

URBAN HORIZON
A Technical Report on the Development of a

Web Application for Sky View Factor Calculation

Vasileios Bouzas 4744772
Geert Jan (Rob) de Groot 4076125
Melika Sajadian 4708032
Nikolaos Tzounakos 4744268
Teng Wu 4721020

Synthesis Project
2017-2018

1

Abstract

In this report, we briefly summarize the methodology behind the development of a

web application for the municipality of the Hague. This application was developed by

a group of students during the Synthesis Project (academic period 2017-2018) of the

MSc Geomatics programme of TU Delft University, the Netherlands. The main

purpose of this application is the estimation of Sky View Factor (SVF), a necessary

element for modern urban planning. To calculate SVF, the methodology used is

based on 3D point clouds in order to incorporate the urban environment in its entirety

(including vegetation). Development of the webpage, along with use for different

location across the Hague, have shown that this approach provides a fast and at the

same time, quite accurate calculation for SVF.

2

Contents

Abstract 1

Contents 2

1. Introduction 3

2. Problem Statement 4

3. Methodology 7

3.1 Data Preparation 7

Lidar Point Cloud 7

Viewpoint Coordinates 7

3.2 Web Development 8

3.3 Sky View Factor Computation 10

Initialization 10

Getting Point Cloud Data 10

Calculate Viewpoint Height 11

Retrieving Points 12

Sky Dome Creation 13

Sky View Factor Calculation 13

Creation of Sky View Plot 14

Removing & Adding Buildings 15

3.4 Outputs 16

4. Discussion 17

5. Conclusions & Recommendations 19

Conclusion 19

Future Developments 19

References 21

Appendix A – Python script: Main code 22

Appendix B – HTML 31

Appendix C – Python Code: Tiling 51

3

1. Introduction

The main purpose of this report is the summary of the methodology used for the

development of an open-source web application upon request of the municipality of

the Hague. This application was developed by a group of five students, consisting of

Vasileios Bouzas, Geert Jan (Rob) de Groot, Melika Sajadian, Nikolaos Tzounakos

and Teng Wu. Development of the application was completed during the Synthesis

Project (Academic period 2017-2018) of the MSc Geomatics programme of TU Delft

University (the Netherlands). Its main objective is the calculation of Sky View Factor

(SVF) for any location in the municipality of the Hague.

Nowadays, the Sky View Factor is widely used in many fields, such as urban climate

and heat island studies, human biometeorology and urban planning. SVF refers to

the ratio of radiation received by a planar surface to the radiation emitted by the

entire hemispheric environment (Johnson & Watson, 1984). It provides a relationship

between the visible area of the sky and neighboring surroundings, such as buildings,

cars, other artificial objects or vegetation. It is typically represented by a

dimensionless value between zero and one, where zero indicates the sky is

completely obstructed by obstacles and one indicates there are no obstructions

(Brown & Ratti, 2001).

Usually, SVF research focuses only on buildings which mainly obstruct the sky in

urban environments. However, trees also play an important role in urban energy

exchange and the urban heat balance (Kim, 2014). After discussion with our clients,

the two study objects - buildings and trees - are determined, which means we

calculate the SVF according to the obstructions made by the buildings and trees.

The structure of this report is the following:

In Chapter 2, we briefly analyze the problem to be addressed and the various

parameters needed to be considered. Chapter 3 is a short description of the

methodology - preliminary data, preprocessing, main processing and end results. We

conclude in Chapter 4 with a discussion on issues still to be addressed by the

current methodology, along with some possible future developments.

4

2. Problem Statement

The main requirements for this web application, set by both developers and clients,

were the following:

● Calculate the SVF for any location in the vicinity of the Hague.

● Import multiple locations -at the same time- as a set of coordinates and export

the result in a both machine and human-readable file format (i.e. CSV).

● Report how changes on the urban environment (addition or removal of

buildings) affects SVF.

● Develop a complete open-source application.

Except for the first one, all requirements are actually functionalities that need to be

incorporated in the web page structure. In that respect, the main problem that still

needs to be addressed is the definition of a methodology that satisfies two main

prerequisites:

● Include the entirety of the urban environment in SVF calculation, mostly

buildings and vegetation.

● Calculate SVF as fast - within a reasonable timeframe - and as accurate as

possible.

There is a wide variety of available methodologies for estimating SVF in scientific

literature, but all of them can be still classified in the following categories, based on

their common characteristics:

● Fisheye Lenses: The most common approach for calculating SVF is the

acquisition of photographs from various locations distributed in the urban

environment with fisheye (ultra wide-angle) lenses. Images are taken by

pointing the camera out to the zenith direction. Subsequently, SVF for a given

location is analogous to the percentage of sky pixels in the corresponding

photograph.

● 2.5D Models: This approach is based on 2D footprints of city features,

integrated with elevation information (for example, from DEM or other

available sources).

● Raster: This kind of methodology is specifically based on the conversion of 3D

point clouds into raster images (hemispherical projections), an approach that

resembles fisheye techniques. In a similar way, SVF is estimated as a

proportion of pixels containing no points.

● 3D Models: In recent years, the continuously growing production of city

models allows SVF study in the 3D environment. The most usual approach is

based on the construction of a hemispherical dome around the point of

interest. Subsequently casting rays and determining if they are intersecting

with surrounding features of the urban environment (buildings, vegetation

etc.).

5

Figure 2.1 - Hemispherical projections of input source types for SVF computation studies

(a) Fish-eye photography-based SVF, (b) vector-based SVF, (c) raster-based SVF, (d) 3D-shape-based SVF

Source: Matzarakis et al., 2007; Matuschek and Matzarakis, 2010; Kastendeuch, 2013

For our project, it is necessary to identify the methodology that is most appropriate

for our purposes, based mainly on two criteria: (1) available data (either open data or

data from other sources) and (2) computational efficiency (both fast and accurate

estimation of SVF).

Since the application needs to be open-source (available to any user for free), it also

has to depend on open data and software. In recent years, Dutch authorities have

extended the availability and accessibility of spatial data, especially through online

services such as the PDOK website and map view service. However, fisheye

photographs are not provided through these services since their acquisition is time-

consuming and economically inefficient. Hence, fisheye techniques could not be in

any case an option to implement, considering that both time and resources are

extremely limited for our project.

On the other hand, relevant spatial data such as building polygons are abundant and

sufficient for implementation of vector-based approaches. The main disadvantage of

these methods is that integration of geometric information with elevation data for any

feature of the urban environment (including vegetation and structures other than

buildings) is rather difficult or even unavailable - in many cases, either the geometric

or elevation information is missing. To avoid that, most approaches of this category

focus only on human structures, ignoring vegetation in general (which in reality may

block a significant part of the sky), leading to less accurate results. Incorporation of

the urban environment in its entirety is necessary to achieve a meaningful level of

accuracy in SVF estimation.

6

From that aspect, 3D city models appear to be the most promising solution for

calculating SVF. The main problem with that approach is that availability of 3D

models is limited and their production is even more difficult. For example, solid

building reconstruction can be accomplished by degrading the level of detail (LoD) -

the final result is prismas resulting from the extrusion of building footprints with any

available elevation information. Still, even if any possible degradation in accuracy

due to lack of details on the roofs of buildings is ignored, 3D surface reconstruction

of city objects such as trees is too challenging to be completed within the timeline of

our project.

It is concluded that the best method to be used for the purposes of our project is

raster-based techniques. Point clouds are easily accessible since PDOK offers point

clouds covering the whole extent of the Netherlands for low-density distributions

(AHN1, AHN2) and a large part of the country for a higher density distribution

(AHN3). Furthermore, processing of point clouds and hemispherical projections are

easy to be encoded and implemented with use of high-level programming languages

such as C++ or Python. Of course, there are still challenges to be addressed: for

example, density of the given point clouds must be high enough in order to achieve

the necessary accuracy. This translates into processing large amounts of data, a fact

which considerably increases execution time. Taking that into consideration, data

preprocessing, along with other techniques, needs to be devised to improve

efficiency.

The problem statement in a nutshell, is defined as the following research question:

How can an open source web application that generates a SVF for

any user-requested point(s) within the municipality of The Hague be

developed, using massive point cloud data, while maintaining a

reasonable processing speed and providing the highest accuracy as

possible?

The research question will be addressed in the following chapters.

7

3. Methodology

In this chapter the used methods that yielded the desired results are discussed. The

methods used consist of several processes, which are described in full extent

including the needed input, inner procedures of the process and the final output that

is provided.

3.1 Data Preparation

The initial information and data that are necessary for the web application are:

● Lidar point cloud containing information on the elevation of features of interest

on the earth’s surface, including the earth’s surface itself.

● Points’ position, provided by the user through the web application.

Lidar Point Cloud

The algorithm that calculates the SVF requires a point cloud of .las format. The

source of the point cloud data is the online portal of ‘Publieke Diensten op de Kaart’

(PDOK, available at https://www.pdok.nl/nl/ahn3-downloads). The dataset that is

selected to use is the AHN3 point cloud, which contains X, Y, Z coordinates as well

as other types of information, such as the classification of points. The data format

that PDOK provides is in .laz format, which is a compressed form of the .las format.

To revert them into a usable format again, an open source executable application is

used, called ‘LASzip’. By converting the initial datasets, it is possible to process the

data. It is also necessary to store all of that data efficiently, so that it can later be

retrieved by the main algorithm. The redundant points are removed from the dataset

by clipping them out of the study areas’ extent.

In order to speed up the main algorithm (SVF calculation), the whole point cloud of

The Hague was cut into 9,841 tiles with a size of 100 by 100 meters. This specific

extent is in accordance with the selected method for SVF calculation, as will be

described in section 3.3. A tailor-made python script is developed for this purpose.

For any selected viewpoint, the tile containing this viewpoint is determined. Using

this tile, the eight neighbouring tiles are determined, so the nine tiles are used as the

input point clouds for the main algorithm.

Viewpoint Coordinates

In order to be able to compute the SVF for a certain point, it is necessary to have

that point’s coordinates on a known reference system. This is handled through the

web application. On the application’s interface, the users are able to select the points

that they want, which are represented as point features on the map. Immediately

after creating the points, the portal is capable of recognizing their coordinates in the

“Amersfoort RD/new” reference system. The cartesian coordinates are then

presented on a table on the application interface.

https://www.pdok.nl/nl/ahn3-downloads

8

When sending the request for SVF calculation, the viewpoint coordinates are

embedded in the request. This triggers a background python script to process that

information, and produce the desired results. Figure 3.1 depicts the created points

on the map interface, their corresponding coordinates and SVF values in a table

positioned below that.

