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INTRODUCTION 

Quantum statistical mechanics is the study of the occupation of 

quantum levels using probability theory. It plays an essential role in 

quantum semiconductor theory where two important quantities are the 

density of states and the probability distribution which are essential 

in quantum transport. These concepts lead to how semiconductor 

devices conduct an electric current (flow of charge in the form of 

electrons and holes).  

 

There are a number of probability distributions that will be discussed 

on my web articles for statistical mechanics: 

• Maxwell-Boltzmann distribution concerns the distribution of a 

given amount of energy between identical but distinguishable 

particles. The Maxwell velocity distribution is a special case is 

the Maxwell-Boltzmann distribution and forms the basis of the 

kinetic theory of gases and defines the distribution of speeds for 

a gas at a certain temperature. From this distribution function, 

the most probable speed, the average speed, and the root-mean-

square speed can be derived. The particles are disguisable, and 

there is no limit on the number of particles in a given energy 

state. Classical distribution 

• Boltzmann distribution gives the probability that a system will 

be in a certain state as a function of that state's energy and the 

temperature of the system and applies to designable particles. 

Classical distribution 
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• Fermi-Dirac distribution describes the possible ways in which 

a system of indistinguishable (fermions: odd or half integral 

spin) particles can be distributed among a set of energy states 

occupied by only one particle. These particles are 

indistinguishable obeying the Pauli exclusion principle, and 

there can be no more than one particle per quantum state. 

Quantum distribution 

• Bose-Einstein distribution describes the statistical behavior of 

integer spin particles (bosons) on the ways in which the particles 

may occupy a set of available discrete energy states. These 

particles are indistinguishable and do not obey the Pauli 

exclusion principle, and there is no limit on the number of 

particles per quantum state. Quantum distribution 

 

 

But first, we will consider Maxwell–Boltzmann distribution (MBD) 

for a system of particles. The basic assumptions for the M-B are: 

• The particles are identical in terms of physical properties but 

distinguishable in terms of position, path, or trajectory (the 

particle size is small compared with the average distance 

between particles). 

• The equilibrium distribution is the most probable way of 

distributing the particles among various allowed energy states 

subject to the constraints of a fixed number of particles and 

fixed total energy. 
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To illustrate the main concepts of the MBD, we will consider a 

system of six particles and that the total energy of the six particles is 

8E where E is an indivisible unit of energy. So, any one particle can 

have an energy: 

0E, 1E, 2E, 3E, 4E, 5E, 6E, 7E, 8E 

Thus, there are 9 energy levels and there are consequently 20 possible 

ways of sharing an energy of 8E among six indistinguishable 

particles. Each of these 20 arrangements are called macrostates, 

However, we are really interested in distinguishable particles. So, 

each of the 20 arrangements can be decomposed into many 

distinguishable microstates. 

Macrostate 1: one particle has energy 8E, therefore the other 5 

particles have zero energy. But any one of the 6 particles could have 

energy 8E, therefore there are 6 microstates for macrostate 1. 

Macrostate 2: one particle has energy 7E, so another particle must 

have energy 1E. Therefore, the number of microstates is (6)(5) = 30 

since the any of the 6 particles can have energy 7E and any of the 5 

remaining particles can have energy 1E. 

 

We can continue this process, and you will find that there are 20 

macrostates and 1287 microstates.  The number of microstates for the 

each of the 20 macrostates is given by  
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where N is the total number of particles and ni is the number of 

particles with energy Ei. 

Macrostate 1: n0 = 5 and n8 = 1    NMB = 6!/[(5!)(1!)] = 6 

Macrostate 2: n0 = 4 and n7 = 1    NMB = 6!/[(4!)(1!)] = (6)(5) = 30 

The Python Code qmSM01.py is used for simulations of the system of 

6 particles with fixed total energy 8E. 

N = 6   # Total number of particles 
nE = 9  # Number of energy levels: energy levels 0 1 2 3 4 5 6 7 8 
nMacro = 20  # Number of macroStates 
 
