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INTRODUCTION 

Hydrogen is the simplest of all the atoms with only one electron 

surrounding the nucleus. Ions such as He+ and Li2+ are hydrogen-

like since they also have only a single electron.   

 

In each case, the mass of the electron is much less the nuclear 

mass, therefore, we will assume a stationary nucleus exerting an 

attractive force that binds the electron to the nucleus. This is the 

Coulomb force with corresponding potential energy Uc(r) is 

 (1) 
2

( )
4

c

o

Z e
U r

r 
= −         

    

 and it depends on the separation distance r between the electron 

and proton. 

 

The Coulomb force between the nucleus and electron is an 

example of a central force where the attractive force on the 

electron is directed towards the nucleus. This is a [3D] problem 

and it best to use spherical coordinates (r,  ,  ) centered on the 

nucleus as shown in figure 1. The radial coordinate is r,   is the 

polar angle (0 to ) and  is the azimuthal angle (0 to 2). 
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Fig. 1.   Spherical coordinates of the electron (r, ,  ) centered 

on the nucleus. The distance between the electron and nucleus 

is r,   is the angle between the Z-axis and the radius vector 

and  is the angle between the X-axis and the projection of the 

radius vector onto the XY plane.    ranges from 0 to  and the 

azimuthal angle  from 0 to 2. 

 

The time independent Schrodinger Equation in spherical 

coordinates can be expressed as 

 (1) 
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where  is the reduced mass of the system 
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Equation 1 is separable, meaning a solution may be found as a 

product of three functions, each depending on only one of the 

coordinates r, , . This substitution allows us to separate 

equation 1 into three separate differential equations (equations 4, 6 

and 7) each depending on one coordinate r, , . For physical 

acceptable solutions to these three differential equations, it requires 

three quantum numbers n, l, and ml. 

 

The time independent wavefunction ( , , )r    in spherical 

coordinates is given by 

 (3)   ( , , ) ( ) ( ) ( )r R r    =    

  

Principle quantum number    n  =  1, 2, 3 … 

Orbital angular momentum quantum number   

l = 0, 1, 2, … n-1 

Magnetic quantum number   ml = 0,  1,  2, … ,  l 
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Azimuthal equation 

The differential equation in  is known as the azimuthal equation 

and can be written as 

 (4) 

2
2

2

( )
( )

l

d
m

d







= −             azimuthal equation 

where 0 2    ( )  −   . 

 

The solution of the azimuthal equation (equation 4) is the 

normalized azimuthal wavefunction ( )  

(5) ( )  
1 1

( ) exp cos( ) sin( )
2 2

l l li m m i m   
 

 = = +            

 

The function ( )    has a period of 2 and since all physical 

quantities are derived from the wavefunction, the wavefunction 

must be singled valued for  = 0 and 2. This means that the only 

physically acceptable solutions for ml are ml = 0, 1, 2, 3, … . 

  ( )exp(0) exp 2 1 0, 1, 2,l li m m= =  =    

   

The real part of ( )  is a cosine function and the imaginary part is 

a sine function. ml gives the number of complete cycles of the 

azimuthal wavefunction within the range 0 to 2 for  (figure 2). 
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Fig. 2.  Azimuthal wavefunction () (not normalized): real 

part a cosine function (blue) and imaginary part a sine 

function (red). The azimuthal function is single valued at  = 

0 and  = 2 rad. ml gives the number of cycles in the 

azimuthal wavefunction for 0 2   .          qm061.py 

The probability density is 

 
* 1
( ) ( )

2
 


  =                independent of   

 

and the probability of finding the azimuthal orientation of the 

molecule in the region from 0 to 2  is 
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       ( )
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
  


  = =  

 

So, we never can know the orientation of the molecule, we only 

know that there is an equal probability of finding the azimuthal 

angle   when measured. 