Figure 3.1 - Web Portal Interface of Creating Points on Map

Source: Own work

3.2 Web Development

In this section the functional requirements and the architecture of the web

application, as well as the facilities that it offers are discussed.

The functional requirements are:

● AHN3 tiles stored on local files.

● Web server for handling HTTP requests and responses.

● PHP interpreter, the medium between the webserver and the python script.

● Python script which does the main processing, i.e. SVF calculation.

● The scripts in JavaScript language, both on client and server side to handle

connections between client, servers (Application server and external servers).

9

● OpenLayers API to facilitate interactions of the user.

● HTML and CSS to markup and style the body of the web page.

The web portal is constructed based on one of the well-known client-server

architectures called three-tier architecture, which includes: presentation, logic and

data tiers. The data tier is mainly about storing and managing data for processing.

The only data that we are storing in the local file is point cloud data. The rest of

needed data is directly requested from PDOK web services.

The logic tier coordinates the application, processes, commands, logical decisions,

evaluations and performs calculations. This layer is also the medium through which

the data is transferred between the two other layers. In this layer, one web server is

used to handle the task: Apache coupled with PHP in one open source software

called ‘XAMPP’. The SVF calculation is done through a Python script which takes the

coordinates of a certain point, the geometry of polygons to be added or removed

from the user and reads the point cloud data for computation. Whenever a user

makes a request to the portal, the Apache server runs a PHP program which triggers

the Python script and receives the output of the SVF calculation and embeds it in the

HTML file.

The presentation tier is the top level, which is the user interface. The main function of

the interface is to translate tasks and results to a form that users can understand. In

this layer the user is able to see the building polygons overlaid on ‘OpenStreetMap’

(OSM). The building polygons are directly requested from PDOK’s WMS service of

its BAG dataset. Using the OpenLayers API and JavaScript codes the user is able

to:

● zoom and pan on the map;

● create points (for SVF calculation) and show them on the table;

● select points both from the table and map canvas;

● delete points;

● clear the canvas;

● eliminating existing buildings from calculation (whose geometry is retrieved

from Web Feature Service (WFS) of PDOK);

● adding a building with a certain height;

● submit a request for SVF calculation;

● recalculate upon changes.

As web maps are in the WGS84 Web Mercator (EPSG: 3857) coordinate system,

the API and JavaScript codes also enable the transformation between the web

coordinate system and national Dutch coordinate system (RD new). HTML is an

XML like format by which the website is formulated. Finally, CSS is used for styling

the web portal.

10

Figure 3.2 - Three Tier Architecture

Source: Own work

3.3 Sky View Factor Computation

This section dives into the inner processes of the constructed SVF-calculation

algorithm and will explain these processes in detail.

Initialization

The initialization of the algorithm starts with getting information about a point’s

coordinates, as well as information on the place where the Lidar point cloud data is

stored.

Getting Point Cloud Data

The size of the data stored in order to facilitate a functional program for the extent of

an area is quite big. Each of the tiles provided by PDOK contains hundreds of

millions of points, which translates into many GigaBytes of data. Since the algorithm

is supposed to be efficient and produce results within a reasonable timeframe, it is

deemed necessary to style the stored data in a way such that we can retrieve the

minimum required number of points. For this the tiling of the point cloud is used, as is

described in section 3.1. The 100 by 100 metres tiles are indexed using their relative

position in a row-column structure. As such, by knowing the coordinates of a point, it

is recognized in which tile’s spatial extent it lies. After that, the tiles that are

horizontally, vertically and diagonally adjacent to the initial tile are retrieved. The

resulting nine tiles are kept as a tile grid (as seen in Figure 3.3).

11

Figure 3.3 - Web Portal Interface of Creating Points on Map

Source: Own work

Calculate Viewpoint Height

On the front-end side of the application, only 2D horizontal coordinates are made

available to the user. However, in order to calculate accurate SVF values, the

elevation of the viewpoint needs to be taken into account. As such, another method

needs to be implemented to assign elevation to a viewpoint. An approach to deal

with this is to utilize the point cloud points that are classified as ground.

In order to provide the user with a sense of continuity, a distinction between ground

viewpoints and on-building viewpoints should be made. If the number of ground

points is larger than that of building points surrounding the viewpoint, the viewpoint is

considered to be on the ground and vice versa.

Furthermore, from the selected tiles those points that are lying within a set radius are

kept (Figure 3.4). To ensure the distinction between building- and ground- viewpoints

is established accurately, a one-meter radius can be considered appropriate. The

elevation of the surrounding points can be calculated, using only the points of the

most prevalent class. This calculated value can then be assigned to the viewpoint.

12

Figure 3.4 - Selection of Neighboring Points

Source: Own work

Retrieving Points

In the same manner as depicted in figure 3.4, using a different radius, the points that

are deemed to be of use are selected. Those points represent all features that are

obstacles to the viewer, preventing a clear view to the sky. The literature of An et al.

(2014) suggests that a radius of 100 metres allows for an effective calculation of the

SVF (Figure 3.5). In this case, the most accurate result is for a radius of 160 metres,

however a radius of 100 metres gives a result that is less than 2% different.

Therefore this radius is accepted in order to increase the computation time of the

algorithm.

Figure 3.5 - SVF related to Distance of Selected Points

Source: An et al. (2014)

Out of all the points that fall within the defined radius, only the points that are

classified as vegetation or buildings are used for the calculation. Because it is

assumed that those are the main elements that play a part in the obstruction of the

sky from a certain viewpoint.

13

Sky Dome Creation

A model is necessary for supporting the calculation of the SVF on a certain position.

A dome is selected to be the model that supports the calculation. The dome is a

representation of the sky, going from the horizon all the way to the zenith (directly on

top) of the viewpoint. The dome can be split into sectors based on horizontal and

vertical directions, in essence creating a dome-like shaped grid. The units used to

split the sectors are 2 degrees horizontally, and 1 degree vertically, which are

considered as appropriate values for calculation (Gal et al. 2009).

Figure 3.6 - 3D Dome Grid Model

Source: Bourke P. (2001)

Sky View Factor Calculation

At this point, all that is necessary in order to calculate the SVF is present. Initially,

the existing point cloud points need to be projected on the dome, in order to find

which sectors are obstructed from view. Whenever a point falls within the extent of a

certain sector, that particular sector is deemed to be obstructed. It is also taken into

account that if multiple points are falling within the same sector, the point that lies

closest to the viewpoint is determined to be the one that is obstructing the view.

Furthermore, in case that the obstructing element is a building, then also all other

sectors below it in that direction will become obstructed by that same element

(unless another element is indeed closer in a certain sector below). A visual

application of this methodology can be seen on Figure 3.7.

14

Figure 3.7 - Visual representation of 3D Point Cloud Technique

Source: An et al. (2014)

After all relevant sectors are deemed as obstructed or not, the next step would be

calculating the areas of the sectors. For this part, a simplified method is used, which

is calculating the sector areas on a 2D projected dome. As such, each elementary

area becomes a circular sector, the area of which is easier to calculate.

The proportion of the unobstructed area to the total area of the projected dome,

denotes the number that is the Sky View Factor of the viewpoint. This calculation is

presented in Equation 3.1:
Equation 3.1 - SVF calculation

𝑺𝑽𝑭 =
𝑻𝒐𝒕𝒂𝒍 𝑨𝒓𝒆𝒂 − 𝑶𝒃𝒔𝒕𝒓𝒖𝒄𝒕𝒆𝒅 𝑨𝒓𝒆𝒂

𝑻𝒐𝒕𝒂𝒍 𝑨𝒓𝒆𝒂

Creation of Sky View Plot

One final remark that is considered important is the visualization of the results, in

order to help the user understand the output of our algorithm to a greater degree. For

this reason, the choice has been made on creating a circular plot that represents the

projected dome, containing all of the dome’s sectors, and coloring them differently

depending on the element that is obstructing the sky in that sector. This visualization

conforms to the result derived from fisheye view cameras.

The dome model with information on what feature is obstructing which sector is

already prevalent and needs to be visualized. With a plotting library, it is possible to

create a visualization of the result from within the python script, in the way that is

explained previously. The plot image created contains the sectors that are colored

according to whether the sector is unobstructed sky, or obstructed by a building or

vegetation. The image is oriented so that it is pointing to the north and contains

information on directions. Figure 3.8 is an example of the outcome of this process.

15

Figure 3.8 - Projected Dome Plot Image

Source: Own Work

Removing & Adding Buildings

The main task of our application is the calculation of SVF, assuming that the urban

environment does not change over the course of time. Of course, this is not true and

the need for a more dynamic approach that can adapt to changes in the urban

surroundings becomes apparent. In that respect, development of functionalities to

both add and remove buildings is necessary in order to also report how changes in

the urban environment reflects to SVF.

Removing buildings is one of these tasks. Since 3D point clouds are used to

calculate SVF, the points that lie within the corresponding footprint need to be

ignored from the computation process. For that purpose, the Point-in-Polygon

algorithm (PNPoly) is implemented to identify which part of the point cloud lies within

the building polygon. PNPoly is a faster alternative to the ray-casting algorithm,

which is most commonly used to address Point-in-Polygon problems. PNPoly

conducts the least number of conditions necessary and decreases the computation

time as much as possible.

The addition of new buildings to the calculation process is a bit more complex. One

way to go about this is to identify, again with PNPoly, what existing points lie inside

the corresponding polygon of the added building, and assign them with the newly

determined elevation (building height) and class (building class) values. The main

issue that this approach raises is that the density of that area of the pointcloud may

not be sufficient for the SVF calculation.

The other option is to clear all existing points that lie within the corresponding

polygon of the added building, and fill this area with a newly generated grid of points

with a predefined density, guaranteeing a sufficient density for the SVF calculation. It

16

is reasonable to assume that the second option provides a higher certainty about the

accuracy of the results, which is why that is the prefered method.

3.4 Outputs

Finally, results from the algorithm have to be returned as output on the application.

The SVF value and the plot image related to a point are returned and loaded on the

web application interface. This allows the users to see the final results and derive

their own conclusions, or even export the information for later study. Example

fisheye plots can be found in figure 3.9, while 3.10 provides a side-by-side

comparison with Google Maps imagery, to provide a more insightful way to validate

the output.

Figure 3.9 - Example output plots for Skyview Factor

Source: Own work

Figure 3.10 -Side by side comparison with Google Maps imagery

Source: Left - Google Maps, Right - Own work

17

4. Discussion

The final product of this Synthesis Project is an open-source web application that

allows SVF calculation in a fast and quite accurate way.

