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INTRODUCTION 

In this article, we introduce the laws of statistical physics and discuss 

systems of particles that obey either classical or quantum mechanics. 

We will show how a fixed amount of energy may be shared between 

the particles of a system in thermal equilibrium at an absolute 

temperature T. 

 

Maxwell-Boltzmann distribution concerns the distribution of a 

given amount of energy between identical but distinguishable 

particles. The Maxwell velocity distribution is a special case is the 

Maxwell-Boltzmann distribution and forms the basis of the kinetic 

theory of gases and defines the distribution of speeds for a gas at a 

certain temperature. Classical distribution e.g.  ideal gases 

• There is no limit on the number of particles and the particles are 

distinguishable. 

• There is no limit on the number of particles per state. 

• The total energy of the system is fixed. 

 

Boltzmann distribution gives the probability that a system will be in 

a certain state as a function of that state's energy and the temperature 

of the system and applies to designable particles. Classical 

distribution 
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Bose-Einstein distribution describes the statistical behavior of 

integer spin particles (bosons) on the ways in which the particles may 

occupy a set of available discrete energy states. These particles are 

indistinguishable and do not obey the Pauli exclusion principle, and 

there is no limit on the number of particles per quantum state. 

Quantum distribution e.g. photons 

• There is no limit on the number of particles and the particles are 

indistinguishable. 

• There is no limit on the number of particles per state. 

• The total energy of the system is fixed. 

 

Fermi-Dirac distribution describes the possible ways in which a 

system of indistinguishable (fermions: half-integral spin) particles can 

be distributed among a set of energy states occupied by only one 

particle. These particles are indistinguishable obeying the Pauli 

exclusion principle, and there can be no more than one particle per 

quantum state. Quantum distribution e.g. electrons, protons, and 

neutrons, all with spin 1/2. 

• The particles are indistinguishable. 

• There is a limit of 1 particle per state (particles opposite spin can 

occupy a discrete energy level). 

• The total energy of the system is fixed. 
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To compare differences in the three distributions, we will consider 

systems for six particles which have a total energy fixed at 8E. Each 

particle can have energies of 0E, 1E, 2E, 3E, 4E, 5E, 6E, 7E, 8E. 

Thus, therefore are nine allowed energies levels and 20 macrostates 

as shown in Table 1 where the numbers in the arrays show the number 

of particles in an energy level. For example, macrostate 5   

3,1,1,0,0,1,0,0,0 

         Emax = 3(0E) + 1(1E) + 1(2E) + 1(5E) = 8E 

 

The columns labelled MB, BE, FD show the number of microstates 

for each macrostate.  The probability of observing a given macrostate 

is simply the number of its microstates divided by the total number of 

microstates. 

 

From the population of the energy states (Table 1), we can compute 

the relative probability that an energy state is populated for the three 

probability distributions. 
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     Table 1.  qmSM01.py   variable macroS 

  MB BE FD 

0 5,0,0,0,0,0,0,0,1 6 1  

1 4,1,0,0,0,0,0,1,0 30 1  

2 4,0,1,0,0,0,1,0,0 30 1  

3 3,2,0,0,0,0,1,0,0 60 1  

4 4,0,0,1,0,1,0,0,0 30 1  

5 3,1,1,0,0,1,0,0,0 120 1  

6 2,3,0,0,0,1,0,0,0 60 1  

7 4,0,0,0,2,0,0,0,0 15 1  

8 3,1,0,1,1,0,0,0,0 120 1  

9 3,0,2,0,1,0,0,0,0 60 1  

10 2,2,1,0,1,0,0,0,0 180 1 1 

11 1,4,0,0,1,0,0,0,0 30 1  

12 3,0,1,2,0,0,0,0,0 60 1  

13 2,2,0,2,0,0,0,0,0 90 1 1 

14 2,1,2,1,0,0,0,0,0 180 1 1 

15 1,3,1,1,0,0,0,0,0 120 1  

16 0,5,0,1,0,0,0,0,0 6 1  

17 2,0,4,0,0,0,0,0,0 15 1  

18 1,2,3,0,0,0,0,0,0 60 1  

19 0,4,2,0,0,0,0,0,0 15 1  

 Total microstates 1287 20 3 
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Maxwell-Boltzmann 

For the Maxwell-Boltzmann distribution, each of the 20 arrangements 

can be decomposed into many distinguishable microstates. For 

example: 

Macrostate 1: one particle has energy 8E, therefore the other 5 

particles have zero energy. But any one of the 6 particles could have 

energy 8E, therefore there are 6 microstates for macrostate 1. 

Macrostate 2: one particle has energy 7E, so another particle must 

have energy 1E. Therefore, the number of microstates is (6)(5) = 30 

since the any of the 6 particles can have energy 7E and any of the 5 

remaining particles can have energy 1E. 