 

We can visualize the azimuthal wavefunctions using polar plots as 

shown in figure 3.  
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Fig. 3. Polar plots of the real parts (blue), imaginary parts (black) 

of the azimuthal wavefunction and the probability density 

function (red). Note: the probability density is independent of the 

azimuthal angle   and ml gives the number of cycles in the range 

0 2   .                qm061.py 
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Polar equation 

The differential equation for ( )  is called the polar equation 

 

(6)     
22

2 2

cos
( 1) 0

sin sin

lmd d
l l

dd



  

  
+ + + −  = 

 
          

 

Note that the angular equation (equation 6) depends upon the 

quantum numbers ml and l. For physically acceptable solutions of 

equation (6) there must be restrictions on ml and l as given by  

 0, 1, 2, 3,.... 0, 1, 2, 3, ... ,ll m l= =      

That is, the orbital quantum number l must be a zero or a positive 

integer, and the magnetic quantum number ml must be a positive or 

negative integer or zero and lm l . 

 

The solution of the angular equation was first worked out by the 

famous mathematician Adrien Legendre (1752 – 1833). Equation 

(6) is often called the associated Legendre equation. 

 

The solutions ( ) for the angular equation are polynomials in 

cos, and sin  are known as the associated Legendre polynomials 

, (cos )
ll mP   
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The full angular dependence of the central force wavefunctions are 

the spherical harmonics ( ), ,
ll mY    

 , , ,( , ) ( ) ( ) ( ) l

l l l

i m

l m l m m l mY P P e
    =  =  

 

and the normalized condition is   

 
2

*
, ,

0 0
( , ) ( , )sin 1

l ll m l mY Y d d
 

       =   

  

Note: The probability density function probD is independent of the 

azimuthal angle   since 

 0
1l lim im

e e e
 −

= =  

 
* *

, , , ,( ) ( , ) ( , ) ( ) ( )
l l l ll m l m l m l mprobD Y Y P P      = =  

 

Spherical harmonics are powerful mathematical tools, allowing 

us to represent any function on a sphere. That is, spherical 

harmonics are basis functions defined on a spherical surface. A 

function ( , , )f x y z  defined on the unit sphere can be expressed as 

,

0

2 2 2

( , , ) ( , , )

1

l

l

l

l
m

l m l

l m l

f x y z a Y x y z

x y z



=− =−

=

+ + =

 
 

 

l is the degree of the function and can be though of as a 

“frequency”: 

l = 1 gives 1 cycle, l = 2 gives 2 cycles, ... .   
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Visualizing the spherical harmonics 

Even for low values of the quantum numbers, it is hard to visualize 

the spherical harmonics. For many practical purposes the real 

quantity 
*

, ,( ) ( , ) ( , )
l ll m l mprobD Y Y    =  is important. Different 

ways of displaying the spherical harmonics are shown in the 

following plots (figures 4). 
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Fig. 4A.  Polar plots of the probability density for the alignment of 

the angular momentum. The Z-axis is along the 0o-180o lines. The 

probability density is indpendent of the azimuthal angle. Blue and 

red indicate opposite signs of the wavefunction. The distance from 

the Origin to the coloured curves is proportional to the probaility 

density 
*

, ,( ) ( , ) ( , )
l ll m l mprobD Y Y    = .   qm061R.py 
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Fig. 4B. Visualization of the spherical harmonics for l = 2 on a 

sphere.     qm061S.py 
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Fig. 4C.  Spherical harmonics.  Note: that all the spherical 

harmonics are rotationally symmetric about the Z-axis. In the 

Python figure window you can [3D] rotate the plots.  qm061C.py 



 16 

 

  

  

  
 
 

Fig. 4D.  Plots for , ( , )
ll mY   and 

*
, ,( , ) ( , )

l ll m l mY Y    . In the polar 

format ( )
2

,Y   ,  if you rotate the curve around the 180o – 0o axis, 

you can visualize the [3D] pattern for the spherical harmonics. 
qm061A.py 
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Fig. 4E.   Polar plot of probability density for spherical harmonics, 

l = 3, ml = 2 showing the nodal planes and planes of maximum 

probability density.      qm061R.py 

 

Note the way in which the regions of higher probability shift 

towards the Z-axis from the XY plane as l
m  increases. The 

probability densities are spherically symmetrical and a view 

can be imaged by rotating the polar plots around the Z axis.  
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Radial equation 

Finally, to complete the process, the radial equation becomes 

 (7) 

2
2

2 2 2

1 2 ( 1)
0

2
c

d dR m l l
r E U R

r dr dr m r

 + 
+ − − =   

   
     

 

Equation (7) is also known as the associated Laguerre equation 

after the French mathematician Edmond Laguerre (1834 – 1886). 