The visual result can be considered of good quality. The image plot represents the

view of the sky that a person would have on a certain location. However, since the

aim was for the user to have an intuitive perspective on the result, the image was

oriented according to the map, and not as a true fisheye camera product. When a

street view image is oriented according to the map, the result is as shown in Figure

4.1. In this figure, the two images are compared with each other and the geometrical

similarities are evident.

Figure 4.1 - Side by side comparison with fisheye plot

Source: Left - notlion.github.io, Right - Own work

While the results are fast and accurate, there are still minor drawbacks that can be

addressed in order to have an optimized and fully-scaled application with an

interface as user-friendly as possible.

One of the main issues for this application is the storage and processing of massive

point cloud data. For example, for the municipality of the Hague, we need to store

and process over 60GB of data to achieve a satisfying level of accuracy. Processing

has already been improved significantly during development by constantly optimizing

the programming process. However, the storage problem still remains unsolved. For

a fully-operational server that serves one municipality, memory size will most likely

not be an issue. For a fully-operational server that would be scaled to e.g. serve an

entire country, this may be considered a significant hindrance. One option to solve

this issue would be to access the necessary part of the point cloud from PDOK

through a web service, instead of storing and tiling up entire datasets. Unfortunately,

18

web point cloud services have not been fully developed yet and this option may not

be implemented in the near future.

Another option to solve the storage issue would be to lower the density of the point

cloud that needs to be processed. This option produces suboptimal results however,

there is a linear relationship between yielded result accuracy and the density of the

used point cloud. The deterioration of the quality of the plots, based on different point

cloud densities can be seen in figure 4.2.

Figure 4.2 - Differences in fisheye plots for different point cloud densities

Source: Own work

Furthermore, the terrain of the study area is considered to be relatively flat. In other

words, there are no ground features such as hills or dikes that could possibly

obstruct sky view. Due to this property of the Dutch terrain, the ground points are not

taken into consideration for the computation of SVF. The main argument behind the

exclusion of ground points from the main process was deterioration in computational

speed due to the larger number of points to be processed. Still, this assumption

holds true for any typical terrain in the Netherlands, but not for countries with more

complex topography. This problem will need to be addressed in future versions in

our application, especially if it is going to be used in other countries. A solution to this

would be to include ground points not only for assigning elevation to the viewpoint,

but also to the general processing of the point cloud for SVF calculation.

19

5. Conclusions & Recommendations

Conclusion

The goal of this technical report was to provide insight into the inner workings of the

creation of a web application for Sky View Factor Calculation. The research question

was as follows:

How can an open source web application that generates a SVF for

any user-requested point(s) within the municipality of The Hague be

developed, using massive point cloud data, while maintaining a

reasonable processing speed and providing the highest accuracy as

possible?

Such an application can be created making use of the Python programming

language in order to get the computational process with a high accuracy. In order to

acquire a reasonable processing speed, a number of open source libraries have

been used; one of them being Numpy, which greatly improved the speed of the

computational process. To allow the interaction between the web application and

the offline application a remote server and an open source software called XAMPP

are used. The connecting element between the server and the python script is PHP.

This would be the answer to the research question in short, however it is very

general. A more detailed answer to each challenge that arose during the answering

of this question is entailed in chapters one through four.

Future Developments

The application that is created is a very general web application that makes use of

locally stored point cloud data. Due to this generality, the application can be used as

a basis for the development of other web applications for study of the urban

environment. For example, one possible alternative could be an application that

calculates DOP values to evaluate the quality of GPS measurements. DOP values

are highly dependent on the geometry of satellites visible from a GPS receiver at a

given point in time. Even if one satellite is no longer visible due to obstructions - for

example, in cases of urban canyons, the satellite geometry changes dramatically

and so does the corresponding DOP. Since we have already developed a process to

detect obstructions in the urban environment, integration of satellite data to this

application can lead to an operational program. Satellite data could be data such as

the ephemeris or any available information on satellite network orbits.

Another future development of the application can be to provide an online web

application for editing and saving point clouds. This application already allows the

editing of (parts of) point clouds, but only stores the resulting outcomes, since only

this is relevant to the SVF application. It would be an interesting development to

provide a web application that shows the resulting point cloud when a building is

removed from the existing point cloud or a user-generated building is added to the

existing point cloud. It would also be a possible development to show the user this

20

point cloud data in 3D on the application itself, this can be a huge strain on the

server, but the data is already available.

The last possible development would be the scaling of the application. We strongly

believe it is scalable enough to incorporate the whole extent of the country since the

necessary data is already available. The only thing missing is the required

infrastructure, mainly a larger functional server. Also, we would be very pleased if

this application could be also used or even further developed by organizations

outside the Netherlands because it is our sincere belief that our application

addresses a very important issue usually posed in modern urban planning in an

effective and efficient way.

21

References

● An, S. M., Kim, B. S., Lee, H. Y., Kim, C. H., Yi, C. Y., Eum, J. H., & Woo, J. H.

(2014). Three‐ dimensional point cloud based sky view factor analysis in

complex urban settings. International Journal of Climatology, 34(8), 2685-2701.

● Bourke, P. (2001). Computer Generated Angular Fisheye Projections.

http://paulbourke.net/dome/fisheye/ (viewed at 23-5-2018)

● Brown, M. J., Grimmond, S., & Ratti, C. (2001). Comparison of methodologies for

computing sky view factor in urban environments (No. LA-UR-01-4107). Los

Alamos National Lab., NM (US).

● Gal T., Lindberg F, Unger J. (2009). Computing continuous sky-view factors

using 3D urban raster and vector databases: comparison and application to

urban climate. Theor. Appl. Climatol.

● Johnson, G. T., & Watson, I. D. (1984). The determination of view-factors in

urban canyons. Journal of Climate and Applied Meteorology, 23(2), 329-335.

● Publieke Dienstverlening Op de Kaart (2018), https://www.pdok.nl/nl/ahn3-

downloads, (visited at 23-5-2018)

http://paulbourke.net/dome/fisheye/
https://www.pdok.nl/nl/ahn3-downloads
https://www.pdok.nl/nl/ahn3-downloads

22

Appendix A – Python script: Main code

import numpy as np

import laspy as lp

import json

import math

import os

import matplotlib.pyplot as plt

import time

import sys

from shapely.geometry import Polygon

from operator import itemgetter

Determine tile containing point,

based on whether point lies within tile's extent

def find_tile():

 for tile in tilelist:

 # tile name contains coordinates of bounding box

 new_tile = tile.strip(".las").split(",")

 tile_min_x = float(new_tile[2])

 tile_min_y = float(new_tile[3])

 tile_max_x = float(new_tile[4])

 tile_max_y = float(new_tile[5])

 if tile_min_x <= x <= tile_max_x and tile_min_y <= y <= tile_max_y:

 return int(new_tile[0]), int(new_tile[1])

Search for the tiles that are adjacent to the initially selected tile

def find_tile_grid(row, col):

 iteration_list = [-1, 0, 1]

 tile_grid = []

 for i in iteration_list:

 for j in iteration_list:

 tilename_start = "{},{}".format((row + i), (col + j))

 for tile in tilelist:

 if tile.startswith(tilename_start):

 tile_grid.append(tile)

 break

 # tile_grid: list of 9 tiles

 return tile_grid

determine height of viewpoint by sampling the ground points

center: location of viewpoint

def getheight(tile_grid):

 center = np.array([x, y])

 pointheight = 0

 points_number = 0

 for tile in tile_grid:

 # read the .las file

 file_input = lp.file.File("{}{}{}".format(path, "/Tiles/", tile),

mode='r')

 # keep groundpoints satisfying ground_rules:

 # classification 2 for ground, inside las file

 # keep points within radius of 5 metres

 ground_rules = np.logical_and(

 file_input.raw_classification == 2,

23

 np.sqrt(np.sum((np.vstack((file_input.x,

file_input.y)).transpose() - center) ** 2, axis=1)) <= 1)

 build_rules = np.logical_and(

 file_input.raw_classification == 6,

 np.sqrt(np.sum((np.vstack((file_input.x,

file_input.y)).transpose() - center) ** 2, axis=1)) <= 1)

 ground_points = file_input.points[ground_rules]

 build_points = file_input.points[build_rules]

 # make array with heights of each point

 if ground_points.size > build_points.size:

 ground_point_heights =

np.array((ground_points['point']['Z'])).transpose()

 else:

 ground_point_heights =

np.array((build_points['point']['Z'])).transpose()

 if ground_point_heights.size > 0:

 pointheight += float(np.sum(ground_point_heights))

 points_number += ground_point_heights.size

 # get mean value of points' heights

 if points_number > 0:

 height = pointheight / points_number

 return height

 else:

 return 0

function to get all points lying within range of the defined radius from

the viewpoint

def getPoints(tile_grid, radius, view_height):

 # Viewpoint

 center = np.array([x, y])

 # Gather points

 arraysX, arraysY, arraysZ = [], [], [] # list of arrays of X,Y,Z

coords

 arrayDistances = [] # Horizontal distances

 arrayClasses = [] # Classifications

 toBeAdded = []

 for tile in tile_grid:

 inFile = lp.file.File("{}{}{}".format(path, "/Tiles/", tile),

mode='r')

 coords = np.vstack((inFile.x, inFile.y)).transpose()

 elevation = inFile.z

 distances = np.sqrt(np.sum((coords - center)**2, axis=1))

 keep_points = np.logical_and(np.logical_and(np.logical_or(

 inFile.raw_classification == 1,

 inFile.raw_classification == 6),

 distances < radius),

 elevation >= view_height/1000)

 # Get coordinates

 arraysX.append(inFile.x[keep_points])

 arraysY.append(inFile.y[keep_points])

 arraysZ.append(inFile.z[keep_points])

 # Get distances

 arrayDistances.append(distances[keep_points])

24

 # Get classifications

 arrayClasses.append(inFile.raw_classification[keep_points])

 # Concatenate all information

 X, Y, Z = arraysX[0], arraysY[0], arraysZ[0]

 distances = arrayDistances[0]

 classes = arrayClasses[0]

 for arrayX, arrayY in zip(arraysX[1:], arraysY[1:]):

 X = np.hstack([X, arrayX])

 Y = np.hstack([Y, arrayY])

 for arrayZ in arraysZ[1:]:

 Z = np.hstack([Z, arrayZ])

 for arDist in arrayDistances[1:]:

 distances = np.hstack([distances, arDist])

 for arClass in arrayClasses[1:]:

 classes = np.hstack([classes, arClass])

 if removeLst:

 toBeRemoved = clearpoints(removeLst, boundRemoveLst, X, Y, classes,

6)

 X=np.delete(X,toBeRemoved)

 Y=np.delete(Y,toBeRemoved)

