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PYTHON CODES  

sm400.py     Gaussian random number generator for creating the 

probability distributions 

sm400C.py   symbolic integration and differentiation of distribution 

functions 

qmSM04.py  In this simulation of the Maxwell distribution of speeds 

for an ideal gas is modelled. In the input section you specify the 

number of grid points num, temperature T, mass of the molecules m, 

the velocity range (vMin = 0, vMax) and the velocity limits (v1, v2) 

https://d-arora.github.io/Doing-Physics-With-Matlab/
https://github.com/D-Arora/Doing-Physics-With-Matlab/tree/master/mpScripts
https://drive.google.com/drive/u/3/folders/1j09aAhfrVYpiMavajrgSvUMc89ksF9Jb
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for finding the probability of finding a molecule in the range 

1 2v v v  . 

#%% INPUTS >>>>    
# Temperature T [K] 
T = 600 
# amu [kg] / molecular mass of gas 
M = 32 
amu = 1.6605e-27 
# mass of gas molecule m [kg]  = amu * molecule mass of gas 
m = amu*M 
# Velocity range  [m/s] 
vMin = 0; vMax = 2000 
# Velocity limits for probability calculation [m/s] 
v1= 000; v2 = 2000 
# Grid size 
num = 9999 

 

The number of grid points num and the maximum velocity vMax have 

to be chosen so that the distribution goes to zero as v approached 

vMax. The variable, area is the area under the distribution curve. Its 

value has to be very close to 1 as it represents the probability of 

finding the particle between 0 and vMax. 
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Fig. 1. Maxwell speed distribution. The area under the curve is 

0.94 1  and the distribution is non-zero at the vMax = 300. It is 

necessary to increase vMax so that area ~ 1 and the fM ~ 0 at vMax. 

The results are shown graphically and a summary is displayed in the 

Console Window. The numerical and the theoretical values are both 

displayed to make a judgment on the accuracy of the numerical 

method. 

 

Numerical calculations 

T = 100 K   M = 32 kg 

Normalization area under distribution curve = 1:  area = 

1.0000000 

Most probable speed: vP = 228 m/s 

average speed: vAvg = 257 m/s 

RMS speed: vRMS = 279 m/s 

Probability of finding particle v1 < v < v2 

v1 = 0   v2 = 1000   prob = 1.000 

   

Theoretical calculations 

most probable: vP = 228 m/s 

average: vAvg = 257 m/s 

RMS: vRMS = 279 m/s 

   

Execution time = 0.353 s 
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INTRODUCTION 

For an ideal gas, its temperature [K] is a measure of average 

translational kinetic energy of the gas molecules.  

                

 

So, different ideal gases at the same temperature will have the same 

average molecular average translational kinetic energy. However, we 

would not expect all the molecules in a gas to be travelling at the 

same speed. The way in which the speed of the molecules vary was 

first proposed by James Clerk Maxwell in 1860. At this time, no 

experimental evidence was possible because of the nonexistence of 

proper vacuum equipment. It was not until 1926 that Otto Stern was 

able to partially confirm Maxwell’s predictions.  

 

To start, Maxwell focused on the Cartesian components of velocities 

of the ideal gas molecules since the velocity components are much 

more important than the random instantaneous positions as energy 

depends upon velocity and not position.  

 

We can define a set of velocity distribution functions such that 

 (1) 

1/2 2

( ) exp
2 2

x
x x x

B B

mvm
f v dv dv

k T k T

  
= −  
   
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where ( )x xf v dv  is the probability of finding a particle with the x-

component of the velocity between vx and vx + dvx. If we integrate 

over all values of vx, the result must be one, because every molecule 

must have a value for its velocity component vx at every instant of 

time 

 (2) ( ) 1x xf v dv
+

−
=  

 

The vy and vz velocity components  

 

have a distribution function of the same form as the vx velocity 

component. 

 

We can calculate the mean velocity components and the mean kinetic 

energy of the molecules by performing the necessary integrations in 

Python using symbolic commands. 

 

Mean velocity     xv  

 (3) ( ) 0x x x xv v f v dv
+

−
= =  

0xv =  makes sense physically, because in a random distribution of 

velocities one would expect the velocities to be evenly distributed 

evenly around the peak at vx = 0. 