The associated Laguerre functions are the solutions of the radial 

equation and are polynomials in r. 

 

The differential equations in  (equation 4) and in  (equation 6) 

are independent of the potential energy function Uc(r). The total 

energy E and the potential energy Uc(r) appear only in the radial 

differential equation (equation 7). Therefore, it is only the radial 

equation (equation 7) containing the potential energy term Uc(r) 

that determines the allowed values for the total energy E.   

 

Physically acceptable solutions of the radial equation (equation 7) 

for hydrogen atom and hydrogen-like ions can only be found if the 

energy E is quantized and has the form 
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Total energy E is quantized 

 (8)

 ( )

2 4 2

2 2 22

1 13.61
eV 1, 2, 3, ...

4 2
n

o

Z me Z
E n

n n
= − = − =

        

 

where the principal quantum number is n = 1, 2, 3, …  and n > l. 

The negative sign indicates that the electron is bound to the 

nucleus. If the energy were to become positive, then the electron 

would no longer be a bound particle and the total energy would no 

longer be quantized. The quantized energy of the electron is a 

result of it being bound to a finite region. The energy levels of the 

hydrogen atom depend only on the principal quantum number n 

and do not depend on any angular dependence associated with the 

quantum numbers l and ml. Equation (8) is in agreement with the 

predictions of the Bohr model. In the Bohr Model of the atom the 

total energy En is quantized and the electron can only orbit without 

radiating energy in stable orbits of fixed radii  rBn given by 

equation  (9).  

Bohr model: allowed stable orbits 

 (9) 

2

20

2

4
Bn

r n
m e

 
=             
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For hydrogen-like species, the total energy depends only on the 

principal quantum number n, this is not the case for more complex 

atoms. For hydrogen like systems, the ground state is specified by 

the unique set of quantum n = 1, l = 0, ml = 0. For the first excited 

state n = 2, there are four independent wavefunctions with 

quantum numbers: 

 

  n = 2     l = 0     ml = 0 

 n = 2     l = 1     ml = -1 

 n = 2     l = 1     ml = 0 

 n = 2     l = 1     ml = 1 

 

This means that the first excited state is four-fold degenerate as 

the total energy E2 only depends on the principal quantum number 

n. 

 

We can define a pseudo-wavefunction g(r) = r R(r) which leads to 

a [1D] Schrodinger Equation 

 

 (10)           

2 2

2

2 2

2

( )
( ) ( ) ( )

2

( ) ( ) ( )
2

eff

eff

d g r
U r g r E g r

m dr

d
U r g r E g r

m dr





 
− + =  
 

  
− + =   
   
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where the effective potential energy Ueff has two contributions due 

to the Coulomb interaction Uc and the angular motion of the 

electron Ul 

 (11)     ( )

2 2

2

( 1)

4 2
eff c l c l

o

Ze l l
U U U U U

r m r 

+
= + = − =  

where m  is the reduced mass of the system. We call this the 

reduced radial equation for a hydrogen atom and call g(r) the 

reduced radial function. The term 

  
2 2

2
( )

2
eff

d
U r

m dr

  
− +  
 

   

  