 Z=np.delete(Z,toBeRemoved)

 distances=np.delete(distances,toBeRemoved)

 classes=np.delete(classes,toBeRemoved)

 if addLst:

 toBeCleared = clearpoints(addLst, boundAddLst, X, Y, classes, 0)

 X=np.delete(X,toBeCleared)

 Y=np.delete(Y,toBeCleared)

 Z=np.delete(Z,toBeCleared)

 distances=np.delete(distances,toBeCleared)

 classes=np.delete(classes,toBeCleared)

 for i in range(len(boundAddLst)):

 Xarray, Yarray, Zarray, Carray = create_pc(boundAddLst[i][0],

boundAddLst[i][1], boundAddLst[i][2], boundAddLst[i][3], height[i])

 toBeAdded=clearpoints(addLst, boundAddLst, Xarray, Yarray,

Carray, 6)

 Xarray = Xarray[toBeAdded]

 Yarray = Yarray[toBeAdded]

 Zarray = Zarray[toBeAdded]

 Carray = Carray[toBeAdded]

 coordsNew = np.vstack((Xarray, Yarray)).transpose()

 distancesNew = np.sqrt(np.sum((coordsNew - center) ** 2,

axis=1))

 keepNewPoints = np.logical_and(

 distancesNew < radius,

 Zarray >= view_height / 1000)

 Xarray = Xarray[keepNewPoints]

 Yarray = Yarray[keepNewPoints]

 Zarray = Zarray[keepNewPoints]

 Carray = Carray[keepNewPoints]

 distancesNew = distancesNew[keepNewPoints]

 X = np.hstack([X, Xarray])

25

 Y = np.hstack([Y, Yarray])

 Z = np.hstack([Z, Zarray])

 classes = np.hstack([classes, Carray])

 distances = np.hstack([distances, distancesNew])

 return X, Y, Z, distances, classes

def clearpoints(geomLst, boundLst, X, Y, classes, theClass):

 toBeRemoved = []

 for i in range(len(boundLst)):

 x_min = boundLst[i][0]

 x_max = boundLst[i][1]

 y_min = boundLst[i][2]

 y_max = boundLst[i][3]

 if theClass != 0:

 incl = np.where(np.logical_and(np.logical_and(np.logical_and(X

> x_min, X < x_max),

 np.logical_and(Y

> y_min, Y < y_max)),

 classes == theClass))

 else:

 incl = np.where(np.logical_and(np.logical_and(X > x_min, X <

x_max),

 np.logical_and(Y > y_min, Y <

y_max)))

 pts = np.stack((X[incl], Y[incl]), axis=-1)

 geom = geomLst[i]

 # Edges

 minY = np.fmin(geom[:, 1][:-1], geom[:, 1][1:])

 maxY = np.fmax(geom[:, 1][:-1], geom[:, 1][1:])

 maxX = np.fmax(geom[:, 0][:-1], geom[:, 0][1:])

 nom = geom[:, 0][1:] - geom[:, 0][:-1]

 denom = geom[:, 1][1:] - geom[:, 1][:-1]

 fraction = np.divide(nom, denom)

 curtime = time.clock()

 for i in range(len(pts)):

 pointInside = inside_polygon(pts[i], minY, maxY, maxX, geom,

fraction)

 if pointInside is not None:

 toBeRemoved.append(incl[0][i])

 return toBeRemoved

Create dome

def createDome(X, Y, Z, dists, classes, view_height):

 # Initialize dome

 # Indices = (Azimuth, Elevation)

 dome = np.zeros((180, 90), dtype=int)

 domeDists = np.zeros((180, 90), dtype=int)

 if X.size > 0:

 # Azimuths

 dX, dY = X - x, Y - y

 azimuths = np.arctan2(dY, dX) * 180 / math.pi - 90

 azimuths[azimuths < 0] += 360

 # Elevations

 dZ = Z - view_height / 1000

26

 elevations = np.arctan2(dZ, dists) * 180 / math.pi

 # Shade sectors

 # Array with dome indices, distances & classifications

 data = np.stack((azimuths // 2, elevations // 1, dists, classes),

axis=-1)

 # Sort according to indices & classifications

 sortData = data[np.lexsort([data[:, 2], data[:, 1], data[:, 0]])]

 # Spot where azimuth & elevation values change

 azimuth_change = sortData[:, 0][:-1] != sortData[:, 0][1:]

 elevation_change = sortData[:, 1][:-1] != sortData[:, 1][1:]

 keep = np.where(np.logical_or(azimuth_change, elevation_change))

 # Take position of next element, plus add first row

 shortestDistance = sortData[

 np.insert(keep[0] + 1, 0, 0)] # (inserts second element of

change, first position, index of first point)

 # Define indices & classifications

 hor = shortestDistance[:, 0].astype(int)

 ver = shortestDistance[:, 1].astype(int)

 classif = shortestDistance[:, 3].astype(int)

 dists = shortestDistance[:, 2]

 # Update dome

 dome[hor, ver] = classif

 domeDists[hor, ver] = dists

 # Buildings as solids

 # Find building positions in dome

 # print dome[dome == 6].size

 if dome[dome == 6].size > 0:

 bhor, bver = np.where(dome == 6)

 # Create an array out of them

 builds = np.stack((bhor, bver), axis=-1)

 shape = (builds.shape[0] + 1, builds.shape[1])

 builds = np.append(builds, (bhor[0], bver[0])).reshape(shape)

 # Spot azimuth changes

 azimuth_change = builds[:, 0][:-1] != builds[:, 0][1:]

 keep = np.where(azimuth_change)

 # keep = np.insert(np.where(azimuth_change==True), 0, 0)

 # Change to building up to roof for each row

 roof_rows, roof_cols = builds[keep][:, 0], builds[keep][:, 1]

 for roof_row, roof_col in zip(roof_rows, roof_cols):

 condition = np.where(np.logical_or(domeDists[roof_row,

:roof_col] > domeDists[roof_row, roof_col],

 dome[roof_row,

:roof_col] == 0))

 dome[roof_row, :roof_col][condition] = 6

 plot(dome)

 return dome

Plot dome

def plot(dome):

 # Create circular grid

 theta, radius = np.mgrid[0:(2*np.pi+2*np.pi/180):2*np.pi/180, 0:90:1]

 Z = dome.copy().astype(float)

 Z = Z[0:, ::-1] # Reverse array rows

 # assign colors depending on class

27

 Z[Z == 0] = 0

 Z[Z == 1] = 0.5

 Z[Z == 6] = 1

 if Z[Z == 6].size == 0:

 Z[0,0] = 1

 axes = plt.subplot(111, projection='polar')

 cmap = plt.get_cmap('tab20c')

 axes.pcolormesh(theta, radius, Z, cmap=cmap)

 axes.set_ylim([0, 90])

 axes.tick_params(labelleft=False)

 axes.set_theta_zero_location("N")

 plt.savefig("Plots/"+'{}_point{}.png'.format(filename[8:-5],fid))

 plt.close()

calculate SVF, and percentage of building/vegetation obstructions

def calculate_SVF(radius, dome):

 obstructedArea = 0

 treeObstruction = 0

 buildObstruction = 0

 for i in range(0, 180):

 for j in range(0, 90):

 if dome[i, j] != 0:

 v = 90 - (j + 1)

 R = math.cos(v * math.pi / 180) * radius

 r = math.cos((v + 1) * math.pi / 180) * radius

 # calculate area of each obstructed sector (circular sector

area calculation)

 cell_area = (math.pi / 180.0) * (R ** 2 - r ** 2)

 obstructedArea += cell_area

 if dome[i, j] == 1:

 treeObstruction += cell_area

 elif dome[i, j] == 6:

 buildObstruction += cell_area

 circleArea = math.pi * (radius ** 2)

 # SVF: proportion of open area to total area

 SVF = (circleArea - obstructedArea) / circleArea

 treeObstructionPercentage = treeObstruction / circleArea

 buildObstructionPercentage = buildObstruction / circleArea

 return SVF, treeObstructionPercentage, buildObstructionPercentage

def integer(geom):

 geometry = []

 append = geometry.append

 for point in geom:

 x, y = point[0], point[1]

 append([x, y])

 geometry = np.array(geometry) #Closed polygon

 return geometry

def inside_polygon(pt, minY, maxY, maxX, geom, fraction):

 condition1 = np.logical_and(pt[1] > minY, pt[1] <= maxY)

 condition2 = pt[0] <= maxX

 condition = np.logical_and(condition1, condition2)

28

 intersX = geom[:, 0][:-1][condition] + (pt[1] - geom[:, 1][:-

1][condition]) * fraction[condition]

 truth = np.logical_or(geom[:, 0][:-1][condition] == geom[:,

0][1:][condition],

 pt[0] <= intersX)

 intersections = truth[truth == True].size

 if intersections % 2 == 1:

 return pt

def create_pc(Xmin, Xmax, Ymin, Ymax, height, density=0.5):

 dx = Xmax - Xmin

 dy = Ymax - Ymin

 # print dx, dy

 Xadd=[]

 Yadd=[]

 Zadd=[]

 Cadd=[]

 # print int(math.ceil(dx/density))

 for i in range(int(math.ceil(dx/density))):

 for j in range(int(math.ceil(dy/density))):

 Xadd.append(Xmin+i*density)

 Yadd.append(Ymin+j*density)

 Zadd.append(float(height))

 Cadd.append(6)

 return np.asarray(Xadd), np.asarray(Yadd), np.asarray(Zadd),

np.asarray(Cadd)

def run():

 start = time.clock()

 row, col = find_tile()

 tile_grid = find_tile_grid(row, col)

 view_height = getheight(tile_grid)

 X, Y, Z, distances, classes = getPoints(tile_grid, radius, view_height)

 dome = createDome(X, Y, Z, distances, classes, view_height)

 SVF, tree_percentage, build_percentage = calculate_SVF(radius, dome)

 SVF, tree_percentage, build_percentage = round(SVF*100),

round(tree_percentage*100), round(build_percentage*100)

 print ('{}%'.format(int(SVF)) + "\n" +

'{}%'.format(int(tree_percentage)) + "\n" +

'{}%'.format(int(build_percentage)))

 end = time.clock()

 duration = end-start

if __name__ == '__main__':

 """GLOBAL VARIABLES"""

 # path for tile directory and list of tilenames

 filename=str(sys.argv[1])

 # filename = 'filelog/'+'testtest'+'.json'

 #path for tile directory and list of tilenames

 path = os.getcwd()

 tilelist = os.listdir(path+"/Tiles")

 # define radius

 radius = 100

 bufferRadius=1.5

 """END GLOBAL VARIABLES"""

 datadict = json.loads(open(filename).read())

