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INTRODUCTION 

The specific heat of a solid at constant volume cV is the amount of 

energy required to rise the temperature of a solid by a given amount 

  V

dU
c

dT
=  

 

where U is the internal energy. 

 

Experiments performed at room temperature by Dulong and Petit 

found that the energy required to raise the temperature a fixed amount 

was similar for all materials. This observation can be explained using 

the principles of classical physics. There are NA atoms in a mole and 

each atom is regarded as executing simple harmonic motion about a 

lattice site in three dimensions. This gives 3NA degrees of freedom 

and each degree of freedom is assigned an average total energy 

(potential energy + kinetic energy) Bk T . According to the classical 

law of equipartition of energy, the total energy is 

  3 3A BU N k T RT= =  

and thus, the specific heat (heat capacity) at constant volume is 

  -1 -1
3 3 24.94 J.mol .KV A Bc N k R= = =  

This is known as Dulong and Petit’s law and the specific heat is a 

constant, thus independent of the temperature. 

 

The specific heat of many solids is indeed constant with temperature 

especially at higher temperatures with values in agreement with the 
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prediction of the Dulong and Petit law. However, the specific heat of 

all solids trend to zero as the temperature decreases, and near absolute 

zero the specific heat is found to vary as T3. 

 

Albert Einstein in 1907 explained why the classical model did not 

work at low temperatures. He replaced the factor Bk T  by a factor that 

takes into account the energy quantization of a simple harmonic 

oscillator. His approach was to represent one mole of the solid as a 

collection of 3NA simple harmonic oscillators all oscillating with the 

same frequency   
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where 
( )exp / 1Bk T



 −
 is the average energy of an oscillator. 

 

Thus, the total energy (internal energy) and the specific heat are  
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Einstein’s prediction for the specific heat agreed reasonably well with 

measurements. However, the Einstein equation at very low 

temperatures does not give the T3 temperature dependence required by 
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experiment. The frequency    is chosen for each material to match 

experimental results. 

 

Peter Debye improved upon the work of Einstein to give an equation 

that yields results which are in excellent agreement with experimental 

results. The Einstein model was based upon the simple harmonic 

motion of individual atoms whereas the Debye model considers that 

rather than N atoms vibrating in three dimensions independently at the 

same frequency, there are 3N coupled oscillations.  The Debye 

equation for the specific heat of a solid is 
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where TD the Debye temperature. The Debye temperature is 

connected to the elastic properties of a solid and can be determined 

independently of specific heat measurements. Debye’s theory agrees 

with the observed T 3 law at very low temperatures.  

 

Figure 1 shows the specific heat as a function of temperature for the 

classical, Einstein and Debye models. Figure 2 shows the excellent 

agreement between the Debye model and the T 3 dependence shown 

by experiment at very low temperatures. Figure 3 shows the results of 

the Debye model for aluminum, gold and lead. 
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Fig. 1.   Specific heat for the three models: Classical, Einstein and 

Debye. 

 

 

Fig. 2.   The excellent agreement between the Debye model and the T3 

dependence shown by experiment at very low temperatures. 
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Fig. 3.  The Debye model for aluminum (TD = 428), gold (TD = 165) 

and lead (TD = 105). 

 

It is a remarkable fact that so simple a model as Debye’s yields such 

excellent results. 

 

The integral in the equation for the Debye model must be done 

numerically. In Python this integral can be evaluated at each 

temperature step using the Simpson’s rule function. 

 

 # Debye model 

c1 = 36*R; c2 = 9*R; CV = zeros(N) 

for c in range(N): 

        uMax = z[c] 

         u = linspace(xMin,uMax,999) 

         fn =  u**3/(exp(u)-1) 

         I = simps(fn,u) 

             CV[c] = c1*x[c]**3 * I - c2*z[c]/(exp(z[c])-1)  


