width of well: default 0.2 nm 

M = 50                 # number of eigenvalues returned 

# >>> Enter 1,2,3,4,5,6 eigenstate number for expectation 

#      calculations and plots 

n = 2      
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Energy spectrum:   Energy eigenvalues [eV] 

   E1 = -384.386      EM = -384.385 

   E2 = -353.160      EM = -353.154 

   E3 = -321.938      EM = -321.923 

   E4 = -290.721      EM = -290.693 

   E5 = -259.508      EM = -259.462 

   E6 = -228.300      EM = -228.231 

   E7 = -197.096      EM = -197.001 

   E8 = -165.898      EM = -165.770 

   E9 = -134.713      EM = -134.539 

   E10 = -103.565    EM = -103.309 

   E11 = -72.547      EM = -72.078 

   E12 = -41.992      EM = -40.847 

   E13 = -13.239      EM = -9.616 

 

There is an excellent agreement between the numerical energy 

eigenvalues and theoretical predictions. The agreement becomes 

worse towards the top of the well (higher eigenstates) because the 

truncated well deviates more from being a parabola. The negative of 

the total energy is the binding energy EB where EB = -E. The binding 

energy is the smallest amount of energy required to remove a 

particle from its bound state. The released particle is now free and its 

energy can vary continuously. The binding energy for the electron in 

the ground state (n = 1) is 384 eV while it is only 13 eV in the highest 

energy bound state (n  = 13)  
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The spacing between adjacent energy levels is constant ( )E  =    

for a parabolic well. For our truncated potential well, the spacing 

between adjacent energy levels slightly decrease as the quantum 

number n increases. A summary of the difference in energy levels is 

given in the Console Window for transitions 2 → 1, 3 → 2, … 

Theoretical prediction  31.23 eVE  = =  

2 → 1 31.23 

3 → 2 31.22 

4 → 3 31.22 

5 → 4 31.21 

6 → 5 31.21 

7 → 6 31.20 

8 → 7 31.20 

9 → 8 31.19 

10 → 9 31.15 

11 → 10 31.02 

12 → 11 30.56 

13 → 12 28.75 

 

The discrepancy between the energy level spacings between the 

parabolic well and truncated well increase with higher quantum 

states, since near the top of the well, the truncated potential energy 

function is a poor approximation to a parabola. 
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Fig. 3.  Energy spectrum and truncated parabolic potential well. The 

well parameters are: width w = 0.500 nm with depths U0 = -400 eV. 

Note: the even spacing of the energy levels. 
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Eigenfunctions (eigenvectors) 

 

 

Fig. 4.  Eigenfunctions for the truncated parabolic potential well at 

time t = 0. Each eigenfunction has been scaled by dividing each 

eigenfunction by the maximum of eigenfunction n = 1.  Note: The 

peaks in the eigenfunctions increase in height as the potential energy 

increases with increasing |x|. 
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Probability density functions 

 

 

Fig. 5.  Probability density function for the truncated parabola 

potential well. Area under curves is one since each eigenfunction has 

been normalized. Note: there is a finite probability of finding the 

electron beyond the classical limits of vibration. 
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In classical physics the largest probability of finding the electron at its 

extreme positions and minimum probability at the equilibrium 

position, x = 0 (figure 6). Consider the eigenstate n = 1, the bound 

electron does not behave as a classical particle, since maximum 

probability of finding the electron is at the centre of the well and not 

at the extreme positions. However, the electron’s behaviour is more 

like the classical particle at the highest quantum numbers for the 

bound electron as shown in figure 4 when n = 6. 

 

For the states of higher energy, the probabilities predicted become 

more similar, in agreement with the principle that the quantum 

behaviour approaches classical behaviour under these conditions. 

This is known as the correspondence principle. 

 

We can calculate the probabilty density function for a classical 

particle oscillating with simple harmonic motion between xC =-1 and 

xC = +1. If the oscillator spends an infinitesimal amount of time dt in 

the vicinity dx of a given x value, then the probability ( )
D

p x dx  of 

being in that vicinity will be ( ) / ( / 2)
D

p x dx dt T=  where ( )
D

p x  is the 

probability density for the classical particle  moving from -1 to +1 in 

half a period T/2.  
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             ( )sin 2 /x t T=  

                ( ) ( ) ( ) 2
2 / cos 2 / 2 / 1dx T t T dt T x dt  = = −  

                

( ) 2
2 1

T dx
dt

x
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−
 

                
2/ 2 1

D
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p dx
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−
 

              
2
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Fig. 6.  Classical probability density function for a classical particle 

executing simple harmonic motion.  The area under the curve is 1 

since the function has been normalized. 
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Quantum Interpretation 

As the quantum number n increases, the maximum value in the 

amplitude of the eigenfunction shifts in the direction of higher 

potential energy and therefore, lower kinetic energy, lower 

momentum and longer wavelength (figures 4 and 5).  