29

 nr_remove_polygons= len(datadict['polygonRemove'])

 nr_add_polygons=len(datadict['polygonAdd'])

 m = 1

 removeLst = []

 boundRemoveLst=[]

 addLst = []

 boundAddLst = []

 height = []

 while True:

 try:

 coorNum = len(datadict['polygonRemove'][m]['value'][0])

 coorLst = []

 for i in range(coorNum):

 x= float(datadict['polygonRemove'][m]['value'][0][i][0])

 y= float(datadict['polygonRemove'][m]['value'][0][i][1])

 coorLst.append((x,y))

 tempPolygon = Polygon(coorLst)

 bufferPolygon = tempPolygon.buffer(bufferRadius, resolution=2)

 geom=integer(list(zip(*bufferPolygon.exterior.coords.xy)))

 x_min, x_max = np.amin(geom[:,0]), np.amax(geom[:,0])

 y_min, y_max = np.amin(geom[:,1]), np.amax(geom[:,1])

 boundRemoveLst.append([x_min, x_max,y_min, y_max])

 removeLst.append(geom)

 # define next point

 m += 1

 except:

 break

 n = 1

 while True:

 try:

 coorNum = len(datadict['polygonAdd'][n]['value'][0])

 height.append(datadict['polygonAdd'][n]['value'][1])

 # define next point

 coorLst = []

 for i in range(coorNum):

 x = float(datadict['polygonAdd'][n]['value'][0][i][0])

 y = float(datadict['polygonAdd'][n]['value'][0][i][1])

 coorLst.append((x, y))

 X_min = min(coorLst, key=lambda item: item[0])[0]

 X_max = max(coorLst, key=lambda item: item[0])[0]

 Y_min = min(coorLst, key=lambda item: item[1])[1]

 Y_max = max(coorLst, key=lambda item: item[1])[1]

 boundAddLst.append([X_min, X_max, Y_min, Y_max])

 addLst.append(np.asarray(coorLst))

 n += 1

 except:

 break

 o=1

 while True:

 try:

 x = float(datadict['coordinates'][o]['value'][0])

 y = float(datadict['coordinates'][o]['value'][1])

 fid = int(datadict['coordinates'][o]['key'])

30

 # define viewpoint

 run()

 # define next point

 o += 1

 except:

 break

31

Appendix B – HTML

<!DOCTYPE html>

<html xmlns="http://www.w3.org/1999/xhtml">

<title>Application - Urban Horizon</title>

<head>

 <meta charset="UTF-8">

 <link rel="stylesheet"

href="https://openlayers.org/en/v4.6.5/css/ol.css" type="text/css">

 <link rel="stylesheet" href="https://www.w3schools.com/w3css/4/w3.css">

 <link rel="stylesheet"

href="https://fonts.googleapis.com/css?family=Lato">

 <link rel="stylesheet"

href="https://fonts.googleapis.com/css?family=Montserrat">

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-

awesome.min.css">

 <link rel="stylesheet"

href="https://use.fontawesome.com/releases/v5.0.13/css/all.css"

integrity="sha384-

DNOHZ68U8hZfKXOrtjWvjxusGo9WQnrNx2sqG0tfsghAvtVlRW3tvkXWZh58N9jp"

crossorigin="anonymous">

 <link rel="icon" type="image/ico" href="Images/favicon.ico">

 <style type="text/css">

 body {

 margin: 1px;

 }

 #map {

 position: absolute;

 top: 92px;

 width: calc(100% - 740px);

 height: calc(100% - 93px);

 border: 1px solid black;

 left: 290px;

 min-width: 400px;

 }

 #olattribution {

 position: absolute;

 margin: 0px 15px;

 bottom: 0px;

 z-index: 1;

 }

 #banner {

 position: absolute;

 top: 100%;

 height: 40px;

 background-color: #9fd0f9;

 width: 100%;

 }

 #toolbar_1 {

 position: absolute;

 top: 10%;

 left: 290px;

 }

 #toolbar_2 {

32

 position: absolute;

 top: 10%;

 left: 0.1%;

 }

 #toolbar_map {

 position: absolute;

 margin: 5px 5px;

 right: 0px;

 }

 #CC {

 position: absolute;

 margin: 5px 5px;

 right: 0px;

 bottom: 0px;

 z-index: 1;

 }

 #SVFimage{

 position: absolute;

 top: 86px;

 border: none;

 right: 0px;

 z-index: -1;

 }

 #loader {

 position: absolute;

 bottom: 0px;

 left: 0px;

 }

 #legend {

 position: absolute;

 top: 525px;

 left: calc(100% - 450px);

 z-index: -1;

 display: none;

 }

 button {

 position:relative;

 height: 30px;

 width:25px;

 background-color: #2196F3;

 border: none;

 border-radius: 5px;

 color: white;

 padding: 5px 5px;

 font-size: 16px;

 cursor: pointer;

 z-index: 1;

 }

 a.fa {

 text-decoration: none;

 position:relative;

 top: 1px;

 height: 30px;

 width:25px;

33

 background-color: #2196F3;

 border: none;

 border-radius: 5px;

 color: white;

 padding: 7px 5px;

 font-size: 16px;

 cursor: pointer;

 z-index: 1;

 }

 #CC-CC, #CC-BY, #CC-NC {

 text-decoration: none;

 color: #085391;

 }

 #togglelayer, #togglepoly {

 right: -30px;

 padding: 0px 0px;

 }

 #togglezoom {

 top: 36px;

 padding: 0px 0px;

 }

 input {

 position:absolute;

 height: 0px;

 width:0px;

 z-index: -1;

 opacity: 0;

 }

 button:hover, a.fa:hover {

 background-color: #085391;

 }

 #contain {

 width: calc(100% - 740px);

 height: calc(100% - 93px);

 }

 #start:focus, #select:focus {

 background-color: black;

 }

 #myTableSpace {

 position: absolute;

 display: block;

 top: 92px;

 width: 288px;

 height: calc(100% - 93px);

 overflow-y: auto;

 }

 #myTable {

 width: 100%;

 border: 1px;

 top:92px;

 text-align: center;

 border-collapse: collapse;

34

 }

 #percentage {

 position: absolute;

 top: 614px;

 left: calc(100% - 449px);

 z-index: -1;

 }

 #percentageTB{

 width: 449px;

 float: left;

 border: none;

 text-align: center;

 border-collapse: collapse;

 display: none;

 }

 th {

 border: 1px;

 border-style: solid;

 border-color: #085391;

 background-color: #2196F3;

 color: #ffffff;

 }

 td {

 border: 1px;

 border-style: solid;

 border-color: #085391;

 }

 tr:hover {

 background-color: #9fd0f9;

 }

 tr:active {

 background-color: #cfe8fc;

 }

 html {

 display:block;

 overflow:auto;

 }

 #transparent {

 opacity: 0.0;

 position:absolute;

 width: 99%;

 height: 99%;

 background: rgba(100, 100, 0, 0.8);

 z-index: 1;

 }

 </style>

 <script src="https://openlayers.org/en/v4.6.5/build/ol.js"></script>

 <script

src="https://ajax.googleapis.com/ajax/libs/jquery/3.2.1/jquery.min.js"></sc

ript>

35

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/proj4js/2.3.15/proj4.js"></scri

pt>

 <script src="https://epsg.io/28992.js"></script>

 <script src="papaparse.min.js"></script>

</head>

<body>

 <!-- Create Container so map and mask (that disables double clicks)

overlay -->

 <div id="contain">

 <div id="map" class="map">

 <div id="olattribution"></div>

 <div id="toolbar_map">

 <button id='togglelayer' class="fas fa-map" title="Toggle

Background" onclick ="togglelayer()"></button>

 <button id='togglepoly' class="fas fa-home" title="Toggle

Building Footprints" onclick ="togglepolygons()"></button>

 <button id="togglezoom" class="fas fa-crosshairs"

title="Toggle Zoom on Selection" onclick="togglezoom()"></button>

 </div>

 <div id="CC">

 <a id='CC-CC' class="fab fa-creative-commons w3-xlarge"

href="http://creativecommons.org/licenses/by-nc/4.0/">

 <a id='CC-BY' class="fab fa-creative-commons-by w3-xlarge"

href="http://creativecommons.org/licenses/by-nc/4.0/">

 <a id='CC-NC' class="fab fa-creative-commons-nc w3-xlarge"

href="http://creativecommons.org/licenses/by-nc/4.0/">

 </div>

 </div>

 <img id="transparent" src="transparent.png" style='display: none;'

align=middle />

 </div>

 <div id="SVFimage"></div>

 <div id="percentage">

 <!-- Table result with percentages of sky -->

 <table id= "percentageTB">

 <tr>

 <td></td>

 <th>Unobstructed Vision</th>

 <th colspan="2">Obstructed Vision</th>

 </tr>

 <tr>

 <th>ID</th>

 <th>Sky View Factor</th>

 <th>Vegetation</th>

 <th>Building</th>

 </tr>

 <!-- Need this, introduces new row to table for number results

-->

 <tr id="contentRow">

 <td></td>

 <td></td>

 <td></td>

 <td></td>

 </tr>

 </table>

 </div>

 <!-- Table containing basic information on points (coordinates, SVF) --

>

36

 <div id="myTableSpace">

 <table id="myTable" >

 <tr>

 <th>ID</th>

 <th>X</th>

 <th>Y</th>

 <th>SVF</th>

 </tr>

 </table>

 </div>

 <!-- Gif appearing during loading time of calculation process -->

 <img id="loader" src="reload.gif" width='288px' height='288px'

style='display: none;'>

 <!-- Navbar -->

 <div class="w3-top">

 <div class="w3-bar w3-blue w3-card w3-left-align w3-large">

 <a class="w3-bar-item w3-button w3-hide-medium w3-hide-large

w3-right w3-padding-large w3-hover-white w3-large w3-blue"