 

We can continue this process, and you will find that there are 20 

macrostates and 1287 microstates.  The number of microstates for the 

each of the 20 macrostates is given by  

   microstates 
0 2 8

!
6 0! 1

! ! . .. !
MB

N
N N

n n n
= = =   

 

where N is the total number of particles and ni is the number of 

particles with energy Ei. 

Macrostate 1: n0 = 5 and n8 = 1    NMB = 6!/[(5!)(1!)] = 6 

Macrostate 2: n0 = 4 and n7 = 1    NMB = 6!/[(4!)(1!)] = (6)(5) = 30 
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The probability of observing a given macrostate (probS) is simply the 

number of its microstates (microS) divided by the total number of 

microstates (Nmicro). 

 probS = microS / NmicroS 

From Table 1 

         Nmicro = 1287 

 Macrostate 5: microS = 120    probS[5] = 120/1287 = 0.0932 

 

We can now calculate the number of particles (nMD) in a given 

energy state 

nMB = zeros(nE) 

for c in range(nE): 

              nMB[c] = sum(macroS[:,c]*probS) 

 

probS → 

array([0.004662  , 0.02331002, 0.02331002, 0.04662005, 

0.02331002, 0.09324009, 0.04662005, 0.01165501, 0.09324009, 

0.04662005, 0.13986014, 0.02331002, 0.04662005, 0.06993007, 

0.13986014, 0.09324009, 0.004662, 0.01165501, 0.04662005, 

0.0116550 

 

For energy state 1 

nMB[1] → array([0., 1., 0., 2., 0., 1., 3., 0., 1., 0., 2., 4., 0., 

                   2., 1., 3., 5., 0., 2., 4.]) 

and the probability of an energy state being occupied is 

probMB = nMB/N                N = 6 

probMB[1] → 0.256  
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probMB  →  array([0.38461538, 0.25641026, 0.16317016,  

                     0.0979021 , 0.05439005, 0.02719503, 0.01165501,  

                     0.003885  , 0.000777  ]) 

 

 

It is much simpler to calculate the probability of an energy state being 

occupied for both the Bose-Einstein and Fermi-Dirac distributions 

because there is only a single microstate for each macrostate. The 

probability of an energy state being occupied is the total number of 

particles in an energy state divided by the total number of particles in 

all energy states. 

 

Bose-Einstein distribution: 20 macrostates 

                                            120 = 20x6  total number of particles 

nBE = np.sum(macroS,axis = 0) 

     → array([49., 31., 18.,  9.,  6.,  3.,  2.,  1.,  1.]) 

num = np.sum(macroS, axis = None)  → 6 

probBE = nBE/num → array([0.40833333, 0.25833333, 0.15, 

                                      0.075, 0.05, 0.025, 0.01666667,  

                                      0.00833333, 0.00833333]) 
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Fermi-Dirac distribution: 3 macrostates 

                                            18 = 3x6  total number of particles 

macroFD = zeros([3,nE]) 

macroFD[0,:] = macroS[10,:] 

macroFD[1,:] = macroS[13,:] 

macroFD[2,:] = macroS[14,:] 

nFD = np.sum(macroFD,axis = 0)  → 

                                             array([6., 5., 3., 3., 1., 0., 0., 0., 0.])  

num = 18 

probFD = nFD/num → array([0.33333333, 0.27777778,  

                     0.16666667,0.16666667, 0.05555556, 0. , 0. , 0. ,  

                     0. ]) 

 

The relative probabilities for the occupation of the energy levels are 

shown in figure 1 for the three distributions. The Bose–Einstein 

distribution gives results similar, but not identical, to the 

Maxwell–Boltzmann distribution. In general, the Bose–Einstein 

distribution tends to have more particles in the lowest energy levels. 

At higher energies, the curves come together and both exhibit a rapid 

decrease in probability with increasing energy. However, the Fermi-

Dirac distribution is distinctly different in shape from the Maxwell–

Boltzmann or Bose–Einstein curves (figure 1) where the higher 

energy states are unpopulated.  
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Fig. 1. Relative probability distribution functions for an a system of 6 

particles with a total energy of 8E.   qmSM01.py 

 

The values of the relative probabilities are displayed in the Console 

Window. 

 

state     probMB_R     probBE_R     probFD_R 
0           0.942              1.000             0.816 
1           0.628              0.633            0.680 
2           0.400              0.367            0.408 
3           0.240              0.184            0.408 
4           0.133              0.122            0.136 
5           0.067              0.061            0.000 
6           0.029              0.041            0.000 
7           0.010             0.020            0.000 
8           0.002             0.020            0.000 
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DISTRIBUTION FUNCTIONS 

Statistical physics describes the distribution of a fixed amount of 

energy among a number of particles that are identical and 

indistinguishable in any way (quantum particles) or identical particles 

that are distinguishable (classical particles).  