 

is the Hamiltonian operator, UC is the Coulomb potential energy 

function and is due to the attractive between the electron and 

nucleus. Ul is the orbital potential energy function 

( )2 2 2
/ 2 ( 1) / 2lK L I l l m r= = +  

 

 and when l > 0 there is a repulsive interaction between the 

electron and the nucleus and is called a centrifugal barrier. When 

l = 0, there is zero centrifugal barrier. For l > 0, the centrifugal 

repulsion dominates over the Coulomb attraction for very small r 

values. Thus, it provides a barrier that becomes infinite as the 

electron-nucleus separation tends to zero, keeping the electron and 

nucleus apart. Figure 5 shows the potential energy functions for the 

cases when l = 0, 1, and 2 (qmH01.py).  
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Fig. 5.   The effective potential (black), the Coulomb potential 

(blue) and the orbital potential (red) for the hydrogen atom. l = 0 

has no minimum, but for l > 0, there is a minimum in the curve, 

and this moves to larger electron-nucleus separations as l increases. 
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PROBABILITY DENSITY 

In the Bohr theory of the hydrogen atom, the electron was pictured 

as orbiting around the nucleus in a simple circular orbit. The 

position vector of the electron was well defined. However, in 

quantum terms the electron’s position is not well defined and we 

must use the wavefunction  ( , , )
lnl m r    to calculate the 

probability distribution of the electron in the state (n l ml). 

 

Also, in many applications in atomic physics it is important to 

know the behaviour of the wavefunctions since measurable 

quantities can be obtained by calculating various expectation 

values.  

 

From the wavefunction of a given state (n l ml), we can calculate 

the probability of finding an electron from the corresponding 

probability density function 

 (12)  

/ /* * * * * *n n

l l l l l l l l l l

iE t iE t

nlm nlm nlm nlm nlm nlm nl lm m nl lm m
e e R R   −

  = = =      

 

The probability of finding the electron does not depend upon the 

azimuthal angle   and the azimuthal probability density gives a 

uniform probability – all values of  are equally likely, since 

 



 24 

 (13)       
*

( ) ( ) 1l l

l l

im im

m m
e e

   −
  = =  

hence 

(14)  

/ /* * * * *n n

l l l l l l l l

iE t iE t

nl m nl m nl m nl m nl m nl m nl nl l m l m
e e R R   −

  = = =    

 

The normalization conditions are 

 (15A)      
2

* * *

0 0 0
1

l l l lnl nl lm lm m mR R dr d
 




    =    

 (15B)       
2

* *

0 0
1 1

l l l llm lm m md
 

  =   =   

  

The radial wavefunction Rn l (r) can be used to calculate the radial 

probability distribution of the electron, that is, the probability of 

the electron being at a distance r from the nucleus and it depends 

on both n and l. 

 

We are interested in finding the probability P(r) dr of the electron 

being in a thin shell of radius r and thickness dr. The differential 

volume element in spherical polar coordinates is 

      
2
sindV r dr d d  =  
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Therefore, 

 (16)    ( ) ( ) ( )2 *
r dr

nl nl
r

P r dr r R r R r dr
+

=   

 

Using the reduced radial wavefunction g(r) = r R(r) and letting N 

be a normalizing constant, the probability of finding the electron 

with the thin shell reduced to 

 (17)    ( ) ( ) ( )*
r dr

nl nl nl
r

P r dr N g r g r dr
+

=   

and   

 (18)     ( ) ( )*

0
1nl nl nlN g r g r dr



=  

 

since the probability of finding the electron is one. 
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SOLVING THE SCHRODINGER EQUATION 

We can solve the reduced radial equation in Python using the 

matrix method by finding the eigenvalues and eigenfunctions. The 

angular dependence is given by the spherical harmonics. 