href="javascript:void(0);" onclick="myFunction()" title="Toggle Navigation

Menu"><i class="fa fa-bars"></i>

 <a href="Home.html" class="w3-bar-item w3-button w3-padding-

large w3-hover-white">Home

 <a href="SVF.html" class="w3-bar-item w3-button w3-hide-small

w3-padding-large w3-white">Application

 <a href="Tutorial.html" class="w3-bar-item w3-button w3-hide-

small w3-padding-large w3-hover-white">Tutorial

 <a href="Documentation.html" class="w3-bar-item w3-button w3-

hide-small w3-padding-large w3-hover-white">Documentation

 </div>

 <!-- Navbar on small screens/ Icon Appears on top-right with drop

down list -->

 <div id="navDemo" class="w3-bar-block w3-light-blue w3-hide w3-

hide-large w3-hide-medium w3-large">

 <a href="SVF.html" class="w3-bar-item w3-button w3-padding-

large">Application

 <a href="Tutorial.html" class="w3-bar-item w3-button w3-

padding-large">Tutorial

 <a href="Documentation.html" class="w3-bar-item w3-button w3-

padding-large">Documentation

 </div>

 <!-- Bar containing function buttons -->

 <div id="banner" class="w3-top">

 <div id="toolbar_1" class="btn-group">

 <button id="start" class="fas fa-pencil-alt" title="Draw

Points"></button>

 <button id="stop" class="fas fa-ban" title="Stop

Drawing"></button>

 <button id="select" class="fas fa-mouse-pointer"

title="Select Point"></button>

 <button id="delete" class="fas fa-times" title="Delete

Selected Point"></button>

 <button id="removebuild" class="far fa-eye-slash"

title="Ignore Building"></button>

 <button id="addbuild" class="fas fa-plus" title="Add New

Building"></button>

 <button id="undo" class="fas fa-undo" title="Undo

Calculation"></button>

 <button id="clear" class="fas fa-eraser " title="Clear

Canvas"></button>

37

 <button id="SVF" class="fas fa-calculator "

title="Calculate SVF" ></button>

 </div>

 <div id=toolbar_2>

 <input type="file" id="files" class="form-control"

accept=".csv" required />

 <button type="submit" id="submit-file" class="fa fa-upload"

title="Upload Points"></button>

 <a href="#" id="xx" class="fa fa-download" title="Export

Table to Excel">

 </div>

 </div>

 </div>

</div>

</body>

<script>

 // Retrieve data from OpenLayer Map layer

 var source = new ol.source.Vector({wrapX: false});

 var source1 = new ol.source.Vector({wrapX: false});

 var source2 = new ol.source.Vector({wrapX: false});

 var vectorLayer = new ol.layer.Vector({source: source});

 var vectorLayer1 = new ol.layer.Vector({source: source1});

 var vectorLayer2 = new ol.layer.Vector({source: source2});

 // Initialize variables

 var draw; // global so we can remove it later

 var featureID = 0;

 var singleClick;

 var selectedFeatureID = 0;

 var ccord;

 var flag = 0;

 var removeNum = 0;

 var buildingPercent = {};

 var treePercent = {};

 var currentDate = new Date();

 var userID = currentDate.getTime();

 var deleted = 0;

 var selectedFeature;

 var stopremovevar = true;

 var stopselectvar = true;

 var zoomselectvar = true;

 // Set initial view position

 var view = new ol.View({

 center: centerWebMercator,

 zoom: 17,

 });

 var viewProjection = view.getProjection();

 var viewResolution = view.getResolution();

 var container = document.getElementById('information')

 var databuild = [{"key":"0"}];

 var bcnt = 1;

 var bcnt_p = 1;

 var addedbuild = [{"key":"0"}];

 // Inserted Points Style Function

 function styleFunction(description) {

 return [

 new ol.style.Style({

38

 image: new ol.style.Circle({

 fill: new ol.style.Fill({

 color: '#2196F3'

 }),

 stroke: new ol.style.Stroke({

 color: '#ffffff',

 width: 1

 }),

 radius: 11

 }),

 text: new ol.style.Text({

 font: '16px Calibri,sans-serif',

 fill: new ol.style.Fill({ color: '#ffffff' }),

 stroke: new ol.style.Stroke({

 color: '#ffffff',

 width: 1

 }),

 // get the text from the feature - `this` is ol.Feature

 text: description

 })

 })

];

 }

 // Selected Point Style function

 function styleFunctionSelect(description) {

 return [

 new ol.style.Style({

 image: new ol.style.Circle({

 fill: new ol.style.Fill({

 color: '#085391'

 }),

 stroke: new ol.style.Stroke({

 color: '#ffffff',

 width: 2

 }),

 radius: 15

 }),

 text: new ol.style.Text({

 font: '22px Calibri,sans-serif',

 fill: new ol.style.Fill({ color: '#ffffff' }),

 stroke: new ol.style.Stroke({

 color: '#ffffff', width: 1

 }),

 // get the text from the feature - `this` is ol.Feature

 text: description

 })

 })

];

 }

 // Topographic map layer

 var baselayer = new ol.layer.Tile({

 source: new ol.source.OSM()

 });

 baselayer.setVisible(true);

 // Layer of Airplane Captured photos

 var satlayer = new ol.layer.Tile({

 source: new ol.source.TileWMS({

39

 url:

'https://geodata.nationaalgeoregister.nl/luchtfoto/rgb/wms',

 params: {'LAYERS': 'Actueel_ortho25', 'FORMAT':'image/png'},

 minZoom: 100,

 maxZoom: 200

 })

 });

 satlayer.setVisible(false);

 // Building footprint images retrieved from PDOK

 var polylayer = new ol.layer.Tile({

 source: new ol.source.TileWMS({

 url: 'https://geodata.nationaalgeoregister.nl/bag/wms',

 params: {'LAYERS': 'pand', 'FORMAT':'image/png'},

 opacity: 0.0

 })

 });

 // Response from request about the Hague's municipality borders

 var boundarylayer = new ol.layer.Tile({

 source: new ol.source.TileWMS({

 url:

'https://geodata.nationaalgeoregister.nl/bestuurlijkegrenzen/wfs?&TYPENAME=

bestuurlijkegrenzen:gemeenten&SRSNAME=EPSG:3857&cql_filter=(bestuurlijkegre

nzen:code=%270518%27)',

 params: {'LAYERS': 'gemeenten', 'FORMAT': 'image/png'}

 })

 });

 var layers = [baselayer, satlayer, polylayer,boundarylayer,

vectorLayer1, vectorLayer2, vectorLayer]

 // Initialization of map focus

 var centerLonLat = [4.30046, 52.07455]; //This is for The Hague, use

zoomlevel 12

 // var centerLonLat = [4.373003, 52.0006821];

 var centerWebMercator = ol.proj.fromLonLat(centerLonLat);

 var map = new ol.Map({

 layers: layers,

 target: 'map',

 controls: ol.control.defaults({

 attributionOptions: {

 target: document.getElementById('olattribution')

 }

 }),

 view: new ol.View({

 center: centerWebMercator,

 zoom: 12

 })

 });

 // "Start drawing Points" button function

 $("button#start").on("click", function (event) {

 // Disable "stopremovevar" and "stopselectvar" states

 stopremovevar = true;

 stopselectvar = true;

 map.removeInteraction(draw);

 map.removeInteraction(singleClick);

 addInteraction();

 });

40

 // "Stop creating Points" function

 $("button#stop").on("click", function (event) {

 stopremovevar = true;

 stopselectvar = true;

 map.removeInteraction(singleClick);

 map.removeInteraction(draw);

 });

 // "Select Point" function

 $("button#select").on("click", function (event) {

 stopselectvar = false;

 stopremovevar = true;

 map.removeInteraction(draw);

 select();

 });

 // "Point Deletion" function

 $("button#delete").on("click", function (event) {

 map.removeInteraction(draw);

 stopremovevar = true;

 stopselectvar = true;

 remove();

 });

 // "Remove Calculation Results" Button function

 $("button#undo").on("click", function (event) {

 map.removeInteraction(draw);

 stopremovevar = true;

 stopselectvar = true;

 undo();

 });

 // Button Function to initialize "Building Removal" function

 $("button#removebuild").on("click", function (event) {

 map.removeInteraction(draw);

 stopremovevar = false;

 stopselectvar = true;

 removebuild();

 });

 // Button Function to initialize "Building Addition" function

 $("button#addbuild").on("click", function (event) {

 map.removeInteraction(draw);

 stopremovevar = true;

 stopselectvar = true;

 addPoly();

 });

 // Button function to initialize "Clear Canvas" function

 $("button#clear").on("click", function (event) {

 map.removeInteraction(singleClick);

 map.removeInteraction(draw);

 stopremovevar = true;

 stopselectvar = true;

 clearCanvas();

 });

 // Button function to initiate the SVF calculation

 $("button#SVF").on("click", function (event) {

 stopremovevar = true;

41

 stopselectvar = true;

 sendData()

 });

 // Function to make Image Plot and Percentages Table appear on point

selection from table

 $('#myTable').on('click', 'tr', function(){

 var table = document.getElementById("myTable");

 var row = table.rows[selectedFeatureID];

 if (selectedFeatureID > 0){

selectedFeature.setStyle(styleFunction(selectedFeatureID.toString()));

 row.style.backgroundColor = '#ffffff'

 };

 currentIndex = $(this).index();

 if (currentIndex != 0){

 selectedFeatureID = currentIndex;

 }

 if (selectedFeatureID <= flag){

 var features = source.getFeatures();

 if (features != null && features.length > 0) {

 for (x in features) {

 var properties = features[x].getProperties();

 var id = properties.id;

 if (id == selectedFeatureID) {

 $("#legend").show();

 $("#percentageTB").show();

 // Create percentage table

 var cellPercentege =

document.getElementById("percentageTB").rows.namedItem("contentRow").cells;

 cellPercentege[0].innerHTML = selectedFeatureID;

 cellPercentege[1].innerHTML =

table.rows[selectedFeatureID].cells[3].innerHTML;

 cellPercentege[2].innerHTML =

treePercent[selectedFeatureID];

 cellPercentege[3].innerHTML =

buildingPercent[selectedFeatureID];

 // Retrieve SVF plot corresponding to point

 var imgstr = '../SynthesisProject/Plots/' + userID

+ '_' + 'point' + id + '.png';

 document.getElementById("SVFimage").innerHTML =

'';

 break;

 }

 }

 }

 }

 var features = source.getFeatures();

 if (features != null && features.length > 0) {

 for (x in features) {

 var properties = features[x].getProperties();

 var id = properties.id;

 if (id == selectedFeatureID) {

 selectedFeature = features[x];

 if (zoomselectvar == true) {

 var ext =

selectedFeature.getGeometry().getCoordinates();

 map.getView().animate({center:ext,zoom:18});

 }

 break;

 }

42

 }

 }

selectedFeature.setStyle(styleFunctionSelect(selectedFeatureID.toString()))

 row = table.rows[selectedFeatureID];

 row.style.backgroundColor = '#cfe8fc'

 });

 // Function about creating points on map canvas

 var addInteraction = function () {

 draw = new ol.interaction.Draw({

 source: source,

 type: "Point"