 

Mean velocity squared     
2

xv  
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 (4) 2 2
( ) B

x x x x

k T
v v f v dv

m

+

−
= =  

 

Mean kinetic energy   K  

 (5) ( )2 2 2 31
2 2x y z BK m v v v k T= + + =  

 

Let b = kB T and a = b m / 2. So, using equation 1 and 3 

( )
1/2

2
( ) expx

a
f v a x



 
= − 
 

  

 

We can now use the Code sm400C.py for calculating the integrals 

symbolically.  

 

from sympy import *  

import sympy as sy 

# Normalization 

def f1(x): 

    g1 = (a/pi)**0.5*exp(-a*x**2) 

    return g1 

 

def f2(x): 

    g2 = x*(a/pi)**0.5*exp(-a*x**2) 

    return g2 

 

def f3(x): 

    g3 = x**2*(a/pi)**0.5*exp(-a*x**2) 

    return g3 
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# Define symbolic variables 

x = sy.Symbol("x") 

a = sy.Symbol("a") 

 

# Probability 

prob = sy.integrate(f1(x), (x, -oo, oo)) 

print(prob)    → 1 

print(' ') 

 

# Mean value x 

xAvg = sy.integrate(f2(x), (x, -oo, oo)) 

print(xAvg)   → 0 

print(' ') 

 

# mean value x**2 

x2Avg = sy.integrate(f3(x), (x, -oo, oo)) 

print(x2Avg)   → (1/(2*a) 

print(' ') 

  

 

The result shown in equation 5 illustrates the equipartition theorem. 

For a monatomic gas there are three degrees of freedom (translational 

motion in the x, y and z directions).  The average kinetic energy of the 

molecules for each degree of freedom is  

 Mean kinetic energy / degree of freedom = 1
2 Bk T  

and the mean kinetic energy is independent of the mass of the gas 

molecules, it only depends upon the temperature T of the gas. 
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The standard deviation x  for the distribution of xv  is 

 (6) 
22 B

x x x

k T
v v

m
 = − =  

From equation 1 we can write the Maxwell factor as 

 (7) 

1/2
2

2 2

1
( ) exp

2 2

x
x x

x x

v
f v 

  

   
= −   
   

 

The Maxwell speed distribution 

 (8) 

3/2 2
2

( ) 4 exp
2 2B B

m mv
f v dv v dv

k T k T




  
= −  

   
 

( )f v dv  is the probability of finding a molecule with speed v to v+dv. 

 

The Maxwell energy distribution (total energy E = kinetic energy K) 

 (9) 

3/2

8 1
( ) exp

2 B B

E
f E dE E dE

k T k T

    
= −   

   
 

( )f E dE  is the probability of finding a molecule with energy (kinetic 

energy) E to E + dE. 
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From the Maxwell speed distribution, we can find the most probable 

speed vpeak, the mean speed <v> and the root mean speed vrms using 

the Python’s symbolic commands. 

 (8) 

3/2 2
2

( ) 4 exp
2 2B B

m mv
f v dv v dv

k T k T




  
= −  

   
 

Most probable speed   ( ) / 0df v dv =   →  

 
2 B

peak

k T
v

m
=  

Mean speed  
0

4
( )

2

Bk T
v v f v dv

m



= =  

Root mean speed    2

0

3
( ) B

rms

k T
v v f v dv

m



= =  

 

sm400C.py 

#%% Speed v 

# Normalization 

def f1(x): 

    g1 = 4*pi*(a/pi)**1.5 * x**2 * exp(-a*x**2) 

    return g1 

 

def f2(x): 

    g2 = 4*pi*(a/pi)**1.5 * x**3 * exp(-a*x**2) 

    return g2 

 

def f3(x): 

    g3 = 4*pi*(a/pi)**1.5 * x**4 * exp(-a*x**2) 

    return g3 
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# Define symbolic variables 

x = sy.Symbol("x") 

a = sy.Symbol("a") 

 

# Probability 

prob = sy.integrate(f1(x), (x, 0, oo)) 

print(prob)   → 1 

print(' ') 