# Populations of macrostates: number of particles for each energy 
level 
macroS = zeros([nMacro,nE]) 
macroS[0,:]  = np.array([5,0,0,0,0,0,0,0,1]) 
macroS[1,:]  = np.array([4,1,0,0,0,0,0,1,0]) 
macroS[2,:]  = np.array([4,0,1,0,0,0,1,0,0]) 
macroS[3,:]  = np.array([3,2,0,0,0,0,1,0,0]) 
macroS[4,:]  = np.array([4,0,0,1,0,1,0,0,0]) 
macroS[5,:]  = np.array([3,1,1,0,0,1,0,0,0]) 
macroS[6,:]  = np.array([2,3,0,0,0,1,0,0,0]) 
macroS[7,:]  = np.array([4,0,0,0,0,2,0,0,0]) 
macroS[8,:]  = np.array([3,1,0,1,1,0,0,0,0]) 
macroS[9,:]  = np.array([3,0,2,0,1,0,0,0,0]) 
macroS[10,:] = np.array([2,2,1,0,1,0,0,0,0]) 
macroS[11,:] = np.array([1,4,1,0,1,0,0,0,0]) 
macroS[12,:] = np.array([3,0,1,2,0,0,0,0,0]) 
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macroS[13,:] = np.array([2,2,0,2,0,0,0,0,0]) 
macroS[14,:] = np.array([2,1,2,1,0,0,0,0,0]) 
macroS[15,:] = np.array([1,3,1,1,0,0,0,0,0]) 
macroS[16,:] = np.array([0,5,0,1,0,0,0,0,0]) 
macroS[17,:] = np.array([2,0,4,0,0,0,0,0,0]) 
macroS[18,:] = np.array([1,2,3,0,0,0,0,0,0]) 
macroS[19,:] = np.array([0,4,2,0,0,0,0,0,0]) 
 

We can compute the number of microstates for each of the 20 

macrostates: 

# Number of microstates for each macrostate 
microS = zeros(nMacro) 
Nf = factorial(N) 
nf = zeros(9) 
for c1 in range(nMacro): 
    q = 1 
    for c2 in range(nE): 
       q = q*factorial(macroS[c1,c2])  
    microS[c1] = Nf / q           
# total number of microstates 
microN = sum(microS) 
 
Console output 

Number of microstates for each energy level (macrostate) 

[  6.  30.  30.  60.  30. 120.  60.  15. 120.  60. 180.  30.  60.  90. 

 180. 120.   6.  15.  60.  15.] 

Total number of microstates 

1287.0 
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We can find the average number of particles ni_avg with an energy Ei  

   

 probability of observing a given macrostate = 

      number of microstates in macrostate  / total number of microstates 

 

 
# Probability of observing of a given macrostate 
p = zeros(nMacro) 
nAvg = zeros(nE) 
for c in range(nMacro): 

p[c] = microS[c]/microN 
 
Console output 

array([0.004662  , 0.02331002, 0.02331002, 0.04662005, 
0.02331002, 0.09324009, 0.04662005, 0.01165501, 0.09324009, 
0.04662005, 0.13986014, 0.02331002, 0.04662005, 0.06993007, 
0.13986014, 0.09324009, 0.004662  , 0.01165501, 0.04662005, 
0.01165501])  

 
# Average number of particles in a given macrostate 
for c in range(nE): 
    nAvg[c] = sum(macroS[:,c]*p) 

 
# Probability of finding a particle with a given energy 
probE = nAvg/6 
 
Console output 

Probability of finding a particle with a given energy 
[0.38461538  0.25641026  0.16705517  0.0979021  0.05050505 
0.03108003  0.01165501  0.003885   0.000777  ] 
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The graph of the probability of finding a particle with a given energy 

against the energy levels gives the distribution function of 6 

distinguishable particles with a total energy 8E is shown in figure 1.  

There is a rapidly decrease in probability with increasing energy and 

the decrease in probability can be modelled as an exponential 

function.  More particles are found in a lower energy level than the 

next higher energy level.  

  

 

 

Fig. 1.   Distribution function of the 6 particles with a total energy of 

8E.            qmSM01.py 
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MAXWELL – BOLTZMANN DISTRIBUTION 

We can now consider a system containing a very large number of 

particles and how the energy of the particles are distributed. For the 

Maxwell–Boltzmann distribution the constraints are: 

• The total number of particles is constant at any temperature. 

• The total energy of the system is fixed at a given temperature. 

• There maybe different states which have the same energy and 

this is referred to as degeneracy g (g(E)) (statistical weight) and 

is the density of states. 

 

The exponential form of the Maxwell–Boltzmann distribution is 

 exp( / )MB Bf A E k T= −  

 

where kB is the Boltzmann constant, T is the absolute temperature and 

A is a normalization constant. 

 

The number of particles nE dE is the number of particles per unit 

volume with energies between E and dE. For N particles in a volume 

V, the number density is n = N / V. 

 

 E MBn dE g f dE=  

 

 
0

MB

N
n g f dE

V



= =   
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SIMULATION 

qmSM02.py   

 

We can model the Maxwell-Boltzmann distribution for different 

temperatures T = 300, 500, 700, 900 K. The system considered has a 

fixed number of particles N = 108 in a unit volume V = 1 and the sum 

of the energy of all the particles is a constant Emax = 0.40 eV. The 

energy of each particle can have a value ranging continuously from 

Emin = 0 to Emax  = 0.4 eV. The degeneracy for the system is g = 1. 