 });

 map.addInteraction(draw); //allows drawing point on map

 // Nested function initialized when clicking on the map layer

 draw.on('drawend', function (event) {

 // Bring transparent image on the front, making user unable of

clicking on the map for set time

 $("#transparent").show();

 setTimeout(function removeMask() {

 $("#transparent").hide()

 }, 200); //wait 0.2 seconds to re-enable clicking

 featureID = featureID + 1;

 // Inserts Point information on table

 var table = document.getElementById("myTable");

 var row = table.insertRow(featureID);

 row.id = featureID;

 var cell1 = row.insertCell(0);

 var cell2 = row.insertCell(1);

 var cell3 = row.insertCell(2);

 cell1.innerHTML = featureID;

 var coords =

ol.proj.transform(event.feature.getGeometry().getCoordinates(),

'EPSG:3857', 'EPSG:28992');

 cell2.innerHTML = coords[0].toFixed(3);

 cell3.innerHTML = coords[1].toFixed(3);

 event.feature.setProperties({

 'id': featureID

 })

 event.feature.setStyle(styleFunction(featureID.toString()))

 })

 };

 // Function to make Image Plot and Percentages Table appear on point

selection from map canvas

 var select = function () {

 singleClick = new ol.interaction.Select({

 layers: [vectorLayer]

 });

 map.addInteraction(singleClick);

 singleClick.getFeatures().on('add', function(event){

 if (stopselectvar == true) {

 map.removeInteraction(singleClick);

 return;

 };

 var properties = event.element.getProperties();

43

 var table = document.getElementById("myTable");

 var row = table.rows[selectedFeatureID];

 if (selectedFeatureID !== 0){

selectedFeature.setStyle(styleFunction(selectedFeatureID.toString()));

 row.style.backgroundColor = '#ffffff'

 };

 selectedFeatureID = properties.id;

 selectedFeature = event.element;

selectedFeature.setStyle(styleFunctionSelect(selectedFeatureID.toString()))

 row = table.rows[selectedFeatureID];

 row.style.backgroundColor = '#cfe8fc';

 if (selectedFeatureID <= flag){

 var features = source.getFeatures();

 if (features != null && features.length > 0) {

 for (x in features) {

 var properties = features[x].getProperties();

 var id = properties.id;

 if (id == selectedFeatureID) {

 $("#legend").show();

 $("#percentageTB").show();

 var cellPercentege =

document.getElementById("percentageTB").rows.namedItem("contentRow").cells;

 cellPercentege[0].innerHTML =

selectedFeatureID;

 cellPercentege[1].innerHTML =

row.cells[3].innerHTML;

 cellPercentege[2].innerHTML =

treePercent[selectedFeatureID];

 cellPercentege[3].innerHTML =

buildingPercent[selectedFeatureID];

 var imgstr = '../SynthesisProject/Plots/' +

userID + '_' + 'point' + id + '.png';

 document.getElementById("SVFimage").innerHTML =

'';

 break;

 }

 }

 }

 }

 });

 };

 // Function on Removing a Building from Map Canvas

 var removebuild = function () {

 map.on('click', function(evt) {

 if (stopremovevar == true) {

 return;

 };

 // Get building feature by clicking on map canvas

 coord = ol.proj.transform(evt.coordinate, 'EPSG:3857',

'EPSG:28992')

 var url = polylayer.getSource().getGetFeatureInfoUrl(

 coord, viewResolution, 'EPSG:28992',

 {'INFO_FORMAT': 'application/json'});

 // Construct polygon to be sent as JSON request

 if (url) {

 var parser = new ol.format.GeoJSON();

 $.ajax({

 url: url,

44

 dataType: 'json',

 jsonpCallback: 'parseResponse'

 }).then(function(response) {

 var build_id =

(response['features']['0']['properties']['identificatie'])

 var polygon =

(response['features']['0']['geometry']['coordinates']['0']['0'])

 var geometry =

(response['features']['0']['geometry']['coordinates']['0'])

 databuild.push({key: bcnt, value: [polygon,

build_id]});

 polyCor = [];

 polygon.forEach(function(geomCor){

 polyCor.push(ol.proj.transform(geomCor,

'EPSG:28992', 'EPSG:3857'))

 })

 // Style deleted building with red color

 var style = new ol.style.Style({

 stroke: new ol.style.Stroke({color: 'grey', width:

1}),

 fill: new ol.style.Fill({color: '#ff6666'})

 })

 // Define new polygon feature

 var feature = new ol.Feature({

 geometry: new ol.geom.Polygon([polyCor]),

 id: bcnt,

 })

 bcnt = bcnt + 1;

 source1.addFeature(feature);

 feature.setStyle(style)

 });

 };

 });

 };

 // Function to add a new polygon

 var addPoly = function () {

 // Draw polygon on canvas

 draw = new ol.interaction.Draw({

 source: source2,

 type: "Polygon"

 });

 map.addInteraction(draw);

 draw.on('drawend', function (event) {

 var txt;

 // Set height of building

 var height = window.prompt("Please enter the height for the

building:","");

 while (height == null || height == "" || Number(height) <= 0 ||

isNaN(height)) {

 var height = prompt("The height is not valid! Please enter

the height for the building:", "");

 }

 var buildingHeight = Number(height);

 addedPolyCor =

event.feature.getGeometry().getCoordinates()['0'];

 var coordLst = [];

 addedPolyCor.forEach(function(addedPoly){

45

 coordLst.push(ol.proj.transform(addedPoly, 'EPSG:3857',

'EPSG:28992'))

 });

 addedbuild.push({key: bcnt_p, value:

[coordLst,buildingHeight]})

 bcnt_p = bcnt_p+1;

 console.log(addedbuild);

 var styleadd = new ol.style.Style({

 stroke: new ol.style.Stroke({color: 'grey', width: 1}),

 fill: new ol.style.Fill({color: '#99e699'})

 })

 event.feature.setStyle(styleadd)

 });

 };

 // Function to undo all calculations performed and remove all results

 var undo = function () {

 flag = 0;

 buildingPercent = {};

 treePercent = {};

 currentDate = new Date();

 userID = currentDate.getTime();

 deleted = 0;

 currentDate = new Date();

 userID = currentDate.getTime();

 document.getElementById("SVFimage").innerHTML = "";

 $("#legend").hide();

 $("#percentageTB").hide();

 var table = document.getElementById("myTable");

 var rows = table.getElementsByTagName("tr");

 for(i = 1; i < rows.length; i++){

 var currentRow = table.rows[i];

 currentRow.deleteCell(3)

 }

 }

 // Function that resets everything

 var clearCanvas = function(){

 flag = 0;

 featureID = 0;

 selectedFeatureID = 0;

 removeNum = 0;

 buildingPercent = {};

 treePercent = {};

 currentDate = new Date();

 userID = currentDate.getTime();

 deleted = 0;

 currentDate = new Date();

 userID = currentDate.getTime();

 stopremovevar = true;

 stopselectvar = true;

 databuild = [{"key":"0"}];

 addedbuild = [{"key":"0"}];

 document.getElementById("SVFimage").innerHTML = "";

 $("#legend").hide();

 $("#percentageTB").hide();

 var table = document.getElementById("myTable");

 var rows = table.getElementsByTagName("tr");

 while (rows.length > 1){

 document.getElementById("myTable").deleteRow(1);

 rows = table.getElementsByTagName("tr");}

46

 var features = source.getFeatures();

 features.forEach(function(feature){

 source.removeFeature(feature);

 })

 var features = source1.getFeatures();

 features.forEach(function(feature){

 source1.removeFeature(feature);

 })

 var features = source2.getFeatures();

 features.forEach(function(feature){

 source2.removeFeature(feature);

 })

 }

 // Function that presents the SVF plot to the user

 var showPlot = function (){

 var features = source.getFeatures();

 if (features != null && features.length > 0) {

 for (x in features) {

 var properties = features[x].getProperties();

 var id = properties.id;

 if (id == selectedFeatureID) {

 var imgstr = '../SynthesisProject/Plots/' + userID +

'_' + 'point' + id + '.png';

 document.getElementById("SVFimage").innerHTML = '<img

id="plotimg" src="'+ imgstr +'"/>';

 break;

 }

 }

 }

 }

 // Function to delete selected existing point(s)

 var remove = function () {

 var features = source.getFeatures();

 if (features != null && features.length > 0) {

 for (x in features) {

 var properties = features[x].getProperties();

 var id = properties.id;

 if (id == selectedFeatureID) {

 var cell =

document.getElementById("myTable").rows[id].cells;

 cell[0].innerHTML = '';

 cell[1].innerHTML = '';

 cell[2].innerHTML = '';

 if (cell[3] !== undefined){

 cell[3].innerHTML = '';}

 if (flag > 0){removeNum = removeNum + 1;}

 source.removeFeature(features[x]);

 map.removeInteraction(singleClick);

 break;

 }

 }

 }

 stopselectvar = false;

 stopremovevar = true;

 map.removeInteraction(draw);

 select();

 }

47

 // Function that toggles the canvas from topographic map to aerial

imagery

 var togglelayer = function() {

 if (baselayer.getVisible() == true) {

 baselayer.setVisible(false);

 satlayer.setVisible(true);

 polylayer.setOpacity(0.5);

 } else {

 baselayer.setVisible(true);

 satlayer.setVisible(false);

 polylayer.setOpacity(1);

 }

 };

 // Function to toggle polygon footprints on/off

 var togglepolygons = function() {

 if (polylayer.getVisible() == true) {

 polylayer.setVisible(false);

 } else {

 polylayer.setVisible(true);

 }

 };

 var togglezoom = function() {

 var target = document.getElementById("togglezoom");

 if (zoomselectvar == true) {

 zoomselectvar = false;

 target.style.opacity = "0.6";

 } else {

 zoomselectvar = true;

 target.style.opacity = "1.0"

 }

 };

 proj4.defs("EPSG:28992","+proj=sterea +lat_0=52.15616055555555

+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel

+towgs84=565.417,50.3319,465.552,-0.398957,0.343988,-1.8774,4.0725 +units=m

+no_defs");

 // Function that constructs request

 var sendData = function () {

 var trackList = [];

 var features = source.getFeatures();

 var data = [{userID:userID}];

 features.forEach(function(feature){

 var properties = feature.getProperties();

 var id = properties.id;

 if (id > flag){

 trackList.push(id)

 var coord = feature.getGeometry().getCoordinates();

 coord = ol.proj.transform(coord, 'EPSG:3857',

'EPSG:28992');

 data.push({key: id, value: coord});

 }

 });

 var requestData = [data, databuild, addedbuild];

 // console.log(requestData)

 $.ajax({

 type: "POST",

 url: "responsePHP.php",

 data: {kvcArray : requestData},

48

 beforeSend: function(){

 // Show image container

 $("#loader").show();

 map.removeInteraction(draw);