 

For systems described by continuous distributions of energy levels, 

the number of particles per unit volume with energy between E and E 

+ dE is given by 

( ) ( ) ( )n E dE g E f E dE=  

where g(E) is the density of states (number of energy states per unit 

volume in the interval dE) and f(E) is the distribution function and 

gives the probability that a particle is in the energy state E. 

 

Three distinct distribution functions are used, depending on whether 

the particles are distinguishable and whether there is a restriction on 

the number of particles in a given energy state: 

 

Maxwell–Boltzmann Distribution (Classical) 

The particles are distinguishable, and there is no limit on the number 

of particles in a given energy state. 

 ( ) expMB

B

E
f E A

k T

 
= − 

 
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The Maxwell-Boltzmann distribution is shown in figure 2 for 

temperatures 300 K and 3000 K. 

 

Fig. 2.   Maxwell–Boltzmann distribution function at temperatures 

300 K and 3000 K. The areas under the curves are normalized to one.           

qmSM07.py 

 

 

Bose–Einstein Distribution (Quantum) 

The B-E distribution is derived by maximizing the number of ways of 

distributing the indistinguishable quantum particles among the 

allowed energy states subject to the three constraints: 

• A fixed number of particles 

• A total energy 

• No constraints on the number of particles in any energy state. 

 
1

( )

exp 1

BE

B

f E
E

B
k T

=
 

− 
 
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where f(E) is the probability of finding a particle in a particular state 

of energy E at a given absolute temperature T. The constant B 

depends upon the temperature and particle density. However, for 

systems of bosons that are not fixed in numbers with temperature the 

value of B = 1. Thus, for such systems which include photons and 

phonons, the B-E distribution can be express as 

 
1

( )

exp 1

BE

B

f E
E

k T

=
 

− 
 

        photons and phonons 

The number of particles per unit volume ( ) /N E dE V+  with energy 

between E and E + dE and the total number of particles per unit 

volume N/V are given by 

 ( ) /
E dE

BE
E

N E dE V f dE
+

+ =   

0
/ BEN V f dE



=   

 

The Bose-Einstein distribution is shown in figure 3 for temperatures 

300 K and 3000 K. Figure 3 shows that there is a very high 

probability of finding the bosons in the lowest energy states. This 

very high probability for bosons to have low energies means that at 

low temperatures most of the bosons fall into the ground state. When 

this happens, a new phase of matter with different physical properties 

may occur.  This change of phase is called a Bose–Einstein 

condensation (BEC). For helium at a temperature below 2.18 K, 

helium becomes a liquid and is a mixture of the normal liquid and a 
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phase with all molecules in the ground state. The ground state phase, 

called liquid helium II, exhibits many interesting properties, for 

example, the viscosity of the liquid is zero. 

 

Fig. 3.  The Bose-Einstein distribution for temperatures at 300 K and 

3000 K. The areas under the curves are normalized to one.   

qmSM07.py 

 

 

 

Fermi–Dirac Distribution (Quantum) 

To obtain the Fermi–Dirac distribution we stipulate that only one 

particle can occupy a given quantum state. Particles that obey the 

Fermi–Dirac distribution are called fermions and are observed to 

have half integral spin. Examples of fermions include electrons, 

protons, and neutrons, all with spin 1/2. The particles are 

indistinguishable, and there can be no more than one particle per 

quantum state. 
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1

exp 1

FD

f

B

f
E E

k T

=
− 

+ 
 

 

 

where EF is the Fermi energy. At T = 0 K, all levels below EF are 

filled and all levels above EF are empty. 

 

 

Fig. 4.  The Fermi-Dirac distribution for temperatures at 300 K and 

3000 K. The areas under the curves are normalized to one.  The 

probability of finding a particle with an energy equal to the Fermi 

energy is exactly 1/2 at any temperature.   qmSM07.py 

 

A comparison of the M-B, B-E, and F-D distribution functions at 

3000 K is shown in figure 5. For large energies E, all occupation 

probabilities decrease to zero exponentially as ( )exp / BE k T− . For 

small values of E, the F-D probability saturates at 1 as required by 

the Pauli exclusion principle  
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1
exp 0 1

exp 1

f

FD

fB

B

E Ef

E E
f

E Ek T

k T



− 
→ = → 

−   + 
 

 

 

The M-B probability constantly increases but remains finite, but the 

B-E probability tends to infinity

 

Fig. 5.   A comparison of the M-B, B-E, and F-D distribution 

functions at 3000 K. 

 

The Console Window shows the probabilities for energy less than 

0.25 (E < 0.25) being occupied. 

Probability E < 0.25 occupied 

MB       BE       FD 

0.611    0.945    0.236 

The BE distribution is the one that is most populated in the lowest 

most energy states. 