 

Typical input values and default values: 

 number of grid points, n = 999 

  principal quantum number, n = 1 

 orbital quantum number, L =  0     (L used not l) 

 magnetic quantum number mL =  0 

 nuclear charge, Z =  1 

 min radial distance, rMin = 1x10-18 m 

 max radial distance, rMax = 5x10-9 m   

        num of eigenvalues returned, num = 100 

 

Energy eigenvalues 

A summary of the energy eigenvalues [eV] is given in Table 1. n is 

the principal quantum number, ET are the theoretical values 

(equation 8), and EB (EB = -E) are the numerically calculated 

binding energy for different l values. We have the restriction that l 

< n, therefore, when l = 2, then the lowest energy state is n = 3 as 

shown in Table 1.  The binding energies EB are independent of the 

value of orbital angular momentum quantum l.  
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Table 1. Computed binding energies for rMax = 5 nm 

n 1 2 3 4 5 6 7 

ET 13.61 3.40 1.51 0.85 0.54 0.38 0.28 

EB 

l = 0 

13.58 3.40 1.51 0.85 0.54 0.38 0.25 

EB 

l = 2 

  1.51 .85 0.54 0.38 0.26 

 

There are some problems with the accuracy of the Matrix 

Method due to the maximum range for the radial coordinate 

rmax. If rmax is too small than the energy eigenvalues near the top of 

the potential well will be inaccurate. However, if rmax is large, then 

the numerical procedure has difficulties in calculating the 

eigenvalues. The real potential diverges to infinity as r approaches 

zero. In our modelling, the potential energy function is truncated at 

some value of rMin =1x10-18 m. For larger n values the maximum 

radial coordinate must be large otherwise the results are inaccurate 

because for large n values the electron is most likely to be found at 

large distances from the nucleus. The default value for the 

maximum radius is rMax = 5x10-9 m. Decreasing rMax improves 

the accuracy for the lowest energy values but the higher energy 

eigenvalues are not found: 

rMax= 2 nm, E1 = -13.594 eV; rMax = 5 nm, E1 = -13.576 

rMax = 10 nm, E1 = -13.515 eV 

The energy spectrum for the hydrogen atom is shown in figure 6. 
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Fig. 6.   The effective potential U and the energy eigenvalues 

En for a hydrogen atom. For large values of n the eigenvalues 

become very closely spaced in energy since En approaches 

zero as n approaches infinity  2
1/

n
E n . The intersection of the 

curves for U and En which defines one end of the classically 

allowed region moves out as n increases.  qmH01.py 

 

 

Eigenfunctions 

The angular wavefunctions are given by the spherical 

harmonics and using the Matrix Method for solving the 

reduced radial Schrodinger equation, we can compute the 

reduced radial eigenfunctions.   
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Plots of the radial wavefunctions and radial probability 

density functions for the electron in a one-electron atom for 

differing (n, l) combinations are shown in figure 7. The 

figures show the eigenstate (n, l), the eigenvalue En, and the 

location of the peak in the probability density rPeak and the 

expectation value for the location of the electron < r >. 

 

It is customary for historical reasons to use letters for the various 

values of l. to specify the state of the system. 

l 0 1 2 3 4 5 

letter s p d f g h 

 

The letters arose from visual observations of spectral lines: sharp, 

principle, diffuse, and fundamental. After l = 3 (f state), the letters 

generally follow the order of the alphabet. 

 

Although the wavefunction is not a measurable quantity, we can 

use this function to calculate the expected result of the average of 

many measurements of a given quantity – this result is known as 

the expectation value. Any measurable quantity for which we can 

calculate the expectation value is called a physical observable.  

The expectation values of physical observables must be real 

because experimental measurements are real quantities. 

expectation values. 
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State 1s: Theoretical values EB = 13.61 eV  rB = 0.0529 nm 

 
State 2s: Theoretical values EB = 3.403 eV  rB = 0.212 nm 

 
 

State 2p: Theoretical values EB = 3.403 eV  rB = 0.212 nm 
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State 3s: Theoretical values EB = 1.511 eV  rB = 0.477 nm 

 
 

State 3p: Theoretical values EB = 1.511 eV  rB = 0.477 nm 

 
State 3d: Theoretical values EB = 1.511 eV  rB = 0.477 nm 

 



 32 

State 4s: Theoretical values EB = 0.850 eV  rB = 0.847 nm 

 
 

State 4p: Theoretical values EB = 0.850 eV  rB = 0.847 nm 

 
State 4d: Theoretical values EB = 0.850 eV  rB = 0.847 nm 
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State 4f: Theoretical values EB = 0.850 eV  rB = 0.847 nm 

 
 

Fig.  7.   The reduced radial wavefunctions and probability 

densities for the electron in a hydrogen atom.  