 

This can be shown by considering the eigenfunction and its slope at 

the boundary between two adjacent sections. We can consider the 

eigenfunction to be expressed as a sine function, then 

 
2 2 2

sin cos
d

A x A x m
dx

   
  

  

     
= + = + =     

     
 

 

 
2 2

sin cos 0
2

m
A x A x m

 
   

  

   
+ = + =    

   
     

 

These equations can be squared and added to eliminate the phase   

to give the equation for the maximum value of A 

 
2

2 2

2
4

m
A  


= +  

  

At the boundary of the two adjacent sections, the eigenfunction 

and its slope /m d dx=  must be continuous function of x. So, at 

infinitesimal distances close to the boundary, the values of both 2  

and m2 are equal in magnitude on either side, but the value of the 
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wavelength increases in the direction of higher potential. Therefore, 

the coefficient A increases with increasing wavelength, as shown in 

figure 4 for n = 6. 

 

This result of greater amplitude with larger wavelength is important 

because any potential energy function can be approximated by a 

series of step functions. This implies that for any potential energy 

function, regions of smaller kinetic energy or smaller momentum and 

larger wavelength have a larger maximum value of the amplitude of 

the eigenfunction than adjacent regions of larger kinetic energy or 

momentum and smaller wavelength.  

 

In nonuniform potential wells the wavefunctions are not sinusoidal, 

but over a small part of the cycle, the potential energy does not 

change much, and so we speak loosely of a local “wavelength”.  
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Eigenstate explorations 

In the input section of the Code for qm044.py you can enter the 

quantum number n for the state. In running the Code, a summary of 

the expectation values is shown in the Console Window as well you 

can test the Uncertainty Principle for the nth state. 

 

Uncertainty Principle 

           / 2 2 / 1x p HUP x p   =    .  

 

Plots of the potential well, the eigenfunction and probability density 

are displayed in Figure Windows. You will notice that the parameter 

HUP is always greater than 1 and gets larger as n increases. 

 

Eigenstate n = 2 

 

Eigenstate n =  2 

  Expectation values and Uncertainty Principle 

    <x> = -0.000 nm 

    deltax dX = 0.060 nm 

    <p> = 0.00 N.s   deltax dP = 2.61e-24 m 

    HUP = 3.00  > 1 

   

  Eigenstate energies 

    En = -353.16 eV 

    <E> = -353.16 <K> =  23.42 <U> = -376.58 

    <K> + <U> = -353.16 
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Execution time =  6 s 

 

 
 

 
 

Fig. 7.   n = 2: Plots of the eigenfunction, probability density and the 

potential energy function U and the kinetic energy function K. 
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 In the region where K > 0, the eigenfunction is a sinusoidal function 

(highest probability of finding the electron) and in the regions where 

K < 0, the eigenfunction is an exponentially decreasing function 

(non-zero probability of finding the electron). 

 

Image that you have 20 000 identical system in the state n = 2. You 

measure the position of the bound electron in each of the 20 000 

identical systems. When you plot the result, you would get the figure 

shown below. Each point recorded is represented by a dot. There are 

region of high density corresponding to high probability of finding 

the electron. But, more surprisingly is that there is zero probability of 

finding the electron at the centre of the well. Therefore, we can no 

longer think of the electron in this situation as a moving particle, but 

have to accept that the electron has to be described by a 

wavefunction that is a solution to the Schrodinger equation. 
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Eigenstate n = 6 
 
 Expectation values and Uncertainty Principle 

    <x> = -0.000 nm 

    deltax dX = 0.116 nm 

    <p> = 0.00 N.s   deltax dP = 5.01e-24 m 

    HUP = 11.00  > 1 

   

  Eigenstate energies 

    En = -228.30 eV 

    <E> = -228.30 <K> =  85.88 <U> = -314.18 

    <K> + <U> = -228.30 
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Fig. 8.   n = 6: Plots of the eigenfunction, probability density and the 

potential energy function U and the kinetic energy function K. In the 

region where K > 0, the eigenfunction is a sinusoidal function 

(highest probability of finding the electron) and in the regions where 

K < 0, the eigenfunction is an exponentially decreasing function 

(non-zero probability of finding the electron). 
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Eigenstate n = 13 

 

  Expectation values and Uncertainty Principle 

    <x> = 0.000 nm 

    deltax dX = 0.193 nm 

    <p> = 0.00 N.s   deltax dP = 6.91e-24 m 

    HUP = 25.23  > 1 

   

  Eigenstate energies 

    En = -13.24 eV 

    <E> = -13.24 <K> =  163.68 <U> = -176.92 

    <K> + <U> = -13.24 
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Fig. 9.   n = 13: Plots of the eigenfunction, probability density and the 

potential energy function U and the kinetic energy function K. In the 

region where K > 0, the eigenfunction is a sinusoidal function 

(highest probability of finding the electron) and in the regions where 

K < 0, the eigenfunction is an exponentially decreasing function 

(non-zero probability of finding the electron). 