 

# Mean value x 

xAvg = sy.integrate(f2(x), (x, 0, oo)) 

print(xAvg)   →  2/(pi**0.5*a**0.5) → 
4

2

Bk T
v

m
=  

print(' ') 

 

# mean value x**2 

x2Avg = sy.integrate(f3(x), (x, 0, oo)) 

print(x2Avg)  → 3/(2*a)   →  
3 B

rms

k T
v

m
=  

print(' ') 

 

# Find peak velocity 

def D(x): 

    return 4*pi*(a/pi)**1.5 * x**2 * exp(-a*x**2) 

 

peak = sy.diff(D(x),x)   → 8*a**1.5*x*exp(-a*x**2)/pi**0.5 - 

8*a**2.5*x**3*exp(-a*x**2)/pi**0.5 

peak = 0  →  a v2 = 1  →  
2 B

peak

k T
v

m
=  
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Equation 7 is a Gaussian function with mean zero and standard 

deviation x . We can use the Python random number generator to 

give a Gaussian (normal) distribution.  

import random 

random(mean,std) 

 

The Python Code sm400.py generates the probability distributions for 

the velocity components and plots the results as a histogram. From the 

velocity component data, the Maxwell speed and energy distributions 

can also be plotted as histograms. For the simulations, one million 

molecules are used and the temperature of the gas be specified for 

different simulations. The theoretical distributions are also calculated 

and plotted as a red curve superimposed on the histograms. The 

histograms show the number of molecules within each bin, the total 

number of molecules being one million. 

 

Fig. 1.   The number distribution for the velocity component xv  and 

the Gaussian distribution given by equation 1 for the gas at a 

temperature T = 300 K. 
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Fig. 2.   The Maxwell distribution of molecular speeds 

2 2 2
x y zv v v v= + +  at T = 300 K. 

 

Fig. 3.   The Maxwell distribution of molecular energy (translational 

kinetic energy) 21
2

K m v=  at T = 300 K. 

 

If the temperature T is increased, the standard deviation is greater 

( )x T   and the distributions have a lower peaks and are broader. 

If the temperature is decreased, the distributions have a higher peak 

and are narrower. 
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Fig. 4.   The distribution at temperature T = 1000 K. 

 

The energy distribution given by equation 9 has two energy terms 

E and ( )exp / BE k T− . The exponential term is fundamentally more 

important and Boltzmann showed that it is a characteristic of any 
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classical system, regardless of how other than molecular speeds may 

affect the energy of a given state. Thus, we can define the Maxwell-

Boltzmann distribution factor fMB for a classical system as 

 (10)      expMB

B

E
f A

k T

 
= − 

 
 

 

where A is a normalization constant. Therefore, the energy 

distribution for a classical system will have the form 

 (11)        ( ) ( ) MBn E dE g E F dE=  

where ( )n E dE is the number of particles with energies between E and 

E + dE. The function g(E) is the density of states and it gives the 

number of available states per unit energy range. 
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Maxwell distribution of molecular speeds 

The Maxwell distribution of molecular speeds gives the most 

probable distribution of speeds in a gas where the gas molecules are 

assumed to move randomly with varying speeds. The Maxwell 

distribution function can be expressed by 

 

 

3/2 2
2

3/2 2
2

( ) 4 exp
2 2

( ) 4 exp
2 2

M

M

B B

M M v
f v v

RT RT

m mv
f v v

k T k T







  
= −  

   

  
= −  

   

 

where 

fM(v) = Maxwell distribution function 

v = speed of a gas molecule 

T = temperature [K] 

kB = 1.381x10-23 J.K-1    Boltzmann constant 

R = 8.3145 J.K-1.mol-1   Universal gas constant 

M = molecular mass of the gas  [kg.mol-1] 

m = mass of a gas molecule  [kg] 

 

The Maxwell speed distribution fM(v) is a probability density 

function  where 

0
( ) 1Mf v dv



=  
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and the probability of the gas molecules of having a speed v in the 

range ( )1 2v v v   is 

 probability ( )1 2v v v   = 
2

1

( )
v

M
v

f v dv  

 