 

 

For a state ( n, l ), the number of peaks in the probability density 

plots is ( n - l ), for example, the shell n = 4:  

 

 

 

   

 

 

 

Inspection of the plots figure 7 show that the radial probability for 

a given combination of  (n, l) have appreciable values only in 

restricted ranges of the radial coordinate, hence, the electron is 

most likely to be found within a thin shells region surrounding the 

subshell l No. peaks 

s 0 4 

p 1 3 

d 2 2 

f 3 1 
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nucleus. The radius of each shell is mainly determined by the 

principal quantum number n and with a small angular l 

dependence.  

 

The Bohr model of the hydrogen-like atoms gives allowed stable 

circular orbits of radii 

 Bohr radius    
2 100

0
0.5292 10 m

Bn

a
r n a

Z

−
= =   

 

Solutions of the Schrodinger Equation show that radii of the shells 

are of approximately the same size as the circular Bohr orbits. The 

total energy becomes more positive with increasing n, so the 

region of the radial coordinate r for which E > U(r) is greater with 

increasing n, that is, the shells expand with increasing n because 

the classically allowed regions expand.  

 

Figure 7 shows that the details of the structure of the radial 

probability density functions do depend upon the value of the 

orbital angular momentum quantum number l. For a given n value, 

the probability density function has a strong single maximum when 

l has its largest possible value. When l takes on smaller values, 

additional weaker maxima develop inside the strong one. The 

smallest value of l gives the greatest number of maxima. When l = 

0 there is a higher probability of the electron being in the region 

near the origin (r = 0), this means that only for s states (l = 0) will 
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there be an appreciable probability of finding the electron near the 

nucleus. A summary of the Bohr radii rB,  the expectation values 

<  r > and radii for the most probable location rPeak  for different 

combinations of n and l given in Table 2. 

Table 2. 

State (n l 

ml) 

rBn 

[nm] 

rPeak 

[nm] 

< r > 

[nm] 

1s  (1 0 0) 0.053 0.053 0.079 

2s  (2 0 0) 0.221 0.277 0.318 

2p  (2 1 0) 0.221 0.213 0.265 

3s  (3 0 0) 0.477 0.692 0.715 

3p  (3 1 0) 0.477 0.633 0.662 

3d  (3 2 0) 0.477 0.475 0.556 

4s  (4 0 0) 0.848 1.304 1.271 

4p  (4 1 0) 0.848 1.250 1.217 

4d  (4 2 0) 0.848 1.125 1.112 

4f  (4 3 0) 0.848 0.846 0.953 

For a given n value, the radius rPeak  at which has the highest 

probability concentration agrees most closely with the Bohr radius 

rB is the state with the highest value of l and  is the probability 

density function which has a single peak at a smaller value of r 

than those states with smaller l values.  For a given n value, the 

average radial distance < r > from the nucleus increases with 

decreasing l values. 
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Figure 8 shows two-dimensional views of the probability density 

functions for different electron states (n l ml) of the hydrogen atom. 

To image a three-dimensional view, rotate the image through 360o, 

there being axial symmetry about the Z-axis in each case.  

 

* * *
( , ) , ( , ) ( , ) ( ) ( ) ( , ) ( , )

l l l l lnlm nlm nlm nl nl lm lm
probD r r r r g r g r r r    =   =    

 

 

 

The images are produced using the Code qmH03.py. The values of 

n, l, and ml are entered in the INPUT section of the Code. You 

must remember that l = 0, 1, 2, 3, … , n-1 (l < n ) and 

0, 1, 2, ...,lm l=    . Also, you may need to chnage the 

maximum separation distance rMax. 

 

Fig. 8.  (below)  Probability density for eigenfunctions of the 

hydrogen atom in the XZ-plane, with the Z-axis pointing up the 

page.   
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