 

  

# Total energy of system of particles [J] 

          E = e*linspace(Emin,Emax,num) 

 

The Maxwell-Boltzmann distribution  

exp( / )MB Bf A E k T= −  

is calculated with the Python function  

# Function: Maxwell-Boltzmann distribution: fixed number of 

particles N 

def fn(T): 

    k = -1/(kB*T) 

    f = exp(k*E) 

    I = simps(f,E) 

    A = N/I 
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    f = A*exp(k*E) 

return f 

 

where A = 1 is the start value for the normalization constant. The 

value of A is adjusted for each temperature T so that the number of 

particles is N = 108 by using the relationship 

0
MB

N
n g f dE

V



= =   

 

The results are displayed as shown in figure 2 for n against E. 

 

 

Fig. 1A. The Maxwell-Boltzmann distribution for the system of 108 

particles with total energy 0.4 eV at different temperatures.  

qmSM02.py   
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Fig. 2B. The Maxwell-Boltzmann distribution for the system of 108 

particles with total energy 0.4 eV at different temperatures.   

qmSM02.py   

 

Figure 2B shows the percentage number of particles in the three 

energy bands for the four temperatures. At the lowest temperature 

nearly all the particles are restricted to the lowest energy band. As the 

temperature increases, more and more individual particles have higher 

energy. 
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Example     Emission lines of hydrogen atoms 

Find the populations of the first six states of atomic hydrogen relative 

to the ground state population of 100 for different temperatures.   

 

Solution             Python Code  qmSM03.py 

 The first six energy levels for the hydrogen atom are given by 

 
2

13.6 / 1, 2, 3, 4, 5, 6mE m m= − =  

where m is the principal quantum number. 

 

The ground state energy is E1 = -13.6 eV. To use the Maxwell-

Boltzmann distribution, the ground state is set to zeros and the excited 

states are measured w.r.t. the ground state energy ER1 = 0. 

 1Rm mE E E= −  

 

The Maxwell-Boltzmann distribution yields the number of particles 

per unit volume 

 exp
B

E
n g A

k T

 
= − 

 
 

where g is the density of states or the number of energy states per unit 

volume. For the hydrogen atom, the density of states g depends upon 

the principal m where 

 2
2g m=                     (n is the particle number density) 
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The Python Code (qmSM03.py) to calculate the relative populations; 

def fn(c,ER,T): 

    g = 2*c**2 

    k = -e/(kB*T) 

    f = g*exp(k*ER) 

    return f 

 

E = zeros(6); ER = zeros(6); nR = zeros(6) 

for c in range(6): 

    E[c] = -13.6/(c+1)**2 

    ER[c] = E[c] - E[0] 

    nR[c] = fn(c+1,ER[c],T) 

nR = 100*nR/nR[0] 

 

The computations are displayed in the Console Window. 

The energy level of the hydrogen atom: 

Energy levels  [eV] 

State    En     ER 

  1    -13.60   0.00 

  2    -3.40   10.20 

  3    -1.51   12.09 

  4    -0.85   12.75 

  5    -0.54   13.06 

  6    -0.38   13.22 

 

The relative populations at different temperatures: 
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Temperature T = 300  K 

Relative populations: nR = 100 for state 1 

State     nR  

  1      100.0000 

  2      0.0000 

  3      0.0000 

  4      0.0000 

  5      0.0000 

  6      0.0000 

At room temperature T =300 K, all the hydrogen atoms are in the 

ground state. 

Temperature T = 20000  K 

Relative populations: nR = 100 for state 1 

State     nR  

  1      100.0000 

  2      1.0782 

  3      0.8111 

  4      0.9827 

  5      1.2858 

  6      1.6814 

 

Temperature T = 50000  K 

Relative populations: nR = 100 for state 1 

State     nR  

  1      100.0000 

  2      37.5249 

  3      54.4729 

  4      83.0701 

  5      120.9018 

  6      167.5123 
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At the high temperature of 20 000 K (flame, electric arc)), some of the 

atoms will be in an excited state. However, at the temperature of 50 

000 K the highest energy levels are even more populated than the 

ground state.  

 

The strength of an emission or absorption line is proportional to the 

number of atomic transitions per unit time. For particles obeying 

Maxwell-Boltzmann statistics, the number of transitions per unit 

time from some initial state i to some final state f equals the product 

of the population of the initial state and the probability for the 

transition from the initial state to the final state ( )i f→ . The 

transition rate for particles obeying Maxwell-Boltzmann statistics 

depends only on the initial population, since there are no restrictions 

on the number of particles in the final state.  

 

Emission strength  ( )i f→   

                = population(i) x probability of transition ( )i f→  

 

Hence, we can conclude that the emission line will be stronger the 

more highly populated is the excited state.  