From the Maxwell speed distribution, after lots of algebra we can 

calculate the following velocities; 

Most probable velocity  
2 B

P

k T
v

m
=   

The most probable speed can be numerically estimated from the 

velocity at the peak of the distribution 

 

 # Most probable speed 
target_value = max(fM) 
index1 = np.argmin(np.abs(fM - target_value)) 
vP = v[index1]  

 

Average speed   
8 Bk T

v
m

 =  

The average speed can be estimated numerically from 

 
0

( )
vMax

Mv v f v dv =   

# Average speed 
fn = v*fM 
vAvg = simps(fn,v) 

 

The root mean square speed  
3 B

RMS

k T
v

m
=  
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The rms speed can be estimated numerically from 

2

0
( )

vMax

RMS Mv v f v dv=   

# RMS speed 
fn = v**2 * fM 
vRMS =sqrt(simps(fn,v)) 
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SIMULATIONS        qmSM04.py 

Figures 2, 3 and 4 shows the Maxwell speed distribution for oxygen 

gas (M = 32) at gas temperatures 100, 300 and 900 K. In each figure, 

the red vertical line is the speed vP of molecules at the peak of the 

Maxwell distribution fM, the back vertical line is the average speed 

<v> and the magenta line is for the rms speed vRMS. 

 

 

Fig. 2.  Oxygen gas: M = 32, T = 100 K  

 

 

 

 



19 

 

Numerical calculations 

T = 100 K   M = 32 kg 

Normalization area under distribution curve = 1:  area = 

1.0000000 

Most probable speed: vP = 228 m/s 

average speed: vAvg = 257 m/s 

RMS speed: vRMS = 279 m/s 

Probability of finding particle v1 < v < v2 

v1 = 0   v2 = 1000   prob = 1.000 

 

 

Fig. 3.   Oxygen gas: M = 32, T = 300 K  
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Numerical calculations 

T = 300 K   M = 32 kg 

Normalization area under distribution curve = 1:   

area = 1.0000000 

Most probable speed: vP = 395 m/s 

average speed: vAvg = 445 m/s 

RMS speed: vRMS = 483 m/s 

Probability of finding particle v1 < v < v2 

v1 = 0   v2 = 1000   prob = 0.995 

 

 

Fig. 4.   Oxygen gas: M = 32, T = 900 K 
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Numerical calculations 

T = 900 K   M = 32 kg 

Normalization area under distribution curve = 1:   

area = 0.9993301 

Most probable speed: vP = 684 m/s 

average speed: vAvg = 770 m/s 

RMS speed: vRMS = 836 m/s 

Probability of finding particle v1 < v < v2 

v1 = 0   v2 = 1000   prob = 0.767 

T [m] 100 300 900 

vP   [m/s] 228 395 684 

< v >   [m/s] 257 445 770 

vRMS   [m/s] 279 483 836 

prob v   1000 1.000 0.995 0.767 

prob v > 1000 0.000 0.005 0.233 

 

As the temperature increases, more and more of the gas molecules 

acquire greater speeds and greater translational kinetic energy. 

  

The Code qmSM04.py can be executed to see the variation in the in 

the Maxwell speed distribution due to changes in mass. Two 

examples are shown in figure 5 (oxygen M = 32) and figure 6 

(hydrogen M = 2). 
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The hydrogen molecules on average are moving much more rapidly 

than the oxygen molecules because of their much smaller particle 

mass. The area under each curve is one. The oxygen distribution has a 

much higher peak, therefore the distribution for the hydrogen must be 

much broader. 

 

Fig. 5.   Oxygen gas: M = 32, T = 300 , vRMS = 486 m/s. 

 

Fig. 6.   Hydrogen gas: M = 2, T = 300 K, vRMS = 1933 m/s. 

 

The ratio of the speeds are 

 
(hydrogen) 1933

3.977
(oxygen) 486

RMS

RMS

v

v
= =  
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This is agreement with the theoretical prediction 

 21
2

(hydrogen)3 (oxygen) 32
4

2 (oxygen) (hydrogen) 2

RMS
B

RMS

v M
k T m v

v M
=  = = =  