 },

 success: function(data, textStatus) {

 var table = document.getElementById("myTable");

 var cnt = 0;

 var outputCnt = 0;

 var SVFs = data.split("\n");

 SVFs.forEach(function(svf){

 outputCnt = outputCnt + 1;

 if (outputCnt%3 == 1){

 var row = $('table#myTable tr#'+trackList[cnt]);

 row.append($("<td>"+svf.substring(0,5)+"</td>"));

 }

 else if (outputCnt%3 == 2) {

 treePercent[trackList[cnt]] = svf;

 //console.log(treePercent)

 }

 else if (outputCnt%3 == 0) {

 buildingPercent[trackList[cnt]] = svf;

 //console.log(buildingPercent)

 cnt = cnt + 1;

 }

 });

 },

 complete:function(data){

 // Hide image container

 $("#loader").hide();

 flag = featureID;

 map.removeInteraction(singleClick);

 addInteraction();

 }

 });

 };

 // Function to enable user to download the point table in CSV format

 function exportTableToCSV($table, filename) {

 var $rows = $table.find('tr:has(td),tr:has(th)');

 // Temporary delimiter characters unlikely to be typed by keyboard

 // This is to avoid accidentally splitting the actual contents

 tmpColDelim = String.fromCharCode(11), // vertical tab character

 tmpRowDelim = String.fromCharCode(0), // null character

 // actual delimiter characters for CSV format

 colDelim = '","',

 rowDelim = '"\r\n"',

 // Grab text from table into CSV formatted string

 csv = '"' + $rows.map(function (i, row) {

 var $row = $(row), $cols = $row.find('td,th');

 return $cols.map(function (j, col) {

 var $col = $(col), text = $col.text();

 return text.replace(/"/g, '""'); // escape double quotes

 }).get().join(tmpColDelim);

49

 }).get().join(tmpRowDelim)

 .split(tmpRowDelim).join(rowDelim)

 .split(tmpColDelim).join(colDelim) + '"',

 // Data URI

 csvData = 'data:application/csv;charset=utf-8,' +

encodeURIComponent(csv);

 //console.log(csvData);

 if (window.navigator.msSaveBlob) { // IE 10+

 //alert('IE' + csv);

 window.navigator.msSaveOrOpenBlob(new Blob([csv], {type:

"text/plain;charset=utf-8;"}), "csvname.csv")

 }

 else {

 $(this).attr({ 'download': filename, 'href': csvData, 'target':

'_blank' });

 }

 }

 // Button function to initiate CSV table download

 $("#xx").on('click', function (event) {

 exportTableToCSV.apply(this, [$('#myTable'), 'export.csv']);

 // IF CSV, don't do event.preventDefault() or return false

 // We actually need this to be a typical hyperlink

 });

 // Function to import point coordinates

 $('#submit-file').on("click",function(e){

 $("#files").trigger("click");

 e.preventDefault();

 $("#files").change(function(){ $('#files').parse({

 config: {

 delimiter: "auto",

 complete: displayHTMLTable,

 },

 before: function(file, inputElem){

 //console.log("Parsing file...", file);

 },

 error: function(err, file){

 //console.log("ERROR:", err, file);

 },

 complete: function(){

 //console.log("Done with all files");

 }

 });});

 });

 // Adds the points inputted from submited file into the coordinate

table

 function displayHTMLTable(results){

 var table = document.getElementById("myTable");

 var data = results.data;

 for(i = 0;i < data.length;i++){

 var row = data[i];

 var cells = row.join(",").split(/,/);

 for(j = 0;j < cells.length;j += 2){

 var cellContent1 = parseFloat(cells[j]);

 var cellContent2 = parseFloat(cells[j+1]);

 if (!isNaN(cellContent1) && !isNaN(cellContent2)){

 featureID = featureID + 1;

 // Create point feature on map canvas

50

 var point_feature = new ol.Feature({ });

 var mapcoord = ol.proj.transform([cellContent1,

cellContent2], 'EPSG:28992', 'EPSG:3857');

 var point_geom = new ol.geom.Point(

 [mapcoord[0],mapcoord[1]]

);

 point_feature.setGeometry(point_geom);

 point_feature.setProperties({

 'id': featureID

 })

 source.addFeature(point_feature);

point_feature.setStyle(styleFunction(featureID.toString()))

 var trow = table.insertRow(featureID);

 trow.id = featureID;

 var cell1 = trow.insertCell(0);

 var cell2 = trow.insertCell(1);

 var cell3 = trow.insertCell(2);

 cell1.innerHTML = featureID;

 cell2.innerHTML = cellContent1.toFixed(3);;

 cell3.innerHTML = cellContent2.toFixed(3);;

 }

 }

 }

 }

</script>

<script>

 //Used to toggle the menu on small screens when clicking on the menu

button

 function myFunction() {

 var x = document.getElementById("navDemo");

 if (x.className.indexOf("w3-show") == -1) {

 x.className += " w3-show";

 } else {

 x.className = x.className.replace(" w3-show", "");

 }

 }

</script>

</html>

51

Appendix C – Python Code: Tiling

from Tkinter import Tk

from tkFileDialog import askopenfilename, asksaveasfile

import Tkinter

import tkMessageBox

import shapefile

import laspy

import numpy as np

import os

import time

def integer(geom):

 geometry = []

 append = geometry.append

 for point in geom:

 x, y = point[0], point[1]

 x, y = int(x*1000), int(y*1000)

 append([x, y])

 geometry = np.array(geometry) #Closed polygon

 return geometry

def inside_polygon(pt, index, minY, maxY, maxX, geom, fraction):

 condition1 = np.logical_and(pt[1] > minY, pt[1] < maxY)

 condition2 = pt[0] < maxX

 condition12 = np.logical_and(condition1, condition2)

 intersX = geom[:,0][:-1] + (pt[1] - geom[:,1][:-1])*fraction

 condition3 = pt[0] <= intersX

 truth = np.logical_and(condition12, condition3)

 intersections = truth[truth == True].size

 if intersections%2 == 1:

 tiling(pt, index)

def tiling(pt, index):

 found = np.where(np.logical_and(np.logical_and(pt[0] >= tiles[:,2],

pt[0] < tiles[:,4]),

 np.logical_and(pt[1] >= tiles[:,3],

pt[1] < tiles[:,5])))

 col, row = tiles[found][0][0], tiles[found][0][1]

 tile_dict[col, row].append(index)

def write():

 for i in xrange (columns):

 for j in xrange (rows):

 if tile_dict[i,j] != []:

 write_tile = tiles[i*columns + j]

 name = [j, i, write_tile[2]/1000.0,write_tile[3]/1000.0

 , write_tile[4]/1000.0, write_tile[5]/1000.0]

 fileName = "{},{},{},{},{},{}.las".format(*name)

 outFile = laspy.file.File(path + fileName, mode = "w",

 header = head)

 outFile.points = inFile.points[tile_dict[i, j]]

 outFile.header.scale = [1,1,1]

 outFile.close()

if __name__ == '__main__':

 #SHP Message Box

 Tk().withdraw()

52

 tkMessageBox.showinfo("Information", "Choose .shp file")

 #SHP Selection Window

 Tk().withdraw()

 SHPfile = askopenfilename()

 shpFound = False

 while shpFound == False:

 try:

 sf = shapefile.Reader(SHPfile)

 shpFound = True

 except:

 tkMessageBox.showwarning('WARNING!', 'Choose .shp file')

 Tk().withdraw()

 SHPfile = askopenfilename()

 #Read .shp file

 records = sf.iterShapeRecords()

 record = next(records)

 #Multipolygon Geometry

 geom = record.shape.points

 geom = integer(geom)

 #Edges

 minY = np.fmin(geom[:,1][:-1], geom[:,1][1:])

 maxY = np.fmax(geom[:,1][:-1], geom[:,1][1:])

 maxX = np.fmax(geom[:,0][:-1], geom[:,0][1:])

 nom = geom[:,0][1:] - geom[:,0][:-1]

 denom = geom[:,1][1:] - geom[:,1][:-1]

 fraction = np.divide(nom, denom)

 #Bounding Rectangle

 x_min, x_max = np.amin(geom[:,0]), np.amax(geom[:,0])

 y_min, y_max = np.amin(geom[:,1]), np.amax(geom[:,1])

 #LAS Message Box

 Tk().withdraw()

 tkMessageBox.showinfo("Information", "Choose .las file(s)")

 #LAS Selection Window

 Tk().withdraw()

 LASfile = askopenfilename()

 lasFound = False

 while lasFound == False:

 try:

 #Read .LAS file

 begin = time.clock()

 inFile = laspy.file.File(LASfile, mode = "r")

 lasFound = True

 except:

 tkMessageBox.showwarning('WARNING!', 'Choose .las file')

 Tk().withdraw()

 LASfile = askopenfilename()

 #Create 100m tiles

 x_ext = x_max - x_min

 y_ext = y_max - y_min

 columns = (x_ext / 100000) +1

53

 rows = (y_ext / 100000) +1

 head = inFile.header

 path = os.getcwd() + '/Tiles/'

 tiles = []

 tile_dict = {}

 append = tiles.append

 for i in xrange(columns):

 for j in xrange(rows):

 xmin, xmax = x_min + i*10**5, x_min + (i+1)*10**5

 ymin, ymax = y_min + j*10**5, y_min + (j+1)*10**5

 tile = [i, j, xmin, ymin, xmax, ymax]

 append(tile)

 tile_dict[i, j] = []

 tiles = np.array(tiles)

 for i in xrange(500):

 print i

 #Sampling interval

 start = i*10**6

 end = (i+1)*10**6

 # FILTER CLASSES - X, Y, classes arrays

 # X, Y = inFile.get_x()[start:end], inFile.get_y()[start:end]

 # classes = inFile.get_raw_classification()[start:end]

 # indices = np.arange(10**6) + start

 #Keep only vegetation, ground, buildings

 keep = np.logical_or(np.logical_or(classes == 1, classes == 2),

 classes == 6)

 X, Y = X[keep], Y[keep]

 indices = indices[keep]

 #Check inside bbox

 incl = np.where(np.logical_and(np.logical_and(X>x_min, X<x_max),

 np.logical_and(Y>y_min, Y<y_max)))

 pts = np.stack((X[incl], Y[incl]), axis=-1)

 indices = indices[incl]

 for pt, index in zip(pts, indices):

 inside_polygon(pt, index, minY, maxY, maxX, geom, fraction)

 write()

 end = time.clock()

 duration = end - begin

 print('Duration: {:.3f} s'.format(duration))